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Abstract Localization and Mapping are two of the most important capabilities for autonomous mobile robots and
have been receiving considerable attention from the scientific computing community over the last 10 years. One of
the most efficient methods to address these problems is based on the use of the Extended Kalman Filter (EKF). The
EKF simultaneously estimates a model of the environment (map) and the position of the robot based on odometric
and exteroceptive sensor information. As this algorithm demands a considerable amount of computation, it is usually
executed on high end PCs coupled to the robot. In this work we present an FPGA-based architecture for the EKF
algorithm that is capable of processing two-dimensional maps containing up to 1.8k features at real time (14Hz),
a three-fold improvement over a Pentium M 1.6GHz, and a 13-fold improvement over an ARM920T 200MHz. The
proposed architecture also consumes only 1.3% of the Pentium and 12.3% of the ARM energy per feature.

Keywords Mobile Robotics, SLAM, EKF, FPGA

1 Introduction

Mobile robotics is a very active research field that has
been investigated for more than two decades. Its goal
is develop intelligent machines capable of acting autono-
mously in complex environments. Localization and map-
ping, which are used to calculate the robot position in-
side its navigation environment and to create a represen-
tation of this environment, are two of the most impor-
tant tasks to be performed by mobile robots [1]. Most
solutions for these problems are based on probabilistic
inferences derived from Bayesian filters [2] [3] involving
high computational complexity and a large volume of
data.

In most cases, these algorithms are implemented on
personal computers, and cannot be directly applied to
mobile robots [4]. Embedding these algorithms on chip
is usually desired when the typical solution of a laptop
mounted on the robot is unsatisfactory, such as when
the robotic system has power constraints [5].

This paper presents an FPGA-based implementation
of the EKF algorithm [6] related to simultaneous local-
ization and mapping (SLAM) problem. The main con-
tributions of this work are:

– as far we know, it is the first FPGA-based architec-
ture for the EKF-based SLAM problem;

– it presents an analysis of the computational complex-
ity and memory bandwidth requirements for FPGA-
based EKF;

– the results show that our proposed architecture up-
dates feature-based maps with three times more fea-
tures than a Pentium M 1.6GHz processor is capa-
ble of in real time, and thirteen times more than an
ARM920T 200MHz, while consuming only 1.3% of
the Pentium and 12.3% of the ARM energy per fea-
ture.

The paper is organized as follows. Section 2 briefly
describes the EKF algorithm and a complexity analy-
sis is derived. Section 3 presents some related work. The
proposed architecture is presented in Section 4, and then
Section 5 shows some experimental results. Finally, Sec-
tion 6 concludes the paper.

2 Extended Kalman Filter Algorithm

This section briefly describes the EKF algorithm along
with a complexity analysis related to the number of
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floating-point operations. A complete EKF algorithm
description can be found in [1]. EKF is composed of two
phases: prediction and update. In the SLAM context,
the prediction phase estimates the robot position µ

(t)
v ,

at time t, based on a prior believed position µ
(t−1)
v and

on a movement control u(t), while the update phase inte-
grates robot sensor observations z(t) in order to update
a map of the robot environment and to again estimate
the robot position. These two steps are repeated for each
EKF iteration, where the data estimated at one iteration
are used as input to the next one.

In this paper the robot position comprises of two-
dimensional planar coordinates (x, y) relative to some
external coordinate frame, along with its angular ori-
entation θ. The map consists of a set of feature posi-
tions (µ(t)

f1
, µ

(t)
f2

, ..., µ
(t)
fn

) detected from the robot navi-
gation environment by a sensor, where each feature is
represented in the same way by its (x, y) coordinates.
Thus the robot state size is three and the feature state
size is two; these parameters are represented in this pa-
per by r and s, respectively, for generalization. As these
robot and feature states are estimated, they have an as-
sociated covariance matrix in order to represent their
uncertainty, which is represented by Σ(t) at time t. In
the EKF algorithm these data are organized as in (1),
where µ(t) is composed of the estimated robot position
and the feature set at time t.
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Table 1 describes the variables used in the prediction
and update EKF equations along with their dimensions.
Equations (2) and (3) are used to estimate the new robot
position given the belief vector µ

(t−1)
v and the covariance

matrix that correspond to the robot position Σ
(t−1)
vv and

the current motion control u(t). F (t) and G(t) are Ja-
cobian matrices containing derivatives of the prediction
function α with respect to the motion command vari-
ables at time t. Equation (4) estimates the covariance
between the robot and feature position Σvf given the
corresponding covariance from time (t− 1) and the ma-
trix F (t).

