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Abstract

This paper is the first part of a comprehensive survey on pickup and delivery prob-
lems. Basically, two problem classes can be distinguished. The first class, discussed
in this paper, deals with the transportation of goods from the depot to linehaul cus-
tomers and from backhaul customers to the depot. This class is denoted as Vehicle
Routing Problems with Backhauls (VRPB). Four subtypes can be considered, namely
the Vehicle Routing Problem with Clustered Backhauls (VRPCB - all linehauls before
backhauls), the Vehicle Routing Problem with Mixed linehauls and Backhauls (VRPMB
- any sequence of linehauls and backhauls permitted), the Vehicle Routing Problem with
Divisible Delivery and Pickup (VRPDDP - customers demanding delivery and pickup
service can be visited twice), and the Vehicle Routing Problem with Simultaneous De-
livery and Pickup (VRPSDP - customers demanding both services have to be visited
exactly once). The second class, dealt with in the second part of this survey, refers to
all those problems where goods are transported between pickup and delivery locations.
These are the Pickup and Delivery Vehicle Routing Problem (PDVRP - unpaired pickup
and delivery points), the classical Pickup and Delivery Problem (PDP - paired pickup
and delivery points), and the Dial-A-Ride Problem (DARP - passenger transportation
between paired pickup and delivery points and user inconvenience taken into considera-
tion). Single as well as multi vehicle versions of the mathematical problem formulations
are given for all four VRPB types, the corresponding exact, heuristic, and metaheuristic
solution methods are discussed.

1 Motivation and basic definitions

Over the past decades extensive research has been dedicated to modeling aspects as well
as optimization methods in the field of vehicle routing. Especially freight transportation
involving both, pickups and deliveries, has received considerable attention. This is mainly
due to the need for improved efficiency, as the traffic volume increases much faster than the
street network grows (compare Eurostat, 2004, 2006, for data on the European situation).
Thus, given the current efficiency, this may eventually lead to a breakdown of the system.
However, with rapidly increasing computational power intelligent optimization methods can
be developed and used to increase the efficiency in freight transportation and alleviate the
above mentioned problem. Moreover, along with the increasing use of geographical infor-
mation systems, companies seek to improve their transportation networks in order to tap
the full potential of possible cost reduction. The rapidly growing body of research has led
to a somewhat confusing terminology used to describe the various problem types arising in
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Figure 1: Pickup and delivery problems. The numbers indicated refer to the sections covering
the respective problems.
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this context. Indeed, the same problem types are denoted by various names and different
problem classes are referred to by the same denotations. The aim of this two-part survey is
to provide a clear classification scheme as well as a comprehensive survey covering all pickup
and delivery routing problems and their variants.

In the field of pickup and delivery problems we distinguish between two problem classes.
The first class refers to situations where all goods delivered have to be loaded at one or
several depots and all goods picked up have to be transported to one or several depots.
Problems of this class are usually referred to as Vehicle Routing Problems with Backhauls
(VRPB). The second class will be considered in part II of this survey. It comprises all those
problems where goods (passengers) are transported between pickup and delivery customers
(points) and will be referred to as Vehicle Routing Problems with Pickups and Deliveries
(VRPPD).

The two pickup and delivery problem classes as well as their subclasses are depicted in
Figure 1. The black part refers to all problems discussed in the remainder of this paper, the
gray part to those that are considered in the second part. The numbers specify the sections
covering the respective problems. The first two indicators in each of the boxes correspond to
the mathematical modeling sections. The third indicators refer to the sections dealing with
the various solution methods. A more detailed description of the different subclasses as well
as the limitations of this survey are given in the following.

1.1 VRPB subclass definitions

The VRPB can be subdivided into four subclasses. In the first two subclasses, customers
are either delivery or pickup customers but cannot be both. In the last two subclasses,
each customer requires a delivery and a pickup. The first subclass is characterized by the
requirement that the group or cluster of delivery customers has to be served before the first
pickup customer can be visited. Delivery customers are also denoted as linehaul customers,
pickup customers as backhaul customers. In the literature this problem class is denoted as
Vehicle Routing Problem (VRP) with Backhauls (VRPB), a term coined by Goetschalckx
and Jacobs-Blecha (1989). This naming is also used, however, for the case where linehaul
and backhaul customers can be served in arbitrary order (see Casco et al., 1988). In order
to avoid further confusions we will refer to the all linehauls before backhauls version as
Vehicle Routing Problem with Clustered Backhauls (VRPCB). The single vehicle case will
be denoted as Traveling Salesman Problem (TSP) with Clustered Backhauls (TSPCB).
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The second VRPB subclass does not consider a clustering restriction. Mixed visiting
sequences are explicitly allowed. Mosheiov (1994) denotes the single vehicle case as Traveling
Salesman Problem with pickup and Delivery (TSPD), Anily and Mosheiov (1994) as TSP
with Delivery and Backhauls (TSPDB), and Baldacci et al. (2003) as TSP with Deliveries
and Collections (TSPDC). Its multi vehicle variant has also been referred to as Pickup
and Delivery Problem (PDP) (Mosheiov, 1998), as Mixed Vehicle Routing Problem with
Backhauls (MVRPB) (Salhi and Nagy, 1999, Ropke and Pisinger, 2006), and as Vehicle
Routing Problem with Backhauls with Mixed load (VRPBM) (e.g. Dethloff, 2002). In the
following we will denote this problem class as VRP with Mixed linehauls and Backhauls
(VRPMB) in the multi vehicle case, and TSP with Mixed linehauls and Backhauls (TSPMB)
in the single vehicle case.

The third VRPB subclass describes situations where customers are associated with both
a linehaul and a backhaul quantity but, in contrast to subclass four, it is not required that
every customer is only visited once. Rather, two visits, one for delivery and one for pickup
are possible. In this case, so called lasso solutions can occur, in which first a few customers
are visited for delivery service only, in order to empty the vehicle partially. Then, in the “loop
of the lasso”, customers are visited where goods are delivered and picked up. At the end,
the pickups are performed for the customers initially visited for delivery. Gribkovskaia et al.
(2007) denote the single vehicle version as Single Vehicle Routing Problem with Pickups
and Deliveries (SVRPPD). Most often however, no clear distinction between this type of
problem and subclass four has been made. We will refer to the single vehicle case as TSP
with Divisible Delivery and Pickup (TSPDDP) and to the multi vehicle case as VRP with
Divisible Delivery and Pickup (VRPDDP) in order to emphasize that a customer can either
be visited once for both pickup and delivery or twice, first for delivery and then for pickup. A
further extension to this class would be to also allow the splitting of the delivery or the pickup
service. This so-called “split delivery” case was studied, e.g., by Archetti et al. (2006b,a)
within the context of the classical VRP but could be extended to the VRPDDP.

The fourth VRPB subclass covers situations where every customer is associated with
a linehaul as well as a backhaul quantity. It is imposed that every customer can only be
visited exactly once. In the literature this problem class has been first referred to as VRP
with simultaneous delivery and pickup points by Min (1989). Gendreau et al. (1999) denote
the single vehicle variant as TSP with Pickup and Delivery (TSPPD). Angelelli and Mansini
(2002) refer to the multi vehicle case as VRP with simultaneous pickup and delivery. In Nagy
and Salhi (2005) the same problem is called simultaneous VRP with Pickup and Delivery
(simultaneous VRPPD), in Dell’Amico et al. (2006) VRP with Simultaneous Distribution
and Collection (VRPSDC). We will denote this problem class as VRP with Simultaneous
Delivery and Pickup (VRPSDP), its single vehicle version as TSP with Simultaneous Delivery
and Pickup (TSPSDP).

