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Abstract

Let X be a metrizable space with a continuous group or semi-group
action G. Let D be a nonempty subset of X. Our problem is how to
choose a fixed number of sets in {g−1D; g ∈ G}, say σ−1D with
σ ∈ τ , to maximize the cardinality of the partition P({σ−1D; σ ∈ τ})
generated by them. Let

p∗X,G,D(k) = sup
τ⊂G, #τ=k

#P({σ−1D; σ ∈ τ}) (k = 1, 2, · · · ).

An infinite subset Σ of G is called an optimal position of the triple
(X,G,D) if

#P({σ−1D; σ ∈ τ}) = p∗X,G,D(k),

holds for any k = 1, 2, · · · and τ ⊂ Σ with #τ = k. In this paper, we
discuss examples of the triple (X,G,D) admitting or not admitting an
optimal position. Let X = G = Rn (n ≥ 1), where the action g ∈ G
to x ∈ X is the translation x− g. If D is the n-dimensional unit ball,
then

p∗X,G,D(k) = 2
n∑

i=0

(
k − 1

i

)
holds and the triple (X,G,D) admits an optimal position. In fact,
if n ≥ 2 and Σ is an infinite subset of G such that for some δ with
0 < δ < 1, Σ ⊂ {x ∈ Rn; ||x|| = δ}, and that any subset of Σ
with cardinality n + 1 is not on a hyper-plane, then Σ is an optimal
position of the triple (X,G,D). We determined the primitive factor of
the uniform sets coming from these optimal positions. We also show
that in the above setting with n = 2 and the unit square D′ in place
of the unit disk D, the maximal pattern complexity is unchanged and
p∗X,G,D′(k) = k2 − k + 2, but there is no optimal position.
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1 Introduction

Let X be a metrizable space with a continuous group or semi-group action
G. For a family of subsets A1, A2, · · · , Ak of X, P({Ai; i = 1, 2, · · · , k})
denotes the partition of X generated by these sets, that is, the family of
nonempty sets of the form

Ai1
1 ∩Ai2

2 ∩ · · · ∩Aik
k (i1, i2, · · · , ik ∈ {0, 1}),

where for a set A ⊂ X, we denote A1 = A and A0 = X \A.
Let D be a nonempty subset of X. Our problem is how to choose a fixed

number of sets in {g−1D; g ∈ G} to maximize the cardinality of the partition
generated by them. Define the maximal pattern complexity function p∗X,G,D

of the triple (X,G,D) by

p∗X,G,D(k) = sup
τ⊂G, #τ=k

#P({σ−1D; σ ∈ τ}) (k = 1, 2, · · · ),

where # implies the number of elements in a set.
An infinite subset Σ of G is called an optimal position of the triple

(X,G,D) if
#P({σ−1D; σ ∈ τ}) = p∗X,G,D(k),

holds for any k = 1, 2, · · · and τ ⊂ Σ with #τ = k.
In this paper, we discuss examples of the triple (X,G,D) admitting or

not admitting an optimal position. Let X = G = Rn (n ≥ 1), where the
action g ∈ G to x ∈ X is the translation x − g. If D is the n-dimensional
unit ball, then

p∗X,G,D(k) = 2

n∑
i=0

(
k − 1

i

)
holds and the triple (X,G,D) admits an optimal position. In fact, if n ≥ 2
and Σ is an infinite subset of G such that for some δ with 0 < δ < 1,
Σ ⊂ {x ∈ Rn; ||x|| = δ}, and that any subset of Σ with cardinality n+ 1 is
not on a hyper-plane, then Σ is an optimal position of the triple (X,G,D).
Also, if n = 1 and Σ ⊂ (−1, 1), then Σ is an optimal position.

On the other hand, if in the above with n = 2, D is replaced by the
unit square D′ = [0, 1] × [0, 1], then we have the same maximal pattern
complexity

p∗X,G,D′(k) = p∗X,G,D(k) = k2 − k + 2,

but the optimal position does not exit.
If the optimal position Σ for the triple (X,G,D) exists, then the name set

Ω which is the closure of {ωx; x ∈ X} ⊂ {0, 1}Σ, where ωx ∈ {0, 1}Σ is such
that ωx(σ) = 1 if and only if x ∈ σ−1D, satisfies the property that #Ω|S
depends only on #S for any finite set S ⊂ Σ, where Ω|S = {ω|S ; ω ∈ Ω}
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and ω|S ∈ {0, 1}S is the restriction of ω ∈ {0, 1}Σ to S. Such a set is called
a uniform set. In fact, we have #Ω|S = p∗X,G,D(#S).

For Ω ⊂ {0, 1}N and an infinite set N = {N0 < N1 < N2 < · · · } ⊂ N,
we denote Ω[N ] = {ω[N ]; ω ∈ Ω}, where ω[N ] ∈ {0, 1}N is such that
ω[N ](n) = ω(Nn) (n ∈ N). We call a nonempty closed set Ω ⊂ {0, 1}N a
super-stationary set if Ω[N ] = Ω holds for any infinite subset N of N.

It is known [1] that for any uniform set Ω ⊂ {0, 1}Σ, there exists an
injection ψ : N → Σ such that Ω ◦ ψ = {ω ◦ ψ ∈ {0, 1}N; ω ∈ Ω} is a super-
stationary set. In this case, we say that Ω has a primitive factor [Ω ◦ ψ],
where [Ω ◦ ψ] is the isomorphic class containing Ω ◦ ψ in the sense that 2
nonempty closed subsets Ω and Θ of {0, 1}N are said to be isomorphic if
there is an isometric bijection between them. The notion of primitive factor
is introduced in [3] to distinguish pattern Sturmian words of different types.