After computing the prediction equations, the up-
date step starts by predicting the sensor measurement
through the measurement function equation (9) using
the estimated robot position µ

(t)
v and the detected fea-

ture µ
(t−1)
fi . Then equations (10) and (11) calculate the

innovation related to the measurement ν(t) and covari-
ance S(t), respectively. ν(t) is the difference between the
real and the estimated sensor measurement and S(t) is

Table 1 The description and dimension of the EKF symbols,
where s and r represent the feature and robot state size, v
and f the robot and feature position, i the feature number
and n the total number of features.

Sym. Dimension Description

µ (r + sn)× 1
Both robot and feature
positions

µv r × 1
Elements of µ related to
robot position

µf sn× 1
Elements of µ related to
feature position

Σvv r × r Robot position covariance
Σvf r × (sn) Cross robot-feature covariance
Σff (sn)× (sn) Cross feature-feature covariance
Σ (r + sn)× Cross robot-feature

(r + sn) and feature-feature covariance
α - Prediction function
γ - Measurement function
u r × 1 Robot motion command
F r × r Robot motion Jacobian
G r × r Robot motion noise Jacobian
Q r × r Permanent motion noise

Hv s× r
Measurement Jacobian with
respect to v

Hfi s× s
Measurement Jacobian with
respect to fi

H s× (r + sn)
Compounded measurement
Jacobian

R s× s Permanent measurement noise
W (r + sn)× s Filter gain
ν s× 1 Mean innovation
z s× 1 Sensor measurement

zpred s× 1 Sensor measurement prediction
S s× s Covariance innovation
Z1 s× (s(i− 1)) Zero Matrix
Z2 s× (s(n− i)) Zero Matrix

the new information added to the system covariance
given the current matrix H(t) and the covariance from
the previous prediction phase. H(t) is a matrix that com-
pounds two Jacobian matrices H

(t)
v and H

(t)
fi from (8)

which are derivatives of the prediction function γ with
respect to the estimated robot position and the detected
feature at time t. Then, equation (12) computes the fil-
ter weight. Finally, equations (5) and (6) update all data
that corresponds to the estimated map.

Prediction:

µ(t)
v = α(µ(t−1)

v , u(t)) (2)
Σ(t)

vv = F (t)Σ(t−1)
vv F (t)T + G(t)QG(t)T (3)

Σ
(t)
vf = F (t)Σ

(t−1)
vf (4)

Update:

µ(t) = µ̄(t) + W (t)ν(t) (5)
Σ(t) = Σ̄(t) −W (t)S(t)W (t)T (6)
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where:

µ̄(t) =

[
µ
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v

µ
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f

]
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(7)

H(t) =
[
H
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v Z1 H

(t)
fi Z2

]
(8)

z
(t)
pred = γ(µ(t)

v , µ
(t−1)
fi ) (9)

ν(t) = z(t) − z
(t)
pred (10)

S(t) = H(t)Σ̄(t)H(t)T + R (11)

W (t) = Σ̄(t)H(t)T S(t)−1
(12)
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2.1 Computation Complexity Analysis

It is well known that the computational requirements
for EKF algorithm for SLAM is Θ(n2), where n rep-
resents the number of features [1]. However to better
understand how this computational complexity is dis-
tributed between the equations, we present in Table 2
an analysis of the number of floating-point operations
for each EKF equation used in our proposed architec-
ture. As can be noticed, the highest complexity is lo-
cated in equation (6), since as all elements of the co-
variance matrix, which has a high dimension given by
(r + sn)× (r + sn), must be evaluated and updated for
each iteration. Consequently in this particular equation
there is not only a large number of floating-point oper-
ations, but also a large memory bandwidth requirement
to access the covariance matrix. Therefore, both aspects
must be considered in order to develop a high perfor-
mance system. Another important consideration is re-
lated to the matrix H(t) that has dimension s× (r + sn)
and is used to multiply the covariance matrix that has
dimension (r + sn)× (r + sn). As given in equation (8),
H(t) is a sparse and structured matrix. Taking advan-
tage of this structure, the total EKF complexity can be
reduced from 48n2 + 202n + 255 to 16n2 + 170n + 465,
as given in Table 2.