1.2 Limitations

In the field of transportation two problem classes can be distinguished: full-truck-load prob-
lems and less-than-truck-load problems. Full-truck-load problems deal with vehicles of unit
capacity as well as unit demand or supply at every customer location. In a backhauling
situation a vehicle route can only comprise one delivery and one pickup location between
two stops at the depot. Consequently, full-truck-load dispatching approaches will not be
covered in this article.
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1.3 Structure of the survey

This article is organized as follows. First, model formulations for the single as well as the
multi vehicle case are presented in order to clearly define the different pickup and delivery
subclasses. Then, for each problem class an overview of the different solution methods
proposed in the literature is given. This is followed by the description of the benchmark
instances used. Finally, a conclusion section provides some hints on the currently best
approaches for each problem class and gives directions for future research.

2 Mathematical problem formulation

In the following section a consistent mathematical problem formulation will be presented.
First, the notation used throughout the paper is given. Then, two basic problem formulations
are introduced and extended to all versions of the VRPB. The aim of this section is to clearly
define the different problem types regardless their computational complexity. All variants
considered are NP-hard as they generalize the well-known TSP (Garey and Johnson, 1979).

2.1 Notation

n . . . number of pickup vertices
ñ . . . number of delivery vertices
P . . . set of backhauls or pickup vertices, P = {1, . . . , n}
D . . . set of linehauls or delivery vertices, D = {n + 1, . . . , n + ñ}
K . . . set of vehicles
qi . . . demand/supply at vertex i; pickup vertices are associated with

a positive value, delivery vertices with a negative value;
at the start depot 0 and the end depot n + ñ + 1 the demand/
supply is zero, q0 = qn+ñ+1 = 0

ei . . . earliest time to begin service at vertex i
li . . . latest time to begin service at vertex i
di . . . service duration at vertex i
ck
ij. . . cost to traverse arc or edge (i, j) with vehicle k

tkij . . . travel time from vertex i to vertex j with vehicle k

Ck. . . capacity of vehicle k
T k. . . maximum route duration of vehicle/route k

This notation is valid for the symmetric as well as for the asymmetric case. In the sym-
metric case tkij = tkji and ck

ij = ck
ji, arc (i, j) and arc (j, i) could thus be modeled by one

edge. Consequently, fewer variables would be needed. However, since we focus on prob-
lem definition and not on computational efficiency we refrain from presenting these variants
here. VRPB are modeled on complete graphs G = (V,A) where V is the set of all vertices
V = {0, n + ñ + 1} ∪P ∪D and A is the set of all arcs. For practical reasons the arc set can
be reduced to A = {(i, j) : i, j ∈ V, i 6= n + ñ + 1, j 6= 0, i 6= j}.

During the optimization process some or all of the following decision variables are deter-
mined, depending on the problem considered.

xk
ij . . . =

{

1, if arc (i, j) is traversed by vehicle k

0, else

Qk
i . . . load of vehicle k when leaving vertex i

Bk
i . . . beginning of service of vehicle k at vertex i
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Note that vehicle dependent start as well as end vertices can easily be introduced into
the model. However, for the sake of simplicity we will not consider this extension in our
formulation.

In the single vehicle problem formulation the superscript k can be omitted, resulting in
the parameter coefficients tij, cij , C, T and the decision variables xij , Qi, Bi.

2.2 Single vehicle pickup and delivery problem formulations

The single vehicle formulation for the different pickup and delivery problem classes is based
on an open TSP formulation. Open refers to the fact that the resulting route is not a
cycle but a path since the depot is denoted by two different indices. The basic open TSP
formulation is

min
∑

(i,j)∈A

cijxij (1)

subject to:

∑

i:(i,j)∈A

xij = 1 ∀j ∈ V \ {0} , (2)

∑

j:(i,j)∈A

xij = 1 ∀i ∈ V \ {n + ñ + 1} , (3)

xij ∈ {0, 1} ∀(i, j) ∈ A. (4)

Subtour elimination constraints,

∑

(i,j)∈A(S,S̄)

xij ≥ 1 ∀S ⊆ V \ {n + ñ + 1} , S 6= ∅, (5)

with A(S, S̄) = {(i, j) ∈ A : i ∈ S, j /∈ S}, or

xij = 1 ⇒ Bj ≥ Bi + di + tij ∀(i, j) ∈ A. (6)

The objective function (1) minimizes total routing cost. Equalities (2) and (3) ensure that
each vertex is visited exactly once.

Constraints (5) and (6) present two alternative possibilities to avoid subtours and thus
guarantee route-connectivity. The first option is to append inequalities (5). This formulation
uses subsets to ensure connectivity. At least one routed arc has to leave every non-empty
subset S ⊆ V \{n + ñ + 1}. The solution to a linear programming relaxation of a formulation
involving these constraints gives a good lower bound (cf. Toth and Vigo, 2002a). However,
the cardinality of this set of constraints grows exponentially with |V |.

For the second option, given in (6), additional time variables Bi, referring to the beginning
of service at vertex i, have to be introduced. Given that tij > 0 or (tij + di) > 0 for all
(i, j) ∈ A, every vertex i is associated with a different value of Bi and subtours are avoided.
This option should be chosen whenever other time related constraints, such as time windows,
are considered, see Section 2.2.5. The linear programming relaxation of this option provides
weaker lower bounds; however, this set of constraints has a polynomial cardinality (cf. Toth
and Vigo, 2002a).

A third option (not presented here) is the addition of the traditional Miller-Tucker-Zemlin
(MTZ) subtour elimination constraints (cf. Miller et al., 1960), to the above model. These
are given by (6) and ei ≤ Bi ≤ li, when defining the artificial sum of travel and service time
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as (tij + di) = 1, and the artificial time window boundaries as ei = 1 and li = |V | for all
i ∈ V .

Note that precedence constraints as well as additional constraints, such as e.g. a Last-In-
First-Out (LIFO) loading rule, maximum ride time and route duration restrictions, can also
be guaranteed by means of infeasible path inequalities. However, constraints of this type
decrease the readability of the model. Since the aim of this section is a clear definition of
the different VRPB subclasses, this option will not be considered in the following.

2.2.1 TSPCB

The TSPCB can be modeled on the basis of a clustered TSP with two clusters, one corre-
sponding to all linehaul customers, and one corresponding to all backhaul customers, with
the additional condition that the backhaul cluster has to be visited after the linehaul cluster.
This is ensured by adding,

xij = 0 ∀i ∈ P, j ∈ D, (7)

to the above formulation (1) – (5). Equalities (7) state that no arc can be routed from
the backhaul to the linehaul customer set. Consequently, only one arc from the linehaul to
the backhaul customer set can be used. Note that these constraints become redundant if
appropriate graph pruning techniques are applied prior to solving the mathematical program
(cf. Toth and Vigo, 1997, 2002b).

2.2.2 TSPMB

In the TSPMB the order of linehauls and backhauls is only restricted by the amount of goods
the vehicle is able to transport. In addition to the basic model (1) – (4),

Q0 = −
∑

i∈D

qi, (8)

xij = 1 ⇒ Qj ≥ Qi + qj ∀(i, j) ∈ A, (9)

max {0, qi} ≤ Qi ≤ min {C,C + qi} ∀i ∈ V, (10)

are required. Equality (8) guarantees that the vehicle starts with a load equal to the total
amount to be delivered. Inequalities (9) and (10) ensure that the vehicle’s capacity limit is
respected at all vertices. In the traditional VRP, constraints similar to (9) and (10) can be
used to ensure route-connectivity. To avoid subtours here either (5) or (6) have to be used.
If the vehicle’s capacity is greater than or equal to the sum of the total linehaul and the total
backhaul amount the problem reduces to the simple TSP.