The class of super-stationary sets is characterized in terms of super-
subword in [2]. For ξ = ξ1ξ2 · · · ξk ∈ {0, 1}k and ω ∈ {0, 1}N, ξ is called
a super-subword of ω, denoted by ξ � ω, if there exist l1, l2, · · · , lk such
that 0 ≤ l1 < l2 < · · · < lk and ω(l1)ω(l2) · · ·ω(lk) = ξ. The set of in-
finite words with prohibited super-subword ξ is denoted by P(ξ) = {ω ∈
{0, 1}N; ξ � ω does not hold}. Then, the class of super-stationary sets
other than {0, 1}N coincides with the class of sets of the form

∪
ξ∈Ξ P(ξ)

with nonempty finite sets Ξ ⊂
∪∞

k=1{0, 1}k.
For the name set Ω ⊂ {0, 1}Σ with respect to the above optimal position

Σ for the triple (X,G,D) with X = G = Rn and D the n-dimensional unit
ball, we prove that Ω has a unique primitive factor [P((01)l0) ∪ P((10)l1)]
if n = 2l is even, and [P((01)l+1) ∪ P((10)l+1)] if n = 2l + 1 is odd.

The basic terminology and notations follow from [1, 2]. For further related
results, refer [3, 4, 5, 6, 7, 8, 9].

2 Basic lemmas

Definition 1. The Euclidean space Rn+1 is sometimes considered as the
vector space. Let Sn = {x ∈ Rn+1; ||x|| = 1} (n ≥ 1) be the n-dimensional
unit sphere, where for x = (x1, · · · , xn, xn+1) ∈ Rn+1, we denote ||x|| =√
x21 + · · ·+ x2n + x2n+1. For v ∈ Rn+1 with ||v|| = 1 and c ∈ R with −1 <

c < 1, we define a disk on Sn by

Dn(v, c) := {x ∈ Sn; (x, v) ≥ c},

where ( , ) is the inner product. A one-point set in Sn is considered as a
degenerate disk. Let Dn be the family of disks on Sn. Also let Dn be the
union of Dn with the family of degenerate disks.

For A = Dn(v, c), ∂A denotes the boundary. That is, ∂A = {x ∈
Sn; (x, v) = c}, which is the (n − 1)-dimensional sphere with center cv
and radius

√
1− c2.
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In particular, a 0-dimensional sphere is considered as a two-points set,
and a (−1)-dimensional sphere is considered as the empty set.

Lemma 2. For A :=
∩k

i=1 ∂Dn(vi, ci) with n ≥ 1 and k ≥ 1, one of the
following 3 cases occurs:
(1) A = ∅,
(2) #A = 1, and
(3) A is an (n− d)-dimensional sphere with d = 1, 2, · · · ,min{k, n}.

Moreover, this condition (3) is equivalent to the following condition (4).
(4) dim{v1, v2, · · · , vk} = d and cA−1c′ < 1 hold for any h1, h2, · · · , hd such
that 1 ≤ h1 < h2 < · · · < hd ≤ k and vh1 , · · · , vhd

are linearly independent,
where A := ((vhi

, vhj
))i,j=1,··· ,d and c := (ch1 , · · · , chd

).

Proof Let dim{v1, v2, · · · , vk} = d. Assume without loss of generality that
v1, v2, · · · , vd are linearly independent so that h1 = 1, h2 = 2, · · · , hd = d.
Let

W = {x ∈ Rn+1; (x, vi) = ci for i = 1, 2, · · · , d}.
Then, either {x ∈ Rn+1; (x, vi) = ci for i = 1, 2, · · · , k} =W or = ∅. In the
latter case, we have A = ∅. Assume the former case.

Let w ∈W be such that ||w|| = min{||x||; x ∈W}. Then, it holds that{
w = λ1v1 + λ2v2 + · · ·+ λdvd
(w, vi) = ci (i = 1, 2, · · · , d).

Hence, we have
d∑

j=1

(vi, vj)λj = ci (i = 1, 2, · · · , d),

and Aλ′ = c′. where λ = (λ1, λ2, · · ·λd). Therefore, λ′ = A−1c′.
Denoting A = (aij)i,j=1,··· ,d and A−1 = (aij)i,j=1,··· ,d, we have

w =
∑
j

a1jcjv1 +
∑
j

a2jcjv2 + · · ·+
∑
j

adjcjvd. (1)

Hence,

||w||2 =
∑
i

∑
i′

∑
j

∑
j′

aijcja
i′j′cj′(vi, vi′)

=
∑
i

∑
i′

∑
j

∑
j′

aijcja
i′j′cj′aii′

=
∑
i′

∑
j

∑
j′

cja
i′j′cj′

∑
i

aijaii′

=
∑
i′

∑
j

∑
j′

cja
i′j′cj′δi′j

=
∑
i′

∑
j′

ci′a
i′j′cj′ = cA−1c′.
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Note that W is the (n− d+1)-dimensional plane with w ∈W orthogonal
to ~Ow, where O is the origin. Moreover, A = W ∩ {x ∈ Rn+1; ||x|| = 1}.
There are 3 cases.

Case 1: If ||w|| > 1, then A = ∅.
Case 2: If ||w|| = 1, then #A = 1.
Case 3: If ||w|| < 1, then A is an (n− d)-dimensional sphere.
Thus, we complete the proof. 2

Definition 3. Let A ⊂ Dn with #A ≥ 1 and n ≥ 1. We call A a general
position if for any subset {Dn(vi, ci); i = 1, 2, · · · , l} of A with cardinality l
such that 1 ≤ l ≤ n + 1, it holds that either

∩l
i=1 ∂Dn(vi, ci) is an (n − l)-

dimensional sphere, or the empty set, where a 0-dimensional sphere is a
two-points set and (−1)-dimensional sphere is the empty set. It is called
intersecting if the former case always holds.

Definition 4. For a family A of subsets of Sn, P(A) denotes the partition
of Sn generated by the sets in A. That is,

P(A) = {
∩
A∈A

AiA 6= ∅; iA ∈ {0, 1} is chosen for each A ∈ A},

where we denote A1 = A and A0 = Ac = Sn \ A. We also denote by Q(A)
the set of connected components of Sn \

∪
A∈A ∂A.