3 Related Work

The EKF has been widely used in several areas, such
as for image depth recovery [7], artificial neural network
training [8] and for autonomous satellite navigation [9].
In probabilistic robotics it has also been intensively used
to tackle the SLAM problem as it is considered one of
the most efficient solutions that we have up-to-date [2].

In [10] one of the earliest implementations of the
KF on an FPGA is presented (EKF and KF versions
have the same core where the main differences are in
the models since the EKF is just one extension to deal
with nonlinear problems). It proposes a co-processor for
target tracking in radar systems, which achieves perfor-
mance of 1.8µs per filter iteration. The paper states a
performance gain from two to three orders of magnitude
over other implementations from that time, however it
does not inform how many targets can be tracked at
this speed. Since then several other implementations on
FPGA have been proposed [11] [12] [13], despite that
none of them is specific to the SLAM problem. Although
the EKF core remains basically the same among the ap-
plications its computational complexity depends on how
the internal state information is represented, updated
and expanded. The main difference between our EKF
hardware architecture and the existing EKF hardware
proposals is that the architecture for SLAM needs to
update in each filter iteration the whole covariance ma-
trix for every element being estimated by the filter, as
in the SLAM the elements/features and the robot po-
sition are estimated simultaneously. Consequently, any
new information added to the filter needs to be prop-
agated through all elements, independent of being or
not at the moment detected by the sensor. Thus, the
proposed architecture demonstrated in Section 4 is fo-
cus on, in addition to an efficient core implementation,
reducing the external memory bottleneck by exploiting
on-chip data reusability and data distribution between
four external memories.

Over the past few years, there has been substan-
tial interest in reducing the EKF computational cost for
SLAM in software-based implementations by reducing
the effort to update its covariance matrix. A common ap-
proach is to split the global map into a set of local maps
and to update the covariance matrix locally [14] [15]. An-
other method adopted is to stop updating the map data
for those features of low variance [16]. Some research
has also concentrated on optimizing the EKF memory
requirement [17].

Although significant advances have been made in soft-
ware, very little attention appears to have been given
in relation to the hardware architecture. However, it is
possible to increase the system performance by creating
hardware specialised for the EKF algorithm applied to
SLAM. Furthermore, dedicated hardware tends to con-
sume less power than general purpose solutions, which is
very important for mobile robots powered by batteries.
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Table 2 Number of floating-point addition (ADD), subtraction (SUB), multiplication (MUL) and division (DIV) operations
for each EKF equation when r = 3 and s = 2, for n features.

Equation
FLOP

ADD&SUB MUL DIV Total per Equation

(2) 5 4 − 9

(3) 47 58 − 105

(4) 12n 18n 30n

(10) 2 − − 2

(11) 16n + 44 20n + 50 4 36n + 98

(12) 16n + 35 20n + 52 4 36n + 91

(5) 4n + 6 4n + 6 − 8n + 12

(6) 8n2 + 28n + 24 8n2 + 32n + 30 − 16n2 + 60n + 54

Total per FLOP 8n2 + 76n + 163 8n2 + 94n + 200 8 16n2 + 170n + 371

4 Hardware Architecture

This section presents a hardware architecture specially
developed to compute the prediction and update phases
of the EKF algorithm applied to the SLAM problem.
This architecture has been developed to be integrated
with a light embedded processor to compute the predic-
tion and measurement models from equations (2) and (10)
along with their Jacobian matrices. This configuration
allows easy update of models, since they can change ac-
cording to the sensor and robot types. Thus, the pro-
posed hardware can be re-used for any kind of sensor
models since the robot and feature state size are kept in
the same dimensions. For each EKF iteration the hard-
ware receives µ

(t)
v , ν(t), F (t), G(t) and H(t) from the soft-

ware and sends back v(t−1) and µ
(t−1)
fi . As there is data

dependency between software and hardware, the hard-
ware starts its execution only after the software has fin-
ished its computation and the next EKF iteration starts
only after both computations from hardware and soft-
ware are concluded. In this implementation, the pro-
posed hardware architecture has its own memory banks,
and an additional memory bank is used for the soft-
ware processor. Such a configuration provides an efficient
hardware/software partition, as the computational com-
plexity associated with the prediction and measurement
models is generally small (less than 1k FLOPS), and is
independent of the number of features. In addition, ac-
cording to Table 1, the amount of data involved in the
hardware/software communication is small and conse-
quently does not compromise the overall system latency.

