
Treatment of Non-Response

in Longitudinal Network Studies

Mark Huisman∗

Department of Psychology

Christian Steglich†

Department of Sociology

University of Groningen

15th November 2007

Abstract

The collection of longitudinal data on complete social networks often
faces the problem of actor non-response. The resulting incomplete
data pose a challenge to statistical analysis, as there typically is no
natural way how to treat the missing cases. This paper examines the
problems caused by actors missing as nominators, but still occurring as
nominees, in complete, directed networks measured in a panel design.
In the framework of stochastic actor-driven models for network change
(“SIENA models”), different methods to cope with such incomplete
data are investigated. Data on a friendship network among female high
school students are used to illustrate the procedures. Similar problems
related to early panel exit and late panel entry are not addressed.
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1 Introduction

Data analysis in social sciences is often hampered by non-response. In the
analysis of social networks, non-response results in missing network infor-
mation. This means that ties from one actor to another are not observed
and/or information on actor attributes is not available. According to Burt
“missing data are doubly a curse to survey network analysis” (1987, p. 63),
compared to other types of analyses (see also Borgatti and Molina, 2003).
First, the complexity of items in network surveys are more likely to gen-
erate missing data (e.g., Marsden, 2003), and second, network analysis is
especially sensitive to missing data because of the dependence structure of
the data. If a network tie, or worse, an actor is missing, there is limited ca-
pacity to describe the network context of the actors whose ties are missing
and there is lack of information on the context of neighboring actors (Robins
et al., 2004).

The effects of non-response and missing data on the structural properties
of networks are investigated in several studies (Burt, 1987; Costenbader and
Valente, 2003; Kossinets, 2006). The general conclusion is that missing data
have a negative effect on network mapping (Borgatti and Molina, 2003) and
estimating structural network properties: the strength of relationships is un-
derestimated (Burt, 1987), centrality measures become unstable as well as
degree measures (Costenbader and Valente, 2003, Kossinets, 2006), and clus-
tering coefficients are underestimated (Kossinets, 2006). Still, Costenbader
and Valente (2003) find that measures based on indegrees are reasonably
robust for small proportions of missing data when the observed incoming
ties of non-respondents are used in the analysis. This latter result shows an
unique property of social networks: non-participation by respondents does
not necessarily mean that they are not included in the study (Borgatti and
Molina, 2003). Respondents report ties to non-respondents, that is, the
incoming ties of non-respondents are available.

Missing data treatment methods can use the information on non-respon-
dents from the nominations of observed actors. Stork and Richards (1992)
propose using these partially described ties between respondents and non-
respondents to reconstruct the missing outgoing ties: substitute the missing
ties by the value of the tie in the opposite direction. This imputation method
is appropriate if ties tend to match across actors, for instance in undirected
networks. For directed networks, this (ad hoc) imputation method seems
less suitable. Another imputation method is suggested by Burt (1987), who
finds that missing relations are strongly associated with weak relations and
therefore can be replaced with values indicating such weak relations.

More recent missing data methods are proposed by Robins et al. (2004),
Gile and Handcock (2006), Handcock and Gile (2007), and Koskinen (2007).
These methods are also based on all available data, including the incom-
ing ties of non-respondents. The proposed methods are model-based treat-
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ment methods within the framework of exponential random graph models
(ERGMs). Robins et al. (2004) model the ties from respondents to non-
respondents separately from the fully described ties, which allows exploring
the structural effects for the entire network. The model is especially helpful
when the non-respondents systematically differ from the respondents with
respect to ties. Gile and Handcock (2006), Handcock and Gile (2007), and
Koskinen (2007) use Markov chain Monte Carlo methods to fit ERGMs to
incomplete network data. This is a more traditional missing data approach
based on the marginal distribution of the observed data (e.g., see Schafer
and Graham, 2002), allowing for proper inferences for network properties for
both respondents and non-respondents. As the methods repeatedly sample
from the conditional distribution of the missing data, they can also be used
to impute the data sets.