Lemma 5. Let A ⊂ Dn with n ≥ 1 and #A ≥ 1 be a general position.
Then, every C in P(A) satisfies that C = CI , where CI is the set of interior
points of C, and C is the closure of C.

Proof Let x0 ∈ C ∈ P(A) and C =
∩

A∈E A ∩
∩

A∈A\E A
c for E ⊂ A. Let

C := {A ∈ E ; x0 ∈ ∂A} = {Dn(vi, ci); i = 1, 2, · · · , d}.

If d = 0, then x0 is an interior point of C. Assume that d ≥ 1.
Since A is a general position, d ≤ n holds, and v1, v2, · · · , vd are lin-

early independent with cA−1c′ < 1, where A := ((vi, vj))i,j=1,··· ,d and
c := (c1, · · · , cd). Since v1, v2, · · · , vd are linearly independent,

d∩
i=1

{x ∈ Rn+1; (x, vi) > ci}

is the interior of an n-dimensional polygon. Moreover, since cA−1c′ < 1,

∩
A∈C

AI = Sn ∩
d∩

i=1

{x ∈ Rn+1; (x, vi) > ci}

is a nonempty open set in Sn. Since x0 belongs to an open set∩
A∈E\C

AI ∩
∩

A∈A\E

Ac,
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∩
A∈E A

I ∩
∩

A∈A\E A is a nonempty open set contained in C, and x0 is in
its closure, which completes the proof. 2

Lemma 6. For E ⊂ Dn with n ≥ 1 and #E = k ≥ 1, there exists a general
position A such that #A = #E and #P(A) ≥ #P(E).

Proof Denote each degenerate disk, say {x} ∈ E , by D(x, 1). Let E =
{Dn(vi, ci), i = 1, 2, · · · , k}. For each C ∈ P(E), choose xC ∈ C. There
exists ε > 0 such that if C =

∩
i∈C Dn(vi, ci)

∩∩
i∈{1,2,··· ,k}\C Dn(vi, ci)

c,
then

xC ∈
∩
i∈C

Dn(vi, ci − ε)I
∩ ∩

i∈{1,2,··· ,k}\C

Dn(vi, ci − ε)c.

Hence, each xC is an interior point of the corresponding element of the
partition P({Dn(vi, ci − ε); i = 1, 2, · · · , k}).

We can also move vi’s slightly to ui’s, keeping xC ’s separated so that
A := {Dn(ui, ci − ε), i = 1, 2, · · · , k} is a general position. Then, #A = k
and #P(A) ≥ #P(E), which complete the proof. 2

Lemma 7. Let A ⊂ Dn be a general position. Then, #P(A) ≤ #Q(A)
holds.

Proof If C and C ′ are distinct elements in P(A). By Lemma 5, CI 6= ∅
and C ′I 6= ∅. Take x ∈ CI and x′ ∈ C ′I . There exists A = Dn(v, c) ∈ A
such that either C ⊂ A and C ′ ∩ A = ∅ or C ′ ⊂ A and C ∩ A = ∅. Assume
the former case without loss of generality. Then, (x, v) > c and (x′, v) < c.
Thus, x and x′ belong to different elements in Q(A). This implies that
#P(A) ≤ #Q(A). 2

Definition 8. Let A = Dn(v, c) with n ≥ 2. Let DA
n be the set of B ∈ Dn

such that ∂A ∩ ∂B is an (n − 2)-dimensional sphere. Let Ev,c := {x ∈
Rn+1; (x, v) = c} and the space of elements x−cv with x ∈ Ev,c is identified

with Rn. Let φA : Ev,c → Rn be such that φA(x) =
x− cv√
1− c2

.

Lemma 9. Let A = Dn(v, c).
(1) The map φA : Ev,c → Rn is an affine map such that for Dn(w, d) ∈ DA

n ,
φA(Dn(w, d) ∩ Ev,c) = Dn−1(w

′, d′) with w′ = w−(v,w)v√
1−(v,w)2

d′ = d−c(v,w)√
1−c2

√
1−(v,w)2

(2) Let A ⊂ Dn be a general position with #A ≥ 2 and A ∈ A. Then
{φA(B ∩ Ev,c); B ∈ A ∩ DA

n } is a general position in Dn−1.

Proof (1) Let B = Dn(w, d) ∈ DA
n . It is clear that w′ ∈ Rn and ||w′|| =

1. Since ∂A ∩ ∂B is an (n − 2)-dimensional sphere, v and w are linearly
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independent and cA−1c′ < 1 by Lemma 2, where c = (c, d) and A =(
1 (v, w)

(v, w) 1

)
. Therefore,

cA−1c′ =
c2 + d2 − 2cd(v, w)

1− (v, w)2
< 1,

and hence,
c2 + d2 − 2cd(v, w) < 1− (v, w)2.

This implies that

0 ≤ c2(v, w)2 + d2 − 2cd(v, w) < (1− c2)(1− (v, w)2),

and hence,

d′
2
=
c2(v, w)2 + d2 − 2cd(v, w)

(1− c2)(1− (v, w)2)
< 1.

Thus, we have −1 < d′ < 1.
Let y ∈ Dn(w, d) ∩ Ev,c. Then, we have (y, v) = c and (y, w) ≥ d. For

y′ = φA(y), we have

(y′, w′) =

(
y − cv√
1− c2

,
w − (v, w)v√
1− (v, w)2

)

≥ d− c(v, w)√
1− c2

√
1− (v, w)2

= d′.

Therefore, φA(Dn(v, c) ∩ Ev,c) ⊂ Dn−1(w
′, d′).

Conversely, let y′ ∈ Rn satisfy that ||y′|| = 1 and (y′, w′) ≥ d′. Note that
the space Rn is identified with the space in Rn+1 orthogonal to v. Hence,
(y′, v) = 0 holds. Let y =

√
1− c2y′ + cv ∈ Ev,c. Then, we have φA(y) = y′.