As can be noticed from the previous section, the main
characteristics of this algorithm are: most operations
are matrix multiplication, addition and subtraction, and
particularly in equation (6) a large quantity of data must
be read and updated in the covariance matrix. Guided
by these dominant characteristics and also by the de-
sired system performance, we propose an FPGA-based
architecture illustrated in Fig. 1, which is composed of

Table 3 The PE operations, where A,B,C and R are block
partitions of matrices.

Code Operation

00 R = AB

01 undefined

10 R = C + AB

11 R = C −AB

four external memory banks, a set of on chip memories,
a state machine and four Processing Elements (PEs).

To define the required performance for this architec-
ture we consider its application in a SLAM system that
has only monocular cameras as the exteroceptive sen-
sors, which is the case in our mobile robotics project [18].
In this SLAM system the depth information of the fea-
tures are obtained by using the well-known triangulation
technique [19]. Therefore, the cameras, which are fixed
on the robot base, must be moved to capture images
from different positions. Considering that the robot nav-
igates in a straight line with maximum speed of 1m/s
and that the triangulation works with images captured
every 70mm, we have the EKF epoch frequency defined
by: 1000/70 = 14.28Hz. Hence, the required performance
can be estimated by combining this information with the
requirement of 1.5k features to be processed by the EKF
algorithm in real time.

For 1.5k features and r and s equal to 3 and 2, respec-
tively, the covariance matrix dimension Σ(t) is 3003 ×
3003 and the mean vector µ(t) is 3003 × 1. In this im-
plementation the data are represented in single precision
floating-point format (32bits), so these matrices store a
total equal to 36MB. These data are stored in an exter-
nal memory and that they must be read and written at
a frequency of 14Hz. As a result, the external memory
bandwidth is 1GB/s. In order to avoid bottlenecks, the
proposed architecture distributes the data between 4 ex-
ternal memories. As can be seen in Fig. 1, the covariance
matrix is distributed between the four memories, while
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Fig. 1 EKF architecture; MPEx are on chip memories for
PEs data reusability and b the PEs buffer size; other symbols
are presented in Table 1.

the mean vector is in memory 0 and the filter gain matrix
is distributed between memory 2 and 3. Such data orga-
nization allows an efficient bandwidth balance between
these memory banks, since the covariance matrix is by
far the most accessed data. The access control to these
memories is implemented by a state machine, where each
memory bank is accessed in parallel. This state machine
also controls the data flow between the on chip memories
and the PEs, exploits the data reuse inside the FPGA
using the on chip memory bank (MPEs), computes the
inversion of matrix S and controls the iteration among
the EKF equations.

Fig. 2 External memory access bandwidth, where n repre-
sents the number of features.

4.1 Processing Element

The purpose of the PEs in the EKF architecture is to
compute the three most common operations of the EKF
algorithm, which are presented in Table 3, in a such way
that data reuse in the code can be exploited, mitigating
the off chip memory access bottleneck, and considering
that FPGA parallelism can be efficiently exploited.

In this architecture matrices of size N ×M are par-
titioned into blocks. Consider three matrices A, B and
C where A multiplies B and the result is added to C.
Each block is composed of 1 × M elements of matrix
A, N × 8 elements of matrix B and 1 × 8 elements of
matrix C. The constant 8 corresponds to the number of
words that can be stored in the on chip memory of each
PE for data reuse. Fig. 2 presents how the data reuse
inside the PEs influences the external memory access
bandwidth. This graph shows the bandwidth related to
all elements of equation (6) for a set of different numbers
of features computed according to equation (17), where
ω is the memory bandwidth in MB/s, u the update fre-
quency, m the matrix dimension, j the PE buffer size and
s the feature state size. As can be noticed from this equa-
tion, the larger is j the more dominant is the 2m2 term,
which corresponds to the reading and writing operations
of the whole covariance matrix from and to the external
memory. In our proposed PE the size 8 was chosen as it
results in a good tradeoff between on chip memory size
and off chip memory bandwidth requirement for our tar-
get platform. In the proposed architecture each matrix
block is processed by a single PE, hence 4 blocks can be
concurrently processed.