2.2.3 TSPDDP

For the TSPDDP the same formulation as for the TSPMB can be used. The only difference
is that all customers are associated with both a linehaul as well as a backhaul quantity and
that customers can be visited twice, once for pickup and once for delivery service. This can
be achieved by modeling every customer as two vertices, one for the linehaul and one for the
backhaul amount. In this sense the TSPDDP can be seen as a special case of the TSPMB
since it can be transformed into the latter.
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2.2.4 TSPSDP

To model the simultaneous pickup and delivery case the basic formulation (1) - (4), either
(5) or (6) to avoid cycles and the capacity constraints (9) and (10) are required. The
only difference between the TSPDDP and the TSPSDP is the way customers that are both,
linehaul and backhaul customers, are treated. In the former case those customers are modeled
as if they were two customers, one linehaul and one backhaul customer. In the latter version
every customer can only be visited exactly once (ñ = 0). Let q+

i denote the backhaul amount
and q−i ≥ 0 the linehaul amount at customer i, an equality ensuring that the vehicle starts
its tour with the total amount of goods to be delivered,

Q0 =
∑

i∈P

q−i , (11)

has to be appended. Then, in (9) and (10) only the net demand of every customer is
considered. It is positive whenever the backhaul amount exceeds the linehaul amount:

qi = q+
i − q−i . . . difference between backhaul and linehaul amount

at vertex i.

2.2.5 Time window constraints

A last class of constraints that can be added to all of the above models are Time Windows
(TW),

ei ≤ Bi ≤ li ∀i ∈ V. (12)

In case of TW, constraint set (6) has to be used.
Note that the above formulations are not linear due to constraints (6) and (9). However,

these constraints can easily be reformulated in a linear way by utilizing the big M formulation
(cf. Cordeau, 2006).

2.3 Multi vehicle pickup and delivery problem formulations

The basic model for multi vehicle pickup and delivery problems is an adapted three index
VRP formulation of the one proposed by Cordeau et al. (2002, p. 158f.) for the VRPTW.

min
∑

k∈K

∑

(i,j)∈A

ck
ijx

k
ij (13)

subject to:

∑

k∈K

∑

j:(i,j)∈A

xk
ij = 1 ∀i ∈ P ∪ D, (14)

∑

j:(0,j)∈A

xk
0j = 1 ∀k ∈ K, (15)

∑

i:(i,n+ñ+1)∈A

xk
i,n+ñ+1 = 1 ∀k ∈ K, (16)

∑

i:(i,j)∈A

xk
ij −

∑

i:(j,i)∈A

xk
ji = 0 ∀j ∈ P ∪ D, k ∈ K, (17)

xk
ij = 1 ⇒ Bk

j ≥ Bk
i + di + tkij ∀(i, j) ∈ A, k ∈ K, (18)
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xk
ij = 1 ⇒ Qk

j = Qk
i + qj ∀(i, j) ∈ A, k ∈ K, (19)

max {0, qi} ≤ Qk
i ≤ min

{

Ck, Ck + qi

}

∀i ∈ V, k ∈ K, (20)

xk
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K. (21)

The objective function (13) minimizes routing cost over all vehicles. Equalities (14) guarantee
that every vertex is served exactly once. Constraints (15) and (16) ensure that every vehicle
starts at the depot and returns to the depot at the end of its route. Note that this does not
mean that every vehicle has to be used. A vehicle can use arc (0, n+ ñ+1) which represents
no tour. Equalities (17) refer to the usual flow conservation. Time variables are introduced
in constraints (18) to eliminate subtours, given that (tkij + di) > 0 for all (i, j) ∈ A, k ∈ K.
As in the single vehicle case inequalities like (5) or the multi vehicle variant of the MTZ
constraints can also be used instead of (18) to avoid subtours. However, for simplicity we
refrain from writing them down explicitly. Inequalities (19) and (20) ensure that a vehicle’s
capacity is not exceeded throughout its tour. Whenever the initial load of the vehicle is set
to the total amount to be delivered, or all qj ≥ 0, or only paired pickups and deliveries occur,
constraints (19) can be relaxed to Qj ≥ Qi + qj .

Non-linear constraints, given in (18) and (19), can be linearized using a big M formulation
(cf. Cordeau, 2006).

2.3.1 VRPCB

24 The VRPCB requires the introduction of an additional set of constraints that guarantees
that no arc from a backhaul to a linehaul customer can be used. Thus, ensuring that every
vehicle first visits all linehaul customers belonging to its route,

xk
ij = 0 ∀i ∈ P, j ∈ D, k ∈ K. (22)

As mentioned above, constraints (22) become redundant if the arc set of model (13) – (21)
is appropriately defined.

2.3.2 VRPMB

The VRPMB does not require constraints (22). It can be solved by simply applying the
basic version of the problem formulation, given in (13) – (21), and equalities (23) ensuring
that every vehicle starts with a load equal to the total amount to be delivered,

Qk
0 = −

∑

j∈D

qj

∑

i∈V

xk
ij ∀k ∈ K. (23)

2.3.3 VRPDDP

To model the VRPDDP the same formulation as for the VRPMB can be used. In contrast to
the VRPMB, every customer is associated with a linehaul as well as a backhaul quantity and
every customer can be visited at most twice, first for delivery and second for pickup service.
Thus, modeling every customer that demands both services as two separate customers, one
for pickup and one for delivery, suffices to accommodate this problem class.

2.3.4 VRPSDP

The fourth class of VRPB deals with situations of simultaneous delivery and pickup require-
ments. Each customer is both, a linehaul and a backhaul customer. In contrast to the
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VRPDDP, where customers belonging to both sets are modeled as two separate customers,
every customer can only be visited exactly once (ñ = 0).

Again, let q+
i denote the backhaul amount and q−i ≥ 0 the linehaul amount at customer

i, a constraint ensuring that each vehicle starts its tour with the total amount of goods to
be delivered,

Qk
0 =

∑

j∈P

q−j
∑

i∈V

xk
ij ∀k ∈ K, (24)

has to be added to the basic model (13) – (21). Then, in (19) and (20) the net demand of
every customer is considered which is positive whenever the backhaul amount exceeds the
linehaul amount. Thus, the definition of qi becomes,

qi = q+
i − q−i . . . difference between backhaul and linehaul amount

at vertex i.

Also other alternative formulations for the VRPSDP exist. We refer the interested reader,
e.g., to Desaulniers et al. (1998, p.71).

2.3.5 Additional constraints

Finally two more sets of constraints can be added to all of the above problem classes. These
correspond to time window and maximum route duration restrictions,

ei ≤ Bk
i ≤ li ∀i ∈ V, k ∈ K, (25)

Bk
n+ñ+1 − Bk

0 ≤ T k ∀k ∈ K. (26)

The latter are motivated by labor regulations, concerning the amount of hours a driver is
allowed to drive per day.

3 Solution approaches for VRPB

The development of VRPB was motivated by the fact that significant cost reduction can
be achieved by combining linehaul with backhaul tours; as this results in less empty hauls.
Beullens (2001) compares and analyzes the various backhauling strategies, i.e. the VRPMB,
the VRPCB as well as an on call backhaul strategy. The impacts of reverse logistics are also
subject to investigation in Beullens et al. (2004), Dethloff (2001), Fleischmann et al. (1997).
Van Breedam (1995) gives an overview of VRP with side constraints, covering the VRP with
mixed as well as with clustered backhauls. A recent survey on pickup and delivery problems
that was developed in parallel to this survey can be found in Berbeglia et al. (2007).

While we will not describe general solution methods in detail, we provide the interested
reader with some references. Information on local search methods can be found, e.g., in
Aarts and Lenstra (1997). Neighborhood based methods are discussed, e.g. in Bräysy and
Gendreau (2005), Funke et al. (2005), metaheuristics in Hoos and Stützle (2005). Methods
used in the context of exact solution algorithms, such as additive bounding, branch and cut,
and branch and price are described, e.g., in Barnhart et al. (1998), Desaulniers et al. (2005),
Fischetti and Toth (1989), Padberg and Rinaldi (1991).