Moreover,

(y, v) =
√

1− c2(y′, v) + c(v, v) = c

(y, w) =
√

1− c2(y′, w) + c(v, w)

=
√

1− c2
(
y′,
√
1− (v, w)2w′ + (v, w)v

)
+ c(v, w)

≥
√

1− c2
√

1− (v, w)2d′ + c(v, w)

=
√

1− c2
√

1− (v, w)2
d− c(v, w)√

1− c2
√
1− (v, w)2

+ c(v, w)

= d− c(v, w) + c(v, w) = d.

Therefore, y′ ∈ φA(Dn(v, c) ∩ Ev,c), and hence,

φA(Dn(v, c) ∩ Ev,c) ⊃ Dn−1(v
′, d′),

which completes the proof of (1).
(2) follows from (1) and the definition of a general position. 2
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Lemma 10. Let A ⊂ Dn be a general position with n ≥ 1 and #A =

k ≥ 1. Then, #Q(A) ≤ 2

n∑
i=0

(
k − 1

i

)
, where we define

(
k

i

)
= 0 if k < i.

Moreover, the equality holds if A is intersecting.

Proof Let A ⊂ Dn be a general position with n ≥ 1 and #A = k ≥ 1.
If k = 1, then #Q(A) = 2 and our lemma holds. Moreover, if n = 1, then
∂A is a two-point set for any A ∈ A, and ∂A ∩ ∂B = ∅ for any distinct
elements A,B ∈ A since A is a general position. Therefore, S1 \ ∪A∈A∂A
has 2k connected components. Thus, our lemma holds for n = 1, since

#P(A) = 2k = 2

1∑
i=0

(
k − 1

i

)
(k = 1, 2, · · · ).

We use induction on k. Let k ≥ 2 and assume that our lemma holds with
1, 2, · · · , k − 1 in place of k. Assume also that n ≥ 2. Take A ∈ A. Then,
{φA(B ∩ Ev,c); B ∈ A ∩ DA

n } is a general position by Lemma 9, which is
intersecting if A is intersecting. Let l = #(A ∩ DA

n ). Then, l ≤ k − 1 and
the equality holds if A is intersecting.

Let C ∈ Q(A \ {A}). We count the number of elements in Q(A), Q(A \
{A}) and Q({φA(B ∩ Ev,c); B ∈ A ∩ DA

n }) coming from C, say p, q and r.
There are 2 cases.

Case 1: If C ∩ ∂A = ∅, then p = 1, q = 1 and r = 0.
Case 2: If C∩∂A 6= ∅, then C∩∂A is divided into connected components,

which are elements in Q({φA(B ∩ Ev,c); B ∈ A ∩ DA
n }). Let them be

`1, `2, · · · , `t. Then, `1 divides C into 2 connected components, say C1 and
C2, and `2 divides one of C1 and C2 into 2 connected components, and
hence, C is divided into 3 connected components by `1 ∪ `2. In the same
way, C is divided into t+1 connected components by `1∪`2∪· · ·∪`t. These
connected components are elements of Q(A).

Thus, p = t+ 1, q = 1 and r = t.
Hence, using the induction hypothesis, we have

#Q(A) =
∑
C

p =
∑
C

(q + r)

= #Q(A \ {A}) + #Q({φA(B ∩ Ev,c); B ∈ A ∩ DA
n })

≤ 2

n∑
i=0

(
k − 2

i

)
+ 2

n−1∑
i=0

(
l − 1

i

)
(2)

≤ 2

n∑
i=0

(
k − 2

i

)
+ 2

n−1∑
i=0

(
k − 2

i

)
(3)

= 2

n∑
i=0

(
k − 1

i

)
.
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In the above, if A is intersecting, then {φA(B ∩ Ev,c); B ∈ A ∩ DA
n } is also

intersecting, and hence, the equality in (2) holds by the induction hypothesis.
Moreover, since l = k− 1 holds in this case, the equality in (3) holds. Thus,
the equality holds if A is intersecting. 2

Definition 11. Let A ⊂ Sn be a general position with n ≥ 1 and #A =
k ≥ 1. It is called connected if any C in P(A) is connected.

Lemma 12. For any A ⊂ Dn with n ≥ 1 and #A ≥ 1, we have

#P(A) ≤ 2

n∑
i=0

(
k − 1

i

)
.

Moreover, the equality holds if A is a connected, intersecting general posi-
tion.

Proof The inequality follows from Lemma 6, 7 and 10. The equality in
the case that A is a connected, intersecting general position follows from
Lemma 10, since #P(A) = #Q(A). 2

3 Existence of an optimal position

Let Bn(v, r) = {x ∈ Rn; ||x−v|| ≤ r} be the n-dimensional ball with center
v ∈ Rn and radius r > 0. Let Bn be the set of all such balls.

Definition 13. A nonempty finite subset A of Bn is called a general position
if for any subset {Bn(vi, ri); i = 1, 2, · · · , l} of A with cardinality l such that
1 ≤ l ≤ n+1, it holds that either

∩l
i=1 ∂Bn(vi, ri) is an (n− l)-dimensional

sphere, or the empty set, where a 0-dimensional sphere is a two-point set
and a (−1)-dimensional sphere is defined to be the empty set. It is called
intersecting if the former case holds always. Moreover, a general position A
is called connected if any C in P(A) is connected.

A bounded region of Rn can be imbedded into a small region of Sn by a
map which is close enough to a homothetic map. By this map, unit balls
in Rn are mapped to small, slightly perturbed disks with almost uniform
sizes in Sn. Moreover, a general position A ⊂ Bn corresponds to a general
position A′ ⊂ Dn having the same configuration as A.

This correspondence gives the following theorem.

Theorem 14. For any A ⊂ Bn with n ≥ 1 and #A = k ≥ 1, we have

#P(A) ≤ 2

n∑
i=0

(
k − 1

i

)
.