ω = u(m2s/j + ms + 2m2)4 (17)

In the PE architecture the data of matrix A is reused
8 times. However, whenever matrix B has fewer than 8
columns the computation is re-ordered in order to take
full advantage of pipeline depth. In the EKF algorithm,
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Fig. 3 External memory access bandwidth as a function of
the feature state size using four PEs (j = 8), 1.5k features
and a 14Hz update frequency.

this happens in the operations used to calculate the fil-
ter gain W ; the transformation is represented by R =
(BT AT )T , R = (CT + BT AT )T or R = (CT −BT AT )T ,
and they are easily done in the state machine by chang-
ing the data order sent to the FIFOs. Finally, in situa-
tions where matrix A has fewer than 8 rows and matrix B
fewer than 8 columns, it is necessary to fill this gap with
dummy data and then reject the corresponding results.
In the EKF algorithm this occurs only in equation (3).

4.2 Alternative System Configurations

Having presented the PE architecture and the method-
ology to implement the matrix operations, this subsec-
tion demonstrates the impact in the external memory
bandwidth and on the PE operational frequency for al-
ternative system configurations by changing the feature
state size and the numbers of PEs. These projections
are carried out using 1.5k features and a 14Hz update
frequency. Fig. 3 demonstrates the impact on external
memory bandwidth of changing the feature state size
using four PEs (j = 8). Considering that each PE has
one dedicated external memory and that each memory is
able to transfer up to 400MB/s, the proposed system can
support a feature dimension up to four without reducing
the 1.5k features and the update frequency. However, to
achieve such performance it is necessary to adjust the
PE processing frequency according to the processing de-
mand.

Fig. 4 shows the PE pipeline frequency required for
the EKF in relation to the number of PEs, which has
been computed based on the EKF computational com-
plexity (FLOP), considering the feature state size equal
to two and that each PE computes two floating-point
operations per clock cycle. According to this graph, with
four PEs the required frequency is around 50MHz demon-
strating that it is possible to improve the system perfor-
mance for higher feature state dimensions as in FPGAs
it is feasible to have PEs operating over 100MHz.

Fig. 4 PE pipeline frequency required for the EKF in re-
lation to the number of PEs, considering feature state size
equal to two and that each PE computes 2FLOP per clock
cycle.

Table 4 FPGA resources for a single PE.

EP2S90F1020C4 MULT ADD/SUB Entire PE

Clock (MHz) 156 97 94

Latency 3 3 4(minimal)

ALUTs 599 1078 2368

Registers 517 546 1492

DSP blocks (9bit) 8 0 8

5 Results

This section presents some experimental results related
to the EKF architecture described in this paper, in par-
ticular the hardware resources employed, its performance
and power consumption. The architecture is described in
the Handel-C language [20] and it has been validated in
the Celoxica RC250 development kit [21], featuring 4
external SRAM memory banks and an EP2S90F1020C4
FPGA.

The resource utilization and the maximal clock fre-
quency of a single PE is shown in Table 4. As can be no-
ticed, 70% of the PE resources are used by the floating-
point units (MULT, ADD) and the remaining 30% by
the control logic. These floating-point units are from the
Celoxica library, and are single precision based on the
IEEE754 standard. Although the MULT unit has an op-
erating frequency higher than the ADD unit, the overall
PE frequency is limited by the ADD as they are work-
ing from a common clock. The minimal PE latency is
4 and the maximum depends on the PE operations and
the matrix size.

Table 5 presents the resources for the whole archi-
tecture, which includes the external memory controller,
EKF state machine, embedded memories and the 4 PEs.
The most part of the resources in column SM + EMC
is used to implement the EKF state machine. The state
machine is relatively large as it has to repeatedly par-
tition each matrix between the PEs and combine the
results again. Moreover, it contains a floating-point di-
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Table 5 FPGA resources for the whole EKF architecture;
where SM is the EKF State Machine and EMC the External
Memory Controller.

EP2S90F1020C4 4 PEs SM+EMC Total

Clock (MHz) 90 70 70

ALUTs 9252 8868 18120 (25%)

Registers 5332 2985 8317

DSP blocks (9bit) 32 0 32 (8%)

Memory bits 9216 3392 12608 (1%)

Table 6 The performance and power comparison between
the FPGA proposed architecture and the Pentium M 1.6GHz
and ARM920T 200MHz processors.