In the following different solution methods for the various VRPB are discussed. First,
the all linehauls before backhauls version is presented, followed by the mixed linehauls and
backhauls, the divisible delivery and pickup, and the simultaneous delivery and pickup case.
Within each problem class the solution approaches are discussed in subsections devoted
to exact, heuristic and metaheuristic methods. The benchmark instances mentioned are
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described in Section 4. Whenever it was prohibitive with respect to the length of this paper
to describe all methods proposed in detail, an overview is given in tabular form. Only
contributions we considered more important due to their recency or originality (marked by
an asterisk in the respective tables) are described in further detail.

3.1 All linehauls before backhauls (TSPCB, VRPCB)

The TSPCB can be viewed as a special case of the Clustered Traveling Salesman Problem
(CTSP), where only two clusters are considered. The CTSP was first formulated in Chisman
(1975). Already in Lokin (1978) an application of the CTSP to a backhaul problem is
suggested. Thus, all solution algorithms for CTSP, namely those presented in Gendreau
et al. (1996b), Jongens and Volgenant (1985), Laporte et al. (1996), Potvin and Guertin
(1996, etc.), are also valid solution techniques for the TSPCB with the additional constraint
that the set of linehaul customers is visited first. A survey on solution methods can be found
in Toth and Vigo (2002b).

3.1.1 Exact approaches

The first exact approach for the VRPCB is introduced in Yano et al. (1987). The authors
use a branch and bound algorithm to generate an optimal routing plan with up to four
linehaul and four backhaul customers per route, considering opening and closing times at
destinations, maximal driving time as well as vehicle capacity concerning weight and volume.

In Gélinas et al. (1995) a branch and bound strategy for the VRPCB with TW that
branches on time intervals is presented. Problem instances from Solomon (1987) for the
VRP with TW are adapted to the backhaul case. The largest instance solved consists of 100
customers.

In Toth and Vigo (1997) a mathematical problem formulation for the VRPCB is pre-
sented. Based on various relaxations lower bounds are computed. The developed branch
and bound algorithm generates optimal solutions to most of the benchmark instances pro-
vided in Goetschalckx and Jacobs-Blecha (1989), Toth and Vigo (1996, 1999).

Another exact algorithm as well as lower bounding procedures are described in Mingozzi
et al. (1999). Mingozzi et al. introduce a new (0-1) integer problem formulation. Variable
reduction via pricing allows for solving the reduced problem. Benchmark instances with up
to 100 customers (Goetschalckx and Jacobs-Blecha, 1989, Toth and Vigo, 1996) are solved
to optimality.

3.1.2 Heuristics

Quite a lot of research has been conducted in the field of heuristic methods for VRPCB. An
overview of existing work is given in Table 1 in chronological order, divided into single and
multi vehicle approaches. In the first column the respective references are listed. Column
two refers to the objective function used, column three states additional constraints or the
problem type considered. In column four the proposed algorithm is sketched and in column
five either the benchmark instances, as described in Table 8, used to test the respective
algorithm or the size of the largest problem instance solved are reported. All methods
described in further detail below are marked by an asterisk.

Only little research has been conducted in the area of heuristics for the single vehicle
case. Gendreau et al. (1996a) adapt six different construction-improvement heuristics to the
TSPCB. Three different versions of the GENeralized Insertion (GENI) construction and Un-
stringing and Stringing (US) improvement heuristic, originally developed in Gendreau et al.
(1992) for the TSP, are investigated and compared to three other construction-improvement
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Table 1: Heuristics for the VRPCB

Reference Obj. Con./Type Algorithm Bench./Size

The single vehicle case

* Gendreau et al.
(1996a)

min. RC - 3 GENIUS based heur.; Cheapest
Insertion (CI) - Unstringing Stringing
(US); GENI - Or-opt; CI - Or-opt

GHL96

Gendreau et al.
(1997)

min. RC - 3/2-approximation algorithm, based
on Christofides (1975)

-

The multi vehicle case

Deif and Bodin
(1984)

min. RC RL savings based construction heur. up to 300
cust. (10-50%
bh.)

* Goetschalckx
and
Jacobs-Blecha
(1989)

min. RC - space filling curves construction heur.,
2-opt, 3-opt

GJ89

Min et al. (1992) min. RC MD cluster first route second up to 161
cust.

Derigs and Metz
(1992).

min. RC TW, HV,
splitting

approximate solutions based on set
partitioning formulation, matching

up to 160
cust.

Goetschalckx and
Jacobs-Blecha
(1993)

min. RC - general assignment based heur. up to 150
cust. (20-50%
bh.)

* Toth and Vigo
(1996, 1999)

min. RC - cluster via Lagr. relaxation, routing,
inter/intra route optimization

GJ89, TV96,
TV99

* Thangiah et al.
(1996)

min. NV,
min. RC

TW push-forward insertion; improved by
λ-interchanges, 2-opt* exchanges

GDDS95,
TPS96

* Anily (1996) min. RC - circular regional partitioning with
delivery and bh. heur.

-

Bench. = Benchmark, bh. = backhauls, Con. = Constraints, cust. = customers, HV = Heterogeneous Vehicles,
heur. = heuristic, Lagr. = Lagrange, MD = Multi Depot, NV = Number of Vehicles, Obj. = Objective(s), RC =
Routing Cost, RL = Route Length, TW = Time Windows; The respective benchmark instances are described in
Section 4. Entries marked by an asterisk (*) are described in further detail in the text.

heuristics, i.e. GENI construction with Or-opt improvement (Or, 1976), Cheapest Inser-
tion (CI) construction with US improvement and CI construction with Or-opt improvement.
GENI is based on the idea that whenever a new vertex is inserted into a route it is connected
to the vertices closest to it, even if these were not connected previous to this insertion. The
US operator refers to removing a vertex from the route and inserting it back in. The GENI
idea is used for vertex insertion and its reversal for vertex removal.

The multi vehicle case of the VRPCB has received considerably more attention. One of
the earliest heuristic methods was developed by Goetschalckx and Jacobs-Blecha (1989). The
clustering as well as the routing part are solved by means of a spacefilling curve heuristic, i.e.
generating a continuous mapping of the unit circle onto the unit square preserving closeness
across vertices. Results for its combination with 2-opt and 3-opt improvement heuristics
(Lin, 1965) are discussed.

Thangiah et al. (1996) present another construction-improvement heuristic. The con-
struction phase consists of a push-forward insertion algorithm improved by λ-interchange
(Osman, 1993) and 2-opt*-exchange heuristics (Potvin and Rousseau, 1995).
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In Toth and Vigo (1996, 1999) a cluster first route second algorithm is proposed. Toth
and Vigo establish a clustering algorithm that uses the solution of the relaxed VRPCB as
input. k linehaul as well as k backhaul clusters are obtained from the clustering step. Each
of the linehaul clusters is matched with a backhaul cluster. A farthest insertion procedure
is applied to the TSPCB instances followed by an intra-route improvement phase. Final
refinements on the whole routing plan are achieved by the application of an inter-route
improvement phase, using inter-route 1- and 2-exchanges.

Another cluster first route second algorithm is described in Anily (1996). The clustering
phase is accomplished by a modified circular partitioning heuristic; followed by the construc-
tion of traveling salesman tours through the different clusters (each cluster contains either
only linehaul or only backhaul customers). Then, linehaul clusters are assigned to backhaul
clusters (Kuhn, 1955). Finally, a route generation phase is initiated determining the optimal
connections between depot, linehaul and backhaul clusters.

3.1.3 Metaheuristics

In this section the different metaheuristic approaches for the VRPCB are discussed. Among
these a further distinction applies. On the one hand, there are metaheuristic approaches that
are population based or related to population based methods, such as genetic algorithms or
ant colony optimization, and, on the other hand, there are methods that are based on different
local search neighborhoods, such as tabu search, variable neighborhood search, or simulated
annealing. Table 2 provides an overview of existing work in this field. For each reference
the objectives considered, additional constraints used, a sketch of the proposed algorithm as
well as the benchmark instances solved are given.