Moreover, the equality holds if A is a connected and intersecting general
position.
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Theorem 15. Take n ≥ 2 and any δ with 0 < δ < 1. Let

A = {Bn(v1, 1), Bn(v2, 1), · · · , Bn(vk, 1)}

with ||vi|| = δ for any i = 1, 2, · · · , k. Assume that if k ≤ n, then v1, v2, · · · , vk
are not on a plane of dimension k − 2, and if k ≥ n+ 1, then any subset of
v1, v2, · · · , vk with cardinality n + 1 is not on a hyper-plane. Then, A is a
connected and intersecting general position.

Proof Take any subset of A with cardinality l such that 2 ≤ l ≤ n. With-
out loss of generality, let it be {Bn(v1, 1), Bn(v2, 1), · · · , Bn(vl, 1)}. By our
assumption, v1, v2, · · · , vl are not on a plane of dimension l−2, but exactly on
a (l−1)-dimensional plane. Hence, they are on a (l−2)-dimensional sphere,
say with center u ∈ Rn and radius ρ, such that ||u|| < δ and ρ =

√
δ2 − ||u||2.

Hence,
∩l

i=1 ∂Bn(vi, 1) is a (n− l)-dimensional sphere

{x ∈ Rn; ||x−u|| =
√
1− δ2 + ||u||2, (x−u, vi−u) = 0 (i = 1, · · · , l− 1)}.

If k ≥ n+ 1, then take any subset of A with cardinality n+ 1. Let it be

{Bn(v1, 1), Bn(v2, 1), · · · , Bn(vn+1, 1)}

without loss of generality. Suppose that
∩n+1

i=1 ∂Bn(vi, 1) is nonempty. Let
w be an element of it. Then, we have

{v1, v2, · · · , vn+1} ⊂ {x ∈ Rn; ||x|| = δ} ∩ {x ∈ Rn; ||x− w|| = 1}
⊂ {x ∈ Rn; (x,w) = (||w||2 + δ2 − 1)/2},

which contradicts our assumption.
Thus, A is an intersecting general position.
To prove that A is connected, take any C ∈ P(A). Let

C =
∩
A∈E

A ∩
∩

A∈A\E

Ac

with some E ⊂ A. Without loss of generality, assume that

E = {B(vi, 1); i = 1, 2, · · · , d}

with 0 ≤ d ≤ k. For i, j = 1, 2, · · · , k with i 6= j, let

Ri,j = {x ∈ Rn; ||x− vi|| < ||x− vj ||},

which is an open half space bounded by the hyper-plane ∂Ri,j containing
the origin O. Denote

R =
∩

i≤d, j>d

Ri,j .
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Then, R is an open polygonal cone with focus O containing CI .
Let L be the set of unit vectors u in Rn such that {tu; t > 0} ⊂ R. Define

functions F and f from L to R+ such that

F (u) = inf{t > 0; ||tu− vi|| > 1 for some i = 1, · · · , d}
f(u) = sup{t > 0; ||tu− vi|| ≤ 1 for some i = d+ 1, · · · , k}.

Then, it is clear that f(u) < F (u) for any u ∈ L and

CI = {x ∈ Rn; x = tu for some u ∈ L and t with f(u) < t < F (u)}.

Moreover, since F and f are continuous function, CI is connected, and
hence, C is connected since CI ⊂ C ⊂ CI . Thus, A is connected. 2

Corollary 16. Let X = G = Rn (n ≥ 1) and the action g ∈ G to x ∈ X is
the translation x− g. If D = Bn(0, 1) is the n-dimensional unit ball, then

p∗X,G,D(k) = 2

n∑
i=0

(
k − 1

i

)
.

Moreover, if n ≥ 2 and Σ is an infinite subset of G such that for some δ
with 0 < δ < 1, Σ ⊂ {x ∈ Rn; ||x|| = δ}, and that any subset of Σ with
cardinality n + 1 is not on a hyper-plane, then Σ is an optimal position of
the triple (X,G,D). Also, if n = 1 and Σ ⊂ (−1, 1), then Σ is an optimal
position.

4 Non-existence of an optimal position

Let X = G = R2 and the action g ∈ G to x ∈ X is the translation x− g. If
D = [0, 1]× [0, 1] is the unit square, then the same result as for the unit disk
holds for the maximal pattern complexity, that is, p∗X,G,D(k) = k2 − k + 2.
But in this case, an optimal position does not exist.

To get p∗X,G,D(k) = k2− k+2, we put translations of the unit square, say
D1, D2, · · · , one by one in the following way, where we let Vn denote the
union of the vertices of D1, D2, · · · , Dn.

(i) D1 is put anywhere. D2 is put so that one of its vertices is in the interior
ofD1. Hence, D1∩D2 is a rectangle such that just two of its vertices situated
diagonally are elements in V2.

(ii) Assume that Di (i = 1, 2, · · · , 2n) have been already put so that ∩2n
i=1Di

is a rectangle such that just two of its vertices situated diagonally, say u
and v, are elements in V2n. Put D2n+1 so that one of its vertices is in the
interior of ∩2n

i=1Di and it does not contain any of u and v. Then, ∩2n+1
i=1 Di is

a rectangle such that just one of its vertices, say w, belongs to V2n+1. Put
D2n+2 so that one of its vertices is in the interior of ∩2n+1

i=1 Di and it contains

11



w. Then, ∩2n+2
i=1 Di is a rectangle such that just two of its vertices situated

diagonally belongs to V2n+2.

(iii) Repeat (ii) with n+ 1 instead of n.
This choice of the translations of the unit square, called A, realizes the

maximal pattern complexity p∗X,G,D(k) = k2 − k + 2. On the other hand,
the triple (X,G,D) does not admit an optimal position. We prove them in
the following lemmas.

Lemma 17. For the above triple (X,G,D), it holds that p∗X,G,D(k) = k2 −
k + 2, and the above A := {Di; i = 1, 2, · · · , k} satisfies that #P(A) =
#Q(A) = k2 − k + 2 (k = 1, 2, · · · ).
Proof Let B consist of k translations of D such that any two of their
boundaries intersect exactly at 2 points. Then, we have #Q(B) = k2−k+2.
For any E ⊂ {D + g; g ∈ R2} with #E = k, by the same arguments as
the proofs of Lemma 6 and 7, there exists B as above such that #P(E) ≤
#P(B) ≤ #Q(B) = k2 − k + 2. Hence, we have p∗X,G,D(k) ≤ k2 − k + 2.

