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Abstract

Some phenomena are characterized by a non-trivial network dynamics exhibiting self-
organized criticality or discontinuous transitions, coexistence and hysteresis. After a short
review, we show that a similar approach suggests that social communities stabilized by
network interactions may become unstable if they grow too large.
© 2004 Elsevier B.V. All rights reserved.
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Many real systems cannot be fully understood without accounting for their
complex network structure. For example, static properties of networks—such as
their scale-free nature [1] or the small world property [2]—are not only ubiquitous,
but bear dramatic consequences on simple processes—such as epidemics [3]—taking
place on them. Networks are relevant also for their dynamic properties.' The
complexity of many systems arises precisely from the fact that the network of
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interactions itself co-evolves with the system defined on it in a non-trivial way. For
example congestion ‘“‘storms” in the Internet exhibit intermittent behavior [4]
whereas financial crises and recessions are often explained in terms of avalanches
(the so-called domino effect) [5]. This suggests that the evolution of the network
of interaction in these systems is not smooth, but rather has the “punctuated-
equilibrium” feature of a self-organized critical (SOC) process. This conclusion
has been recently put on a more firm basis by the introduction of a stylized
models which allows for a detailed theoretical [9] approach. The model describes
a network whose evolution takes place in avalanches of rewiring events. These
shape the network which, in the stationary state, acquires statistical properties
which can be related to the microscopic dynamics and which include scale-free
as well as single-scale networks. The model also features a non-trivial sharp
phase transition to the complete network. We refer the interested reader to
Ref. [9].

Here we shall focus on a qualitatively different way in which network dynamics
can be non-trivial, which is mostly relevant for socio-economic networks. It has been
realized that the network in which socio-economic phenomena are “embedded”
plays a key role [6,7]. In addition, many phenomena, such as the emergence of
economic districts or the outburst of crime [8], for which networks are important
evolve in an abrupt, sometimes explosive, manner. In addition, some realities seem to
be characterized by a sparse network and some by a dense one, without an evident
reason (see e.g. Ref. [8] on crime). Ref. [10] found that a very simple dynamics of a
social network in a changing environment reproduces these features: the underlying
network evolves in a discontinuous manner with an abrupt transition from a
disconnected population state to a strongly interconnected society. In addition, for
a range of parameters, the sparse and the dense network phase coexist, and the
system exhibits hysteresis. In what follows, we shall first briefly review the findings of
Ref. [10] and show that a similar modelling approach gives interesting insights on the
stability of communities of finite size.

1. Searching partners in volatile networks

In a well-networked society, individuals are linked through a dense pattern of
interaction which results in both high payoffs and a brisk and broad dissemination
of information [6]. Think, to fix ideas, to the job contact network. It has been
consistently shown by sociologists and economists alike [7] that personal
acquaintances or neighborhood effects play a prominent role in the way in which
individuals find new job opportunities. Information flow through the network has
important consequences in the long run if the underlying environment is volatile. In
this case, former choices tend to become obsolete and individuals must swiftly search
for new opportunities to offset such a negative trend. This can be seen as a
manifestation of the so-called Red Queen principle [11]: ... it takes all the running
you can do, to keep in the same place”. Ref. [10] presents a simple model that



118 G. Bianconi et al. | Physica A 346 (2005) 116-122

addresses these issues. The model, which is a continuum stochastic process for the
state of the network, captures three main processes:

1. Long distance search: At rate i, each node i gets the opportunity to establish a link
to a node j randomly selected.

2. Short distance search: At rate &, each node i picks at random one of its neighbors j
and j then randomly selects one of its other neighbors k #i. The link between 7 and
k is formed (if k is not already a neighbor of 7). Nothing happens if i has no
neighbor or if j has no other neighbor but i.

3. Link decay: At rate A, each existing link decays and it is randomly deleted.

Let us briefly recall the main results of Ref. [10]. The key quantities are the average
number of neighbors ¢ and the clustering coefficient ¢, i.e. the fraction of pairs of
neighbors of a node who are also neighbors among themselves. Their typical
behavior is shown in Fig. 1.

For ¢ =0, the dynamics is very simple and the stationary network is a random
graph with average degree ¢ = 2n/A. For n < A the network is composed of many
disconnected parts. When the local search rate & is turned on, local search
opportunities are rapidly saturated. Indeed the clustering coefficient ¢ raises quickly
to values close to one. Clusters of more than 2 nodes are rare and when they form
local search quickly saturates the possibilities of forming new links. Suddenly, at a
critical value &,, a giant component connecting a finite fraction of the nodes emerges.
The average degree ¢ indeed jumps abruptly at &,. The network becomes more and
more densely connected as ¢ increases further. But when ¢ decreases, we observe that
the giant component remains stable also beyond the transition point (¢ < ¢&,). Only at
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Fig. 1. Average degree ¢ (top) and clustering coefficient ¢ (bottom) from numerical simulations with
/% =0.01 for populations of size n = 1000 and 2000. Runs were equilibrated for a time z.q = 3000/
before taking averages.
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a second point &; the population reverts to the sparse network phase. There is a
whole interval [&;, &,] where both a dense-network phase and one with a nearly
empty network coexist. This behavior is typical of first-order phase transitions.
Notice that, loosely speaking, ¢ is the rate at which “triangles” form and ¢ is the
density of “triangles’. One would then expect that ¢ increases with &, which is indeed
what happens in the sparse network phase. Instead, we find that ¢ decreases with ¢ in
the high-density phase. This, combined to the fact that ¢ is small, is very important
because it makes local search very effective in the high-density phase. Furthermore,
from a theoretical point of view, Ref. [10] shows that it is possible to reproduce
qualitatively the findings of Fig. 1 within a mean field theory only if one accounts for
the dynamical behavior of ¢.