The first metaheuristic solution approach for the VRPCB is introduced by Potvin et al.
(1996). They present a genetic algorithm that is combined with a greedy route construction
heuristic. Customers are inserted one by one based on an a priori ordering determined by
the genetic algorithm.

A tabu search heuristic for the VRPCB with TW is proposed by Duhamel et al. (1997).
The developed method uses 2-opt∗, Or-opt, and swap neighborhoods. At each iteration the
neighborhood searched is selected randomly, in order to enlarge the size of the neighborhood
actually explored and to introduce diversification.

Osman and Wassan (2002) present a reactive tabu search that uses an additional operator
controlling diversification and intensification phases on the basis of the detection of repeated
solutions. Based on the λ-interchange operator, neighborhoods of different size are explored.

Zhong and Cole (2005) develop a cluster first route second approach. They use a guided
local search algorithm to improve the solution obtained from an adapted sweep construction
heuristic in the clustering phase. In the routing phase an algorithm, called section planning,
is executed. It inserts new routes to achieve feasibility and arranges customers within routes
such that travel distances are decreased.

Another tabu search algorithm is introduced in Brandão (2006). Three different proce-
dures are applied to generate the initial solution. The first is based on open VRP solutions.
The second two are based on a K-tree relaxation of the VRP. The tabu search sequentially
applies three phases using neighborhoods defined by insert and swap moves. An intra-route
repair operator is applied if the precedence constraint (linehauls before backhauls) is violated.

Ropke and Pisinger (2006) propose a unified heuristic based on a large neighborhood
search algorithm. It can be used to solve three VRPB classes, namely the VRPCB, the
VRPMB, and the VRPSDP with and without TW, by transforming them into rich PDP with
TW. The term rich refers to the additional features that need to be considered, such as pickup
and delivery precedence numbers, in order to accommodate the different characteristics of
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Table 2: Metaheuristics for the VRPCB

Reference Obj. Con. Algorithm Benchmark

The single vehicle case

Mladenovic and
Hansen (1997)

min. RC - variable neighborhood search GHL96

Ghaziri and Osman
(2003)

min. RC - neural network, self-organizing feature
maps

GHL96

The multi vehicle case

* Potvin et al.
(1996)

min. RC TW greedy insertion genetic algorithm GDDS95

* Duhamel et al.
(1997)

min. NV,
min. RC

TW tabu search algorithm GDDS95,
adapted
Solomon
(1987)

Hasama et al. (1998) min. NV,
min. RC

TW simulated annealing TPS96

Crispim and
Brandão (2001)

min. RC - a) reactive tabu search b) variable
neighborhood search

GJ89,
TV96

Reimann et al.
(2002)

min. NV,
min. RC

TW, RL insertion based ant system GDDS95

* Osman and
Wassan (2002)

min. RC - reactive tabu search GJ89,
TV96

* Zhong and Cole
(2005)

min. NV,
min. RC

TW adapted sweep heur., improved by
guided local search, section planning

GDDS95

Ghaziri and Osman
(2006)

min. RC - extension of Ghaziri and Osman
(2003)

TV96

* Brandão (2006) min. RC - tabu search algorithm GJ89,
TV96

* Ropke and
Pisinger (2006)

min. RC,
max. NRS

TW heur. based on large neighborhood
search

GJ89,
TV96;
TW:
GDDS95,
TPS96

* Ganesh and
Narendran (2007)

min. RC - construction heur., genetic algorithm
(CLOVES)

GJ89,
TV96

Con. = Constraints, heur. = heuristic, NRS = Number of Requests Served, NV = Number of Vehicles, Obj. =
Objective(s), RC = Routing Cost, RL = Route Length, TW = Time Windows; The respective benchmark instances
are described in Section 4. Entries marked by an asterisk (*) are described in further detail in the text.

the various problem types. The developed heuristic uses different removal and insertion
algorithms. At every iteration a certain number of requests is removed from the routes by
means of either random, Shaw (Shaw, 1998), worst request, cluster or history based removal.
The free requests are then inserted using a basic or a regret insertion heuristic. The choice of
removal and insertion procedure is determined by a learning and monitoring layer. It reports
how often a certain removal or insertion procedure contributed to the construction of a new
accepted solution.

Ganesh and Narendran (2007) investigate a variation of the VRPCB arising in the context
of blood distribution to hospitals. Instead of two sets of customers three sets are considered,
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consisting of either pure linehaul customers (hospitals), pure backhaul customers (blood
camps) or those that are both (usually also hospitals). All customers that require a delivery
service have to be visited first. Ganesh and Narendran (2007) develop a cluster-and-search
heuristic (CLOVES), that clusters vertices based on spatial proximity, determines their ori-
entation by means of a shrink wrap algorithm and then assigns them to vehicles. A genetic
algorithm is used to improve the solution found by the construction heuristic.

3.1.4 Summary

Over the years with increasing computational power a shift from simple heuristic methods
towards more sophisticated metaheuristic solution procedures can be observed. Thus, recent
state-of-the-art methods in the field of VRPCB predominantly belong to the metaheuristic
domain. Comparison can be done by looking at the different results achieved for the same
set of benchmark instances. In case of the VRPCB without TW, the benchmark instances
most often used are the ones of Goetschalckx and Jacobs-Blecha (1989) (GJ89) and Toth
and Vigo (1996) (TV96). The largest instance solved to optimality of the GJ89 data set
comprises 90 customers and for the TV96 data set 100 customers (see Mingozzi et al., 1999).
The latest new best results for these data sets are reported in Ropke and Pisinger (2006)
and Brandão (2006). In case of the VRPCB with TW the data set proposed in Gélinas et al.
(1995) (GDDS95) is the prevalent one. The largest instance solved to optimality within this
data set consists of 100 customers (cf. Gélinas et al., 1995). Most recent new best results
have also been reported in Ropke and Pisinger (2006).

3.2 Mixed linehauls and backhauls (TSPMB, VRPMB)

We now turn to the VRPMB where linehaul and backhaul customers can occur in any
order along the route. The first solution methods proposed belong to the field of heuristics
(compare, e.g., Casco et al., 1988, Golden et al., 1985). An analysis of different parameter
settings in heuristic solution procedures for different VRP, including the VRPMB, is provided
in van Breedam (2002). In van Breedam (2001) the performance of simulated annealing, tabu
search as well as a descent heuristic applied to variants of the VRP, including the VRPMB,
is studied. In the following the various exact, heuristic and metaheuristic solutions methods
reported in the literature will be presented.

3.2.1 Exact methods

Exact solution methods for the VRPMB have only been developed for the single vehicle
case. These are listed in Table 3. Süral and Bookbinder (2003) propose a new mathematical
problem formulation using adaptations of the MTZ subtour elimination constraints for the
TSP, ensuring feasibility of the vehicle load. Several tight LP relaxations are then considered.
Medium-sized practical problems are solved. Baldacci et al. (2003) discuss valid inequalities
and present lower bounds for the single vehicle case. These are embedded in a branch and
cut algorithm.

3.2.2 Heuristics

Several heuristic algorithms have been developed to solve the single as well as the multi
vehicle variant of the VRPMB. Table 4 gives an overview of the different methods, providing
information with respect to the objectives used, additional constraints and the problem type
considered, the algorithm proposed and the benchmark instances or the size of the largest
instance used to test the respective algorithm.
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Table 3: Exact methods for the VRPMB

Reference Obj. Con. Algorithm Benchmark/Size

The single vehicle case

Tzoreff et al. (2002) min. RC - linear time algorithm for tree
graphs; polynomial time
algorithms for cycle or warehouse
graph 1

-

* Süral and
Bookbinder (2003)

min. RC - optional bh.; tight LP relaxations;
exact solutions

up to 30 cust.
(20, 30, 40%
bh.)