By the above argument, we have #P(A) ≤ #Q(A) = k2−k+2. To prove
#P(A) = k2 − k + 2, it is sufficient to prove #P(A) = #Q(A). Hence, it is
sufficient to prove that any element in P(A) is connected. We prove this by
induction on k. This is clear for k = 1, 2. For k = 3, this holds since we have
the right configuration in Figure 1, but not the left by our construction.

D1

D2

D3

D1

D2

D3

Figure 1: We have the right configuration, not the left.

Assume that this is true for 1, 2, · · · , k − 1 for some k ≥ 4. Since one
of the vertices, say left and down, of Dk is in the interior of ∩k−1

i=1Di, only
2 neighboring edges of Dk, intersect with ∪k−1

i=1Di. Let C ∈ P({Di; i =
1, 2, · · · , k−1}). By the induction hypothesis, C is connected. If C ∩∂Dk is
connected, then ∂Dk divides C into 2 connected region belonging to distinct
elements in P({Di; i = 1, 2, · · · , k}). Therefore, it is sufficient to prove that
this is the only possible case.

Suppose that C ∩ ∂Dk is not connected. Then, C should be a region
extending vertically and horizontally at the same time and intersecting with
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Dk

Dh

C

u

v

q
q Dk

Dh

Dh+2

Dh+1

u

w

q

q

Figure 2: The region C and the configurations.

2 edges of Dk. Then, there exists Dh in {Di; i = 1, 2, · · · , k − 1} which is
located most right and most up at the same time, since otherwise, there is
no C as above. Hence, we have the situation in the left of Figure 2.

If k = h + 1, then u is a vertex of ∩k−1
i=1Di. In this case, we do not put

Dk as in the left of Figure 2 in our construction, and have a contradiction.
If k ≥ h + 2, then for any l with h < l < k, Dl should contain v by our
construction. On the other hand, since Dh is more right and more up than
Dl by the assumption on Dh, the left-down vertex of Dl should be more left
and more down than u, which implies that the right-up vertex of Dl is in
the interior of Dh ∩Dk. But in this case, we have the configuration in the
right of Figure 2, which contradicts our choice of Dh+2 in our construction.
Hence, we have k = h + 2 and the configuration should be in the right of
Figure 2. In this case, ∩k−1

i=1Di has 2 diagonally situated vertices in Vk−1, u
and w, while we should not put Dk like this in our construction.

In any case, we have a contradiction coming from the supposition that
C ∩ ∂Dk is not connected. Hence, it is connected. Thus, each C ∈ P(A) is
connected, which completes the proof. 2

Lemma 18. The above triple (X,G,D) does not admit an optimal position.

Proof Take any infinite subset Σ of G.
If there exist 3 distinct elements (u1, v1), (u2, v2), (u3, v3) in Σ such that

(1) either u1 ≤ u2 ≤ u3 or u1 ≥ u2 ≥ u3, and
(2) either v1 ≤ v2 ≤ v3 or v1 ≥ v2 ≥ v3,
then, we have A1 ∩ Ac

2 ∩ A3 = ∅ with Ai = D + (ui, vi) (i = 1, 2, 3). Hence,
#P(A1, A2, A3) ≤ 7, and {A1, A2, A3} dose not attain p∗X,G,D(3) = 8.

We prove that Σ contains 3 distinct elements as above. Take any 5 distinct
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elements in Σ, say (ui, vi) (i = 1, 2, 3, 4, 5) with u1 ≤ u2 ≤ u3 ≤ u4 ≤ u5.
Let vh = mini vi and vk = maxi vi for some h, k = 1, 2, 3, 4, 5. If h+1 < k or
k + 1 < h, then (uh, vh), (ul, vl), (uk, vk) satisfies the above condition with
l = h + 1 < k or l = k + 1 < h. Otherwise, then either {1, 2} ∩ {h, k} = ∅
or {4, 5} ∩ {h, k} = ∅ holds. Assume the former without loss of generality.
If v1 ≤ v2, then (u1, v1), (u2, v2), (uk, vk) satisfies the above condition. If
v1 ≥ v2, then (u1, v1), (u2, v2), (uh, vh) satisfies the above condition.

Thus, there exist 3 distinct elements as above, which completes the proof.
2

5 Primitive factor

Let (X,G,D) be the triple in Corollary 16 with n ≥ 1 and Σ satisfy the
conditions in Corollary 16. Let Ω ⊂ {0, 1}Σ be the name set with respect to
the optimal position Σ of the triple (X,G,D). That is, Ω is the closure of
{ωq; q ∈ Rn}, where ωq ∈ {0, 1}Σ is such that

ωq(v) =

{
1 (q ∈ Bn(v, 1))
0 (q /∈ Bn(v, 1))

(v ∈ Σ). (4)

Theorem 19. The above uniform set Ω has the unique primitive factor [Ξ],
where Ξ = P((01)l0) ∪ P((10)l1) if n = 2l is even, and Ξ = P((01)l+1) ∪
P((10)l+1) if n = 2l + 1 is odd.

Proof We sometimes identify x ∈ Rn with the vector ~Ox, where O is the
origin. Let S1 := {x ∈ Rn; ||x|| = 1}.

Our theorem was essentially proved in [3] for the case n = 1.
Assume that n ≥ 2. It is sufficient to prove that for any infinite subset Σ′

of Σ, there exists an injection ψ : N → Σ′ satisfying that Ω′ ◦ ψ = Ξ, where
Ω′ is the name set with respect to Σ′. For simplicity, we denote this Σ′ by
Σ and Ω′ by Ω.

There exist accumulation points of Σ. Take one of them and call it r0.
For v ∈ S1 and ε with 0 < ε < 1/4, let

Θ(v, ε) = {w ∈ Rn; (w, v) > (1− ε)||w||}.