These results suggest that the rise of a vigorous and lively society may be a
discontinuous process. Furthermore, it suggests that the appearance of a dense
network is related to the emergence of key network features—such as a decreasing
clustering with increasing density—which result from its social dynamics. The
occurrence of a discontinuous phase transition and hysteresis, suggests that valuable
network features (high-density and low clustering) may not necessarily materialize
even under favorable conditions while, by contrast, they may display a significant
resilience to deteriorating conditions.

2. The fall of large networked communities

Let us now consider a polar situation where agents, rather than using the network
to search for new partners, use it to gather information on the reliability of potential
new partners. Cooperation between two agents—as modelled by a link of our
graph—in many cases requires trust or reliable information on the reputation of the
partners. Common neighbors on the graph can provide such information or enforce
trust between the parties [12]. We model this type of situation by a networked
population of N agents subject to the following two processes:

e Each existing link decays at rate A.

e Each agent i receives an opportunity to form a link with an agent j, randomly
drawn from the population, at a rate % The attempt is successful if i/ and j share a
common neighbor. Otherwise it is only successful with probability #.

The model aims at describing informal social network whose cohesion is sustained
by a common acquaintance reference system. The key intuition is that, in a large
population, the probability that two nodes have a common neighbor is of order 1/N,
if the average degree c is finite.” Hence common acquaintance cannot sustain dense
networks of many agents. If densely networked communities are possible for some N
at all, they are bound to disappear (or fall) as N increases.

We explored the behavior of the model through numerical simulations (see Fig. 2)
for n<A<1. We find a low-density network state with ¢ >~ #// which coexists, for

This is the case because c<1/2.
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Fig. 2. Average degree ¢ as a function of N for 2 =0.08, 0.1, 0.12, 0.14 (in the inset also data for A =
0.16, 0.18,0.2 is shown). Simulations were run for a time 7 = 10, starting from the complete graph, before
taking averages over a similar time interval. The scaling suggested by the random graph theory (¢ = 0) and
that holding in the high clustering region are shown in the main figure and in the inset, respectively.

intermediate values of &V, with a high-density state. Both the “rise” and the ““fall” of
the high-density network takes place in an abrupt manner.?

In order to shed light on this result, let us first approximate the network by a
random graph where each link is present with probability ¢/N, where c is the average
degree. Then the transition rates for nodes with k& neighbors are

ek
Wi—k—1 = /K, Wikt =1+ (1 —1n) {1 - (1 _N) ] , (D
where the second term in wy— - 18 1 — # times the probability that at least one of the
neighbors of i has a link to j (which occur with probability ¢/N). Averaging the link
creation and decay rates over the Poisson degree distribution, and then equalizing
them we get in the stationary state

de=1+(1—ne /N, )

Notice that, setting x = c/+/N, this becomes AvVNx=1— (1 — 11)6**'2 . which
shows that a dense network dissolves for N >N, where N, ~ 272, Indeed a plot
of x = ¢/+/N versus A+/N shows an approximate collapse of the curves for N large
(see Fig. 2).

The agreement of this simple theory with numerical results is only qualitative. In
particular it fails when x = ¢/+/N approaches one because then the average number

3The high-density network is only reached if simulations start from a highly connected initial state. This
decays to a sparse network when N increases beyond the upper or decreases below the lower critical value.
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Fig. 3. Clustering coefficient ¢ as a function of AN (same data set of the previous figure). Inset: n 4+ (1 —
n)(1 — ¢) as a function of c. Lines are the theoretical prediction Ac.

of second neighbors of any node—which is ¢? in the present approximation—

becomes of order N. This means that any two randomly taken nodes have, with
high probability, a common neighbor. Therefore, in this region of N the link
decay process is balanced by a creation process which is limited mostly by clustering,
i.e. by the fact that new links are not formed simply because they are already in
place. This implies

e =+ —=n(l—-gq)

which indeed holds to a remarkable degree of accuracy (see inset of Fig. 3). Fig. 3
shows that for intermediate values of N the clustering coefficient ¢ is not small.
Indeed the random graph theory above is qualitatively correct in the region where ¢
is small (N large), but it fails for smaller N. Furthermore, numerical simulations
suggests that ¢ requires a different scaling with 4, i.e. curves collapse (for both ¢ and
Ac) is obtained against the variable AN.

Summarizing, we have shown that in a simple model of network dynamics, social
cohesion can be maintained only in finite size groups. While the behavior for
relatively large networks is well described by a random graph theory (¢ ~ 0) the
intermediate range requires a strongly correlated network theory. This, in particular,
seems to be characterized by a different scaling limit.
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