* Baldacci et al.
(2003)

min. RC - cutting plane approach GLV99

bh. = backhaul(s), Con. = Constraints, cust. = customers, Obj. = Objective(s), RC = Routing Cost; The
respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in
further detail in the text.
1 i.e. two parallel corridors which are connected by at least two aisles.

Two heuristics for the single vehicle case are discussed in Mosheiov (1994). The first
heuristic consists in constructing an (optimal) traveling salesman tour through all the cus-
tomer vertices excluding the depot (by means of an exact algorithm or, if the problem
instance is too large, a heuristic). Then the best starting point is chosen that makes the
tour feasible with respect to capacity constraints. At this point the depot is inserted. The
second heuristic extends the cheapest insertion heuristic for the TSP to the TSPMB. First,
an optimal traveling salesman tour through all the linehaul points is constructed. Then,
the backhaul customers are inserted along this tour with respect to the cheapest feasible
insertion criterion, i.e. the capacity constraint has to be respected.

Another heuristic for the TSPMB is developed in Anily and Mosheiov (1994). It is based
on the construction of a Minimal Spanning Tree (MST) through all the vertices (including
the depot). Two copies of the MST are then used to construct a feasible pickup and delivery
tour. They prove that the proposed heuristic has a worst case bound of 2.

An early construction heuristic for VRPMB is presented in (Casco et al., 1988). They
introduce a procedure based on the Clarke-Wright algorithm (with reduced vehicle capacity)
to construct initial linehaul tours. A load-based insertion criterion is used to insert the
remaining backhaul customers, i.e. a delivery load after a pickup is penalized.

In (Mosheiov, 1998) the multi vehicle case is solved by means of two tour partitioning
heuristics. Initially a giant TSP through all the vertices (except the depot) is constructed.
The exhaustive iterated tour partitioning algorithm proceeds by identifying the longest seg-
ment that can be served by one vehicle from the first vertex. According to the length of
this segment the tour is partitioned. This procedure is sequentially started from each vertex
along the tour to identify the best partitioning with respect to the total distance traveled.

Salhi and Nagy (1999) propose an extension to the load based insertion procedure of
(Golden et al., 1985). Instead of a single backhaul customer, clusters of backhaul customers
are considered. For the first time also the multi depot case is tackled. This extension is
accommodated by the notion of borderline customers, i.e. customers situated approximately
half-way between two depots. The procedure divides the set of linehaul customers into
borderline and non-borderline customers. First, the non-borderline customers are assigned
to their nearest depot and the corresponding VRP are solved. Then, the borderline customers
are inserted one-by-one into the routes.
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Table 4: Heuristics for the VRPMB

Reference Obj. Con./Type Algorithm Benchmark/Size

The single vehicle case

* Mosheiov (1994) min. RC - 2 algorithms. (1) pickup and
delivery along optimal tour; (2)
cheapest feasible insertion

up to 200
cust. (50%
bh.)

* Anily and
Mosheiov (1994)

min. RC - 2MST heuristic. (based on 2 copies
of a MST through all vertices)

up to 100
cust.

The multi vehicle case

Golden et al. (1985) min. RC RL Clarke-Wright1 algorithm to
schedule linehauls, cheapest
insertion of bh.

Gal.85

* Casco et al. (1988) min. RC RL Clarke-Wright algorithm to
schedule linehauls, load-based
insertion of bh.

61 cust. (18%
bh.)

Halse (1992) min. RC - cluster first route second
(originally for VRPSDP)

Gal.85, GJ89

* Mosheiov (1998) min. RC - 2 heuristics. (1) exhaustive
iterated tour partitioning; (2) full
capacity iterated tour partitioning

up to 100
cust.

* Salhi and Nagy
(1999)

min. RC SD, MD cluster insertion heuristic SN99a

Wade and Salhi
(2002)

min. RC position of
1st bh.

VRP solution, insertion algorithm
for bh.

GJ89, TV96

Dethloff (2002) min. RC - application of algorithm of
Dethloff (2001)

SN99a

* Nagy and Salhi
(2005)

min. NV,
min. RC

RL, SD, MD heuristic algorithm. (1) construct
weakly feasible VRPB
(2) improvement (3) make strongly
feasible (4) improvement

SN99a

bh. = backhauls, Con. = Constraints, cust. = customers, MD = Multi Depot, MST = Minimal Spanning Tree,
NV = Number of Vehicles, Obj. = Objective(s), RC = Routing Cost, RL = Route Length, SD = Single Depot;
The respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in
further detail in the text.
1 compare Clarke and Wright (1964)

Nagy and Salhi (2005) elaborate on an integrated construction-improvement heuristic
for both, the VRPMB and the VRPSDP. The procedure departs from a weakly feasible
VRPMB solution. A solution is weakly feasible if it does not violate the maximum route
length, nor does the total load picked up or delivered exceed the vehicle’s capacity. Strong
feasibility is attained when the load constraint is respected at every arc. First, the weakly
feasible solution is improved by local search procedures. Then, the improved solution is made
strongly feasible and improved retaining strong feasibility.

3.2.3 Metaheuristics

Metaheuristics have not been applied as extensively to the VRPMB as to other problem
types. In Table 5 an overview of the different metaheuristic approaches developed for the
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Table 5: Metaheuristics for the VRPMB

Reference Obj. Con. Algorithm Benchmark

The multi vehicle case

Kontoravdis and
Bard (1995)

min. NV,
min. RC

TW greedy randomized adaptive search KB95

Hasama et al. (1998) min. NV,
min. RC

TW simulated annealing TPS96

Wade and Salhi
(2004)

min. RC - ant system GJ89

Crispim and
Brandão (2005)

min. NV,
min. RC

- hybrid algorithm (tabu search,
variable neighborhood descent)

SN99a

* Zhong and Cole
(2005)

see Table 2 KB95

Reimann and Ulrich
(2006)

min. NV,
min. RC

TW insertion based ant system GDDS95

* Ropke and
Pisinger (2006)

see Table 2 SD: relaxed
GJ89; SD,
MD: SN99a;
TW: KB95

Con. = Constraints, MD = Multi Depot, NV = Number of Vehicles, Obj. = Objective(s), RC = Routing Cost,
SD = Single Depot, TW = Time Windows; The respective benchmark instances are described in Section 4. Entries
marked by an asterisk (*) are described in further detail in the text.

VRPMB is provided. Information is given with respect to the objective function used,
additional constraints applied, the type of algorithm developed as well as the benchmark
instances used. We refer to the previous sections for a more detailed description of those
entries that are marked by an asterisk.

3.2.4 Summary

The largest TSPMB instance solved to optimality is reported in (Baldacci et al., 2003). It is
a single vehicle instance of the data set provided in (Gendreau et al., 1999), containing 200
customers. The VRPMB instances most widely used are those proposed in (Salhi and Nagy,
1999). Most recent improved results for these instances are given in (Ropke and Pisinger,
2006), outperforming earlier results by Nagy and Salhi (2005).

3.2.5 Related work

Mosheiov (1995) discusses an extension of the VRPMB, namely the pickup and delivery
location problem. All customers either demand transportation to or from the depot as in
the classical VRPMB; however, the location of the depot is yet to be determined. Thus,
the objective of the problem becomes the determination of the best location of the central
depot. Mosheiov (1995) develops two heuristic solution methods; one is based on the heuristic
proposed by Mosheiov (1994), the other on a ranking of the vertices according to their
probability of demand and their respective distance from all other vertices.