Take ε0, ε1, · · · , εn−1 with 0 < ε0, ε1, · · · , εn−1 < 1/4 arbitrary.
Since r0 is an accumulation point of Σ, (Σ − r0) ∩ {x ∈ Rn; ||x|| < ε} is

an infinite set for any ε > 0. Let Σ0(ε0) = (Σ− r0) ∩ {x ∈ Rn; ||x|| < ε0}.
There exists v1 ∈ S1 such that Σ0(ε) ∩ Θ(v1, η) is an infinite set for any

ε > 0 and η > 0. Let Σ1(ε0, ε1) = π1(Σ0(ε0) ∩ Θ(v1, ε1)), where π1(w) =
w − (w, v1)v1 is the projection defined on Σ0(ε0) ∩Θ(v1, ε1).

Since there is no subset of Σ of cardinality n+1 which is on a hyper-plane,
π1(w) = 0 holds at most for n elements in Σ0(ε0) ∩Θ(v1, ε1). On the other
hand, since w ∈ Σ0(ε0) ∩Θ(v1, ε) implies that

||w − (w, v1)v1||2 < 2ε||w||2,
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there exist infinitely many w ∈ Σ0(ε0) ∩Θ(v1, ε) such that

0 < ||π1(w)||2 < 2ε||w||2

for any ε with 0 < ε ≤ ε1. This implies that there exist infinitely many
distinct elements in Σ1(ε0, ε1).

Now, there exists v2 ∈ S1 with (v1, v2) = 0 such that Σ1(ε, η)∩Θ(v2, ζ) is
an infinite set for any ε > 0, η > 0 and ζ > 0. Let

Σ2(ε0, ε1, ε2) = π2(Σ1(ε0, ε1) ∩Θ(v2, ε2)),

where π2(w) = w−(w, v2)v2 is the projection defined on Σ1(ε0, ε1)∩Θ(v2, ε2).
If n = 2, then Σ2 = {O}. If n ≥ 3, then π2(w) = 0 holds at most for

n elements in Σ1(ε0, ε1) ∩Θ(v2, ε2). Then, by the same argument as above,
there exist infinitely many distinct elements in Σ2(ε0, ε1, ε2).

In this way, we continue until we get Σn−1 := Σn−1(ε0, ε1, · · · , εn−1) such
that Σn−1(η0, η1, · · · , ηn−1)∩Θ(vn, ε) is an infinite set for any η0, η1, · · · , ηn−1 >
0 and ε > 0, but πn(Σn−1 ∩Θ(vn, ε)) = {O}. Let

Θ := Θ(ε0, ε1, · · · , εn−1) = π−1
1 ◦ π−1

2 ◦ · · · ◦ π−1
n−1Σn−1 ⊂ Σ− r0.

Note that v1, v2, · · · , vn are chosen independently of the choice of ε0, ε1, · · · , εn−1.
By the construction, Θ is an infinite set, and for any w ∈ Θ,

w = (w, v1)v1 + (w, v2)v2 + · · ·+ (w, vn)vn , ||w|| < ε0

holds, and v1, v2, · · · , vn are an orthonormal basis of Rn. Moreover, we have

(w, vj) > (1− εj)
√

(w, vj)2 + (w, vj+1)2 + · · ·+ (w, vn)2

for any w ∈ Θ and j = 1, 2, · · · , n, since (w, vj)vj+· · ·+(w, vn)vn ∈ Θ(vj , εj).
It follows that

0 < (w, v1) < ε0, and

0 < (w, vj+1) < 2
√
εj (w, vj) (j = 1, 2, · · · , n− 1). (5)

We need the following lemma to complete the proof.

Lemma 20. Let A = (aij)i,j=0,1,2,··· ,n be a matrix with n ≥ 2 and

aij > 0 (i, j = 0, 1, 2, · · · , n),
ai,0 = 1 (i = 0, 1, 2, · · · , n), and

ai′j′

ai′j
<

1

2(n+ 1)!

aij′

aij
(0 ≤ i < i′ ≤ n, 0 ≤ j < j′ ≤ n). (6)

Then, we have

detA = (−1)n(n+1)/2a0na1,n−1 · · · an0(1 + ξ)

with |ξ| < 1/2. Hence, detA has the same sign as (−1)n(n+1)/2.
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Proof Assume (6). Let τ be a permutation on {0, 1, · · · , n}. Assume that
there exist u, v with u < v and τ(u) < τ(v). Let τ ′ = τ(u, v), where (u, v)
is the transposition. Then, we have∏n

i=0 aiτ(i)∏n
i=0 aiτ ′(i)

=
auτ(u)avτ(v)

auτ ′(u)avτ ′(v)
=
avτ(v)/avτ(u)

auτ(v)/auτ(u)
<

1

2(n+ 1)!
.

This implies that

0 <

n∏
i=0

aiτ(i) <
1

2(n+ 1)!
a0na1,n−1 · · · an0

for any permutation τ other than (n, n− 1, · · · , 1, 0). Hence, we have

detA = (−1)n(n+1)/2a0na1,n−1 · · · an0(1 + ξ)

with |ξ| < 1/2. 2

Let us continue the proof of Theorem 19.
Choose ε00, ε

0
1, · · · , ε0n−1 with 0 < ε00, ε

0
1, · · · , ε0n−1 < 1/4 arbitrary and

take w0 ∈ Θ(ε00, ε
0
1, · · · , ε0n−1). Let a0j = (w0, vj) (j = 1, 2, · · · , n) and

a00 = 1. Then by (5), a0j > 0 (j = 1, 2, · · · , n).
Choose ε10, ε

1
1, · · · , ε1n−1 with 0 < ε10, ε

1
1, · · · , ε1n−1 < 1/4 such that

ε10 <
a01

2(n+ 1)!
, 2

√
ε1j <

1

2(n+ 1)!

a0,j+1

a0j
(j = 1, 2, · · · , n− 1)

and take w1 ∈ Θ(ε10, ε
1
1, · · · , ε1n−1). Let a1j = (w1, vj) (j = 1, 2, · · · , n) and

a10 = 1. Then by (5), a1j > 0 (j = 1, 2, · · · , n) and

a1,j+1/a1j
a0,j+1/a0j

<
1

2(n+ 1)!
(j = 0, 1, · · · , n− 1).