FPGA Pentium M ARM9

Device power (W) 1.3 31.1 0.75

Max. features in real
time (k)

1.8 0.57 0.13

Power per feature
(mW)

0.7 54 5.7

vision unit used to calculate the S matrix inversion. Al-
though the PE has higher frequency than the state ma-
chine, the whole system clock rate is limited by the state
machine clock as it is responsible for sending data to and
reading from the PE FIFOs.

5.1 Performance and Power Analyses

We can analyse the system performance at the achieved
clock frequency of 70MHz, the EKF prediction and up-
date frequency 14Hz and the algorithm complexity pre-
sented in Table 2, where n represents the number of
features. In this implementation each PE computes 2
floating-point operations (MULT and ADD) per clock
cycle and as there are 4 PEs the system has peak floating-
point performance of 560MFLOPS. However, the aver-
age performance is slightly inferior to these figures for
the following reasons: first, the FIFOs are both flushed
whenever there is a transition from one matrix oper-
ation to another and second, in some clock cycles the
state machine does not send data to the FIFOs as a con-
sequence of internal loop controls. The first overhead is
a constant and the bigger the matrices are the smaller
the influence average performance. However, the second
overhead is a proportional value that reduces the aver-
age performance by approximately 3%. Thus the max-
imum number of features that can be processed in real
time (14Hz) is approximately 1.8k. The power consump-
tion of the EKF system was estimated by the PowerPlay
Power Analyzer from the Quartus II tool. The estimated
power using signal activities generated by probabilistic
methods is 1.3W.

Fig. 5 Maximum number of features and the power con-
sumption for three processing devices.

To compare these results with other technologies we
consider the Pentium M 1.6GHz and the ARM920T 200-
MHz (Cirrus Logic - EP9315) processors, as the first one
is commonly found in on-board mobile robot cards, such
as in the Pioneer 3DX platform [22], and the second
one is widely used in low power embedded applications.
The performance achieved in real time (14Hz) on these
devices, running the EKF implemented in C, are 572 fea-
tures for the Pentium and 131 for the ARM processors.
The codes for both ICs were compiled using GCC 3.4.6
with the switches configured as standard and no spe-
cial features used. The software is mainly limited by the
external memory bandwidth and floating-point unit per-
formance, which could be significantly improved by using
multi-core processor technology, dedicated floating-point
units, provided by high speed external memory banks.

According to the processor datasheets, Pentium M
consumes 31.1W and ARM 750mW when running at
full speed. Table 6 summarizes the comparison among
these three approaches, which is also illustrated in Fig. 5.
As can be seen, despite the ARM processor having the
lowest power consumption, the FPGA processes more
features in real time and hence also consumes less power
per feature than both processors. It is also important
to consider that the EKF computational complexity is
Θ(n2), where n represents the number of features. Thus,
to achieve the same FPGA performance the Pentium
M must increase its processing power by 9.9× and the
ARM920T by 189×.

6 Conclusion

We have presented in this paper a computational com-
plexity analysis and an FPGA-based architecture for the
EKF algorithm applied to the SLAM problem. The anal-
ysis demonstrated that for hardware implementation,
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both an efficient floating-point matrix multiplication and
a high external memory bandwidth are required. On the
Celoxica RC250 platform, we have demonstrated that
FPGAs are a suitable technology to solve this problem
as the matrix multiplication can be accelerated by ex-
ploiting parallelism, while the off chip memory band-
width can be improved through access to parallel mem-
ory banks. As a result, the architecture we implemented
on the FPGA has both a considerably higher perfor-
mance and significantly less energy consumption than
the Pentium M 1.6GHz and ARM920T 200MHz proces-
sors.

Although the adopted FPGA would support more
than four PEs, the current system performance of 1.8k
features at 14Hz, which is suitable for most applica-
tions in indoor environments, is limited by the exter-
nal memory bandwidth. The recent approach of split-
ting the global map into a set of local maps so as to
update the covariance matrix locally would be a so-
lution to overcome this limitation when higher perfor-
mance is need. Another possibility would be to reduce
the floating-point precision or even use a fixed-point for-
mat. However, these approaches require special attention
as the result precision can compromise the filter conver-
gence.

Finally, as 75% of the FPGA resources are still free a
softcore processor with floating-point unit, such as NIOS
II, can be added in this space in order to compute the
EKF prediction and measurement models discussed in
section 4. Furthermore, it is possible to implement many
other robot functionalities in the same chip avoiding the
necessity of using personal computers commonly found
in mobile robots.
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