Irnich (2000) considers a variation of the traditional VRPMB. There is a central hub
where all requests have to be picked up or delivered to. In addition, a number of depots
are considered; every vehicle has to end at the same depot where is started. In contrast to
the traditional VRPMB, the loading and unloading point of the goods transported is not
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the same as the vehicle’s depot. Irnich (2000) solves this problem by a three step heuristic
algorithm. It consists (1) in the model generation phase, (2) in solving the set covering model,
and (3) in a postprocessing phase. Instances with up to 130 pickups and 112 deliveries are
solved.

Delivery systems of overnight carriers are investigated in (Hall, 1996). On the morning
delivery tours, early pickups might equally occur, resulting in VRPMB problem situations.

3.3 Divisible delivery and pickup (TSPDDP, VRPDDP)

This problem class is a mixture of the previously described VRPMB and the VRPSDP,
subject to review in the next section. In contrast to the VRPMB, every customer can be
associated with a pickup and a delivery quantity. However, these customers do not have to
be visited exactly once. They can be visited twice, once for pickup and once for delivery
service. Only little research has been explicitly dedicated to this problem class. However,
all the solution methods designed for the VRPMB can be applied to VRPDDP instances if
every customer demanding pickup and delivery service is modeled as two separate customers.

Salhi and Nagy (1999) apply their cluster insertion algorithm to VRPSDP instances,
resulting in solutions that may violate the one-single-visit-per-customer restriction. Thus,
they actually solve a VRPDDP.

Halskau et al. (2001) on the other hand, explicitly relax the VRPSDP to the VRPDDP.
The aim is to create so-called lasso solutions, i.e. customers along the spoke are visited twice
(first for delivery and second for pickup service). Customers along the loop are only visited
once.

Hoff and Løkketangen (2006) also study lasso solutions but restricted to the single vehicle
case. They develop a tabu search algorithm on the basis of a 2-opt neighborhood. Solutions
to the test instances of Gendreau et al. (1999) are reported.

An in-depth study of different solution shapes for TSPDDP is conducted in (Gribkovskaia
et al., 2007); they consider lasso, Hamiltonian, and double-path solutions. The concept of
“general solutions” is introduced. Their work is motivated by the fact that additional cost
reductions can be realized when relaxing the VRPSDP to the VRPDDP. The proposed
methods are classical construction and improvement heuristics and a tabu search algorithm.
They are tested on instances containing up to 100 customers. The results show that the best
solutions obtained are often non-Hamiltonian and may contain up to two customers that are
visited twice.

3.4 Simultaneous delivery and pickup (TSPSDP, VRPSDP)

The difference between VRPDDP and VRPSDP refers to customers demanding pickup and
delivery service. In case of the VRPSDP these customers have to be visited exactly once for
both services. The VRPMB is a special case of the VRPSDP where every customer only
demands a pickup or a delivery but not both. This problem class was first defined by Min
(1989).

3.4.1 Exact methods

The only exact algorithm for the VRPSDP with TW is presented in (Angelelli and Mansini,
2002). Based on a set covering formulation of the master problem a branch and price
approach is designed. The pricing problem is an elementary shortest path problem with TW
and capacity constraints on two types of resource variables: one for the load picked up and
the other for the maximum load carried at some point until the current vertex. In order to
obtain integer solutions, a branch and bound procedure is employed. Angelelli and Mansini
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were the first to tackle the extension of the VRPSDP with TW. The largest instance solved
to optimality contains 20 customers.

Dell’Amico et al. (2006) also propose a branch and price algorithm to solve the VRPSDP
but without TW. They use a hierarchy based on five pricing procedures: four heuristics and
one exact method. The exact procedure uses bidirectional labeling algorithms (Salani, 2005).
An iterative approach based on state-space relaxation is applied to generate elementary
paths. A 40-customer instance is the largest instance that is solved to optimality.

3.4.2 Heuristics

Several different heuristic methods have been applied to the VRPSDP. In Table 6 an overview
of the developed procedures is given. References marked by an asterisk, that have not yet
been depicted in previous sections, are described in detail below.

A heuristic algorithm for the single vehicle case, departing from a heuristically con-
structed TSP cycle, is proposed in (Gendreau et al., 1999). Based on the TSP cycle an exact
cycle algorithm is run. Its result is improved by introducing shortcuts and local search arc
exchanges. This algorithm is compared to a tabu search algorithm, which will be discussed
in the section on metaheuristic approaches. Gendreau et al. (1999) also apply the cheapest
feasible insertion, the pickup and delivery along the optimal tour (Mosheiov, 1994), and the
MST algorithm (Anily and Mosheiov, 1994) to their test instances. These three methods
were originally proposed for the TSPMB; however, they are also applicable to the TSPSDP
without additional adaptations.

Alshamrani et al. (2007) present a composite algorithm for the stochastic, periodic
TSPSDP. It first constructs a feasible traveling salesman tour. In a second step, this tour
is improved using the Or-opt operator, considering penalties for backhaul quantities left at
stop locations. Demand figures are only known probabilistically.

The multi vehicle case is considered in (Dethloff, 2001). He proposes an extension of the
cheapest insertion heuristic. It does not only rely on the measure of travel distance but also
on residual capacity and radial surcharge. The developed method is also used to solve the
VRPMB (see Dethloff, 2002).

3.4.3 Metaheuristics

Metaheuristic solution methods have also been applied to the VRPSDP, see Table 7 for an
overview.

The first metaheuristic for the TSPSDP is a tabu search algorithm using a 2-exchange
neighborhood (Gendreau et al., 1999). Two different versions are implemented. The first
departs from the heuristic based on a traveling salesman cycle, proposed in the same paper.
The second uses four different departure solutions constructed by the cycle, the MST (Anily
and Mosheiov, 1994), the pickup and delivery along the optimal tour, and the cheapest
feasible insertion heuristic (Mosheiov, 1994).

Tang Montané and Galvão (2006) discuss a tabu search algorithm for the multi vehicle
case. They combine the four construction methods used in (Gendreau et al., 1999) with a
tour partitioning heuristic and an adapted sweep algorithm to generate an initial solution,
resulting in eight different methods. Four different neighborhoods are implemented, a relo-
cation, an interchange, a crossover, and a combined neighborhood. At every iteration the
best feasible non-tabu solution of the neighborhood is chosen. The 2-opt operator is used to
improve the solution found.

Bianchessi and Righini (2007) compare a tabu search algorithm to different construction
and improvement heuristics. A combination of various arc-exchange (cross involving two or
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Table 6: Heuristics for the VRPSDP

Reference Obj. Con./Type Algorithm Benchmark/Size

The single vehicle case

* Gendreau et al.
(1999)

min. RC - 2 heuristics. (1) construct TSP
cycle, apply exact cycle algorithm,
use short cuts, local search
improvements. (2) see Table 7

GLV99

* Alshamrani et al.
(2007)

min. RC,
min. PEN

periodic,
stochastic

construction-improvement
(Or-opt)

-

The multi vehicle case

Min (1989) min. RC - 3 phase cluster first route second
algorithm. (1) clustering (2) truck
assignment (3) routing

Min89

Halse (1992) min. RC - cluster first route second. (1)
cluster by solution of assignment
problem (2) routing plus
improvement phase

Min89; up to
100 customers

* Dethloff (2001) min. RC - cheapest insertion based algorithm Min89,
SN99b, Det01

* Nagy and Salhi
(2005)

see Table 5 SD, MD:
SN99b

Con. = Constraints, MD = Multi depot, Obj. = Objective(s), PEN = Penalty for backhaul quantities not picked
up, RC = Routing Cost, SD = Single Depot; The respective benchmark instances are described in Section 4. Entries
marked by an asterisk (*) are described in further detail in the text.