In this way, we can choose w0, w1, w2, · · · in Σ − r0. Let a0i = 1, aij =
(wi, vj) for i = 0, 1, 2, · · · and j = 1, 2, · · · , n. Then, we have aij > 0 (j =
1, 2, · · · , n) and

ai,j+1/aij
ai−1,j+1/ai−1,j

<
1

2(n+ 1)!
(j = 0, 1, · · · , n− 1)

for any i = 1, 2, · · · .
Therefore, for any l0, l1, · · · , ln with l0 < l1 < · · · < ln, the matrix A =

(alij)i,j=0,1,··· ,n satisfies (−1)n(n+1)/2 detA > 0 by Lemma 20.
Define an injection ψ : N → Σ by ψ(i) = r0 + wi (i ∈ N). To complete

the proof, we have to prove that Ω ◦ ψ = Ξ, where Ω is the name set with
respect to Σ.
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For q ∈ Rn, let ωq be as in (4). Then, it holds that ωq◦ψ(i) = ωq(r0+wi) =
1 if and only if r0 + wi ∈ Bn(q, 1). To prove that ωq ◦ ψ ∈ Ξ, it is sufficient
to prove that ωq ◦ ψ has at most n number of i’s such that

ωq ◦ ψ(i) 6= ωq ◦ ψ(i+ 1). (7)

If ||q|| ≤ 1−δ, then ωq◦ψ(i) can take 0 for at most one i, while if ||q|| ≥ 1+δ,
then ωq ◦ ψ(i) can take 1 for at most one i. Therefore, ωq ◦ ψ has at most 2
i’s as in (7).

Assume that 1− δ < ||q|| < 1 + δ. Let

Tq = {x ∈ Rn; (x, q) =
||q||2 + δ2 − 1

2
}

be the hyper-plane in Rn. Then, ωq ◦ ψ(i) = 1 if and only if q and r0 + wi

are not separated by Tq since ||r0 + wi|| = δ, where by definition, x, y ∈ Rn

are separated by Tq if x and y are not on Tq, but in the opposite sides of Rn

separated by Tq.
Let T be a hyper-plane in Rn and

M(T ) := {i ∈ N; q and r0 + wi are not separated by T}.

We can find a continuously moving family of hyper-planes T (t) with t ∈ [0, 1]
such that T (0) = Tq, T (1) contains n elements in {r0 + wi; i ∈ N} and
M(T (t)) = M(Tq) for any t ∈ [0, 1). Let T (1) ∩ {r0 + wi; i ∈ N} =
{r0 + wl1 , r0 + wl2 , · · · , r0 + wln} with l1 < l2 < · · · < ln. Then, T (1) is the
plane defined by the equation

F (x1, x2, · · · , xn) =

1 x1 x2 · · · xn
1 al11 al12 · · · al1n
1 al21 al22 · · · al2n
· · · · · · ·
· · · · · · ·
1 aln1 aln2 · · · alnn

= 0,

where the coordinate system (x1, x2, · · · , xn) is defined with respect to the
orthonormal basis v1, v2, · · · , vn and r0 as its origin.

Then, for any x, y ∈ Rn, x and y are separated by T (1) if F (x) and F (y)
have different signs, while x and y are not separated by T (1) if F (x) and
F (y) have the same sign. Hence, ωq ◦ ψ(i) 6= ωq ◦ ψ(j) if F (wi) and F (wj)
have different signs, while ωq ◦ψ(i) = ωq ◦ψ(j) if F (wi) and F (wj) have the
same sign.

Therefore, if lk < i < lk+1, then by Lemma 20, F (wi) has the same sign
as (−1)k(−1)n(n+1)/2, and hence, ωq ◦ ψ(i) is constant for lk < i < lk+1.
Since F (ωi) and F (ωj) with lk−1 < i < lk and lh−1 < j < lh have the same
sign if h−k is even and have different signs if h−k is odd, the 0-1-sequence
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ωq ◦ ψ(i), ωq ◦ ψ(i + 1), · · · , ωq ◦ ψ(j) with lk−1 < i < lk, lh−1 < j < lh and
i+1 = lk, i+2 = lk+1, · · · , j−1 = lk+j−i−2 changed values at most j− i−1
times, where j − i − 1 is the number of lm’s in {i, i + 1, · · · , j}. Therefore,
the 0-1-sequence ωq ◦ ψ(0), ωq ◦ ψ(1), ωq ◦ ψ(2), · · · changed values at most
n times. Hence, ωq ◦ ψ ∈ Ξ.

Conversely, for any choice of {l1 < l2 < · · · < ln} ⊂ N, the hyper-plane T
containing {r0+wl1 , r0+wl2 , · · · , r0+wln} is determined. By the assumption
for Σ, no other point of {r0 + wi; i ∈ N} is on T .

Then, an (n− 2)-dimensional plane T ∩{x ∈ Rn; ||x|| = δ} is determined
with center, say p, and radius, say ρ. Let

q =

(
1±

√
1− ρ2√
δ2 − ρ2

)
p .

Then, ωq ◦ ψ ∈ Ξ. By moving q slightly, we can give the values at ωq ◦
ψ(lj) (j = 1, 2, · · · , n) (where F (wlj ) = 0) arbitrary. Hence, any element in

{0, 1}N which changes values at most n times can be realized by an element
in Ω ◦ ψ, since by taking lj+1 = lj + 1 and choosing the values at ωq ◦ ψ(lj)
and ωq ◦ψ(lj+1), we can cancel some changes of the values. Hence, Ξ ⊂ Ω◦ψ

Thus, Ω ◦ ψ = Ξ, which completes the proof. 2
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