All these methods are designed for modeling single, incomplete obser-
vations of a network. Moreover, possible treatments are either simple ad
hoc procedures (the imputation methods of Stork and Richards, 1992, and
Burt, 1987), or are embedded within ERGMs (Robins et al., 2004; Gile and
Handcock, 2006). For the case of longitudinal network data, studies on the
effect of non-response or the effect of treatment procedures are lacking. In
this paper we examine the effect of non-response and missing data tech-
niques on longitudinal network data. The effect of missing data treatments
are investigated within the framework of the actor-driven models for net-
work evolution proposed by Snijders (2001, 2005), using simulations under
a known evolution model. The missing data treatments that are used in the
simulation study are the analysis of complete cases, two ad hoc imputation
methods based on reconstruction (Stork and Richards, 1992) and preferen-
tial attachment (Barabasi and Albert, 1999), respectively, and an hybrid
imputation procedure based on simulating networks with the actor-driven
network evolution models (Snijders, 2005).

The paper is organized as follows. Section 2 addresses the problem of non-
response in longitudinal network data, defining the missing data patterns
that are considered in this study. In Section 3 the family of actor-driven
models for network evolution of Snijders (2001, 2005) is briefly described.
Section 4 presents the missing data treatments, of which the performance
(i.e., the effects of the treatments on modeling the data with actor-driven
models) is investigated in a simulation study. The design of this study is
presented in Section 5 and in Section 6 the results in terms of convergence of
the estimation procedure and the absolute and relative bias in the parameter
estimates. The paper ends with a discussion of the results and some general
recommendations.
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2 Non-response in longitudinal network studies

In missing data research usually two types of non-response are distinguished:
unit non-response, where complete cases are missing, and item non-response,
where the unit participated but data on particular items are missing. For
social network data, unit non-response means that an actor does not partic-
ipates in the study and therefore all his or her outgoing ties are unavailable
for analysis. Item non-response means that only particular (outgoing) ties
are unavailable in the analyses.

In the case of longitudinal data where respondents are repeatedly con-
tacted at successive time points, non-response patterns can be further dis-
tinguished by including partial non-response (De Leeuw et al., 2003), or
wave non-response (Lepkowski, 1989). Wave non-response is characterized
by time dependency and means that only at certain time points data are
available. This is often due to panel mortality or attrition, which results in
completely missing cases after a certain time point. For social network data,
we define wave non-response as complete non-response at one or more time
points, which results in completely missing outgoing ties of some actors for
these time points.

The present study restricts analyses to unit and wave non-response, and
considers the case of longitudinal network data with two observations mo-
ments and completely missing actors at one or both time points. This
means we assume that at a certain observation moment non-response re-
sults in completely missing outgoing ties of some actors. The incoming ties
of these non-responding actors are observed. Moreover, occasionally miss-
ing ties (item non-response) are not considered. This results in four kinds
of missingness patterns, which are presented in Figure 1. For more than
two observations of the network the procedures are generally the same. The
main difference is in the number of possible missing data patterns.

Figure 1 shows the sociomatrices of a network at two observations mo-
ments. As the rows and columns of the matrices represent the actors, the
subsets of actors distinguish mutually exclusive subsets of rows and columns.
The observed missingness patterns consist of four set of actors: A1, actors
observed at both time points, A2, actors observed at T1 and missing at T2

(wave non-response), A3, actors missing at T1 and observed at T2 (wave non-
response), and A4, actors missing at both time points (unit non-response).
At observation moment T1, the set of observed actors is A1 ∪ A2 and the
data set consists of the corresponding rows in the sociomatrix. These are
the white areas in first adjacency matrix in Figure 1, consisting of incoming
and outgoing ties of observed actors in A1 ∪ A2, and incoming ties of non-
respondents in A3 ∪ A4. At observation time T2 the set of observed actors
is A1 ∪A3.

Although the non-response patterns play an important role in treating
the missingness, the most important question is whether the non-response
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Figure 1: Partial non-response in a network observed at two time points (T1, T2),
identifying four subsets of actors (A1 – A4). Gray areas indicate missing outgoing
ties.

causes systematic bias in the analysis due to systematic differences between
respondents and non-respondents. This leads to the difficult task of assessing
whether the data are missing at random and, as a result, the missingness
mechanism can be ignored (Rubin, 1976). Data are called missing at random
(MAR) if the missingness is unrelated to the (unknown) value of the missing
item itself. For network analysis this means that missingness is unrelated to
the value of the tie. In this case the missingness may be related to completely
observed actor characteristics, but not to network properties.