Table 7: Metaheuristics for the VRPSDP

Reference Obj. Con. Algorithm Benchmark

The single vehicle case

* Gendreau et al.
(1999)

min. RC - tabu search; see also Table 6 GLV99

The multi vehicle case

Crispim and
Brandão (2005)

see Table 5 SN99b

Chen and Wu (2006) min. RC - insertion based procedure,
record-to-record heur.1, tabu list

SN99b

* Tang Montané and
Galvão (2006)

min. RC RL tabu search algorithm using
different neighborhoods

Min89,
SN99b, Det01

* Ropke and
Pisinger (2006)

see Table 2 Min89,
SN99b, Det01

* Bianchessi and
Righini (2007)

min. RC - different local search heur., tabu
search

Det01

Con. = Constraints, heur. = heuristic(s), Obj. = Objective(s), RC = Routing Cost, RL = Route Length; The
respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in further
detail in the text.
1 compare (Dueck, 1993)

three routes), node-exchange (relocate, exchange) neighborhoods are tested. The tabu search
algorithm uses two tabu lists (one for arc-based and one for node-based neighborhoods).
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3.4.4 Summary

Summarizing this section on VRPSDP, again the same trend as for VRPMB can be observed.
Early research favored simple heuristic algorithms whereas recent algorithms mostly belong
to the field of metaheuristic solution procedures. The largest VRPSDP instance solved to
optimality comprises 40 requests (Dell’Amico et al., 2006); however, no standard benchmark
instance is considered. Two data sets have been most often referred to. These are those of
Salhi and Nagy (1999) (SN99b) and Dethloff (2001) (Det01). The best pooled results for the
SN99b instances hold Ropke and Pisinger (2006) and Nagy and Salhi (2005). Tang Montané
and Galvão (2006) also report improved solutions, however, not the whole set is considered.
Consequently, a direct comparison to the other two is impossible. For the Det01 data set
Ropke and Pisinger (2006), Tang Montané and Galvão (2006), and Bianchessi and Righ-
ini (2007) obtain new best results of similar quality, but in different pooled formed, only
comparing themselves to the results of Dethloff (2001). Whatever method produces the
best results, all of them are metaheuristics, clearly indicating that these more sophisticated
methods outperform straightforward heuristic procedures.

4 Benchmark instances for VRPB

In order to provide the interested researcher with some information on available benchmark
instances, we decided to dedicate this section to a brief description of the data sets used in
the VRPB literature. Table 8 provides the following information in chronological order. In
the first column the according literature reference is given. Column two states the VRPB
type the instances were designed for. Columns three and four give the size of the smallest and
the largest instance, in terms of number of customers, and the number of instances provided,
respectively. In column five a brief description of the instances can be found. Column six
contains the abbreviations used in this survey.

In case of the VRPCB subclass the benchmark data sets most often used in the literature
are GJ89 and TV96. The most recent new best results have been presented by Brandão
(2006) and Ropke and Pisinger (2006), two metaheuristic approaches, outperforming earlier
results by Osman and Wassan (2002).

Regarding the VRPMB and the VRPSDP, the single depot instances, SN99a and SN99b,
have been most often solved in the literature. The most recent new best results for these
two data sets are presented in (Ropke and Pisinger, 2006), and (Nagy and Salhi, 2005) for
the second half of the SN99b data set. Also Tang Montané and Galvão (2006) report good
results for parts of the SN99b instances.

5 Conclusion

Usually it is rather difficult to classify or even judge different heuristic and metaheuristic
methods. According to Cordeau et al. (2005), a four dimensional evaluation scheme can be
applied. The four dimensions are accuracy, speed, simplicity and flexibility. Traditionally,
heuristics run faster than metaheuristic methods, whereas metaheuristic methods usually
outperform simple heuristics with respect to solution quality. We thus come to the following
conclusion. In terms of accuracy as well as flexibility the adaptive large neighborhood search
of Ropke and Pisinger (2006) is the currently best method at hand. It is flexible since it
can be applied to several versions of the VRPB and it is accurate since it provides new
best solutions for different benchmark instances. In terms of simplicity and speed only a
heuristic algorithm can be selected. Recent heuristic algorithms involve those of Nagy and
Salhi (2005) and Dethloff (2001, 2002).
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Table 8: Benchmark instances for VRPB

Literature Ref. Type Cust. # Characteristics Abbr.

Golden et al. (1985) VRPMB 55 1 based on instance 8 of Christofides and
Eilon (1969), 10% bh.

Gal.85

Min (1989) VRPSDP 22 1 real life instance Min89

Goetschalckx and
Jacobs-Blecha (1989)

VRPCB 25-150 62 25, 50 and 100% of the linehaul
customers are bh.

GJ89

Gélinas et al. (1995) VRPCB 25-100 45 TW, based on the first five problems
proposed by Solomon (1987) for the
VRPTW, 10, 30 50% bh.

GDDS95

Kontoravdis and
Bard (1995)

VRPMB 100 27 based on the sets R2, C2 and RC2
(Solomon, 1987), Ck = 250, 50% bh.

KB95

Gendreau et al.
(1996a)

TSPCB 100-
1000

750 randomly generated points in the square
[0, 100], uniformly distributed, 10-50%
bh.

GHL96

Toth and Vigo
(1996)

VRPCB 21-100 33 based on VRP instances available at the
TSPLIB library, 50, 66 and 80% bh.

TV96

Thangiah et al.
(1996)

VRPCB 250-
500

24 TW, based on the sets R1 and RC1
(Solomon, 1987), 10, 30 and 50%
converted into bh.

TPS96

Toth and Vigo
(1999)

VRPCB 33-70 24 asymmetric, adapted from the real world
instances used by Fischetti et al. (1994)

TV99

Salhi and Nagy
(1999)

VRPMB 20-249 SD:42
MD:33

based on SD instances (Christofides
et al., 1979) and MD instances (Gillett
and Johnson, 1976), adapted by defining
10, 25 and 50% of the customers as bh.

SN99a

VRPSDP 20-249 SD:28
MD:22

same instances, adapted by splitting ev-
ery customer’s demand into a demand
and a supply part

SN99b

Gendreau et al.
(1999)

VRPSDP 6-261 1308 partly based on VRP instances from the
literature, partly randomly generated

GLV99

Dethloff (2001) VRPSDP 50 40 randomly generated, 2 geographical sce-
narios: (1) uniformly distributed cus-
tomer locations over the interval [0, 100],
(2) more urban configuration; the pickup
amount has at least half the size of the
delivery amount

Det01

# = number of instances, Abbr. = Abbreviation used, bh. = backhaul customers, Cust. = number of Customers
per instance, MD = Multi Depot, SD = Single Depot

In our opinion, future research will be directed into several directions. First, researchers
will attempt to adjust the simplified problems studied to real life problem situations (ad-
ditional constraints, larger instances, etc.). Second, the incorporation of the effects of dy-
namism will be subject to future investigations. And last but not least, knowledge about the
future, in terms of distributions of future demand and supply and the stochastics involved,
will lead to additional research domains.

We hope that this survey will serve as a basis for future research in the area of vehicle
routing involving pickups and deliveries.
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Gribkovskaia I, Halskau Ø, Laporte G, Vlček M (2007) General solutions to the single vehicle routing
problem with pickups and deliveries. Eur J Oper Res 180:568–584

Hall RW (1996) Pickup and delivery systems for overnight carriers. Transport Res A-Pol 30:173–187

Halse K (1992) Modeling and solving complex vehicle routing problems. Ph.D. thesis, Institute of
Mathematical Statistics and Operations Research (IMSOR), Technical University of Denmark

Halskau Ø, Gribkovskaia I, Myklebost KNB (2001) Models for pick-up and deliveries from depots with
lasso solutions. In: Proceedings of the 13th Annual Conference on Logistics Research – NOFOMA
2001 Collaboration in logistics: Connecting Islands using Information Technology, Reykjavik, Ice-
land, 2001-06-14 – 2001-06-15, Chalmers University of Technology, Göteborg, Sweden. 279–293
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