If the missingness is related to the value of the missing tie itself, the
data are missing not at random (MNAR). In this case, network properties
are biased because they are computed from the network in which tie values
are systematically missing. The extent in which the structural properties
are affected depends on the property itself. Measures based on indegrees,
for instance, are found to be less affected than other measures, because
incoming ties are only partially missing for all respondents.

3 Actor-driven models for network evolution

The prominent tool for modeling and analyzing longitudinal, complete net-
work data is the family of stochastic, actor-driven models introduced by
Snijders (1996, 2001, 2005). Estimation of these models is implemented in
the SIENA software (shorthand for Simulation Investigation for Empirical
Network Analysis; Snijders et al., 2007). The present study refers to this
model family and software package, and the way parameter estimates are
affected by missing data and missing data treatment.
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In the actor-driven approach, the dynamics of a social network are mod-
eled as a stochastic process X(t) in the state space X consisting of all pos-
sible network configurations on a given set of n actors. In this paper, the
networks are directed graphs, coded as binary-valued, possibly asymmetric
adjacency matrices x with xij = 1 indicating presence of a tie and xij = 0
indicating absence; the state space then is X = {0, 1}n(n−1). Furthermore,
we treat the case of a two-wave panel, so two networks x(t1), x(t2) ∈ X are
given as observed data. Because the exact trajectory of network changes
that occur in-between the two observations is unobserved, it is appropriate
to model these data as resulting from a continuous-time process. This is
achieved by constructing a continuous-time Markov chain.

The compound change that occurs between the two observations is mod-
eled as the aggregate outcome of a series of unobserved, stochastically spaced,
small changes called micro steps. The first observation is taken as starting
value of the stochastic process and hence is not modeled itself. The micro
steps consist of the change of one tie variable xij between two actors i and
j in the network, and is modeled as maximization by actor i (the ‘sender’
of the tie) of an objective function

fi(X(t)) =
∑
k

βkbki(X(t)) (1)

plus a random term εi with a conveniently chosen distribution1. Parameters
βk are weighting actor-specific network statistics bki(X). Commonly, these
statistics correspond to local subgraph counts or non-linear transformations
thereof. Examples of network effects and the corresponding statistics for
the objective function are given in Table 1. These statistics and the esti-
mated parameter values are are used in the simulation study to generate
incomplete data sets. The included effects are outdegree, for measuring ac-
tor i’s tendency to randomly establish ties to any other actor, reciprocity,
measuring tendencies to reciprocate ties, transitive triplets and geodesic dis-
tance 2, both for measuring tendencies toward transitive closure, and the
attribute-related similarity, measuring patterns of homophile selection on an
actor attribute z, in this case alcohol consumption. The model is further
discussed in Section 5.1.

Maximization of the objective function takes place over a choice set con-
sisting of micro steps and the option of no change. The distribution of
waiting times between these small changes is modeled by a parametric fam-
ily of exponential distributions called the rate functions. For the present
purposes, we assume rates to be constant across actors. When increasing
the number n of network actors, the cardinality of state space X rises at a
squared exponential rate, which renders explicit calculations of expectations

1The choice of convenience here is independent drawing from the extreme value type I
(or Gumbel) distribution, which allows to express choice probabilities in multinomial logit
shape (McFadden, 1974).
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Table 1 : The included effects, statistics, and estimated parameter
values of the ‘true’ evolution model used in the simulation study.

Effect Statistic bki

(
X

)
Parameter

value

Outdegree
∑

j xij −2.01
Reciprocity

∑
j xijxji 2.11

Transitivity
∑

jk xijxikxkj 0.27
Geodesic distance 2

∑
j(1− xij) maxk xikxkj −0.79

Alcohol-related similarity
∑

j xij(1− |zi−zj |
range(z) ) 0.92

Constant rate 6.87

and likelihoods practically impossible. Estimation of the actor-driven mod-
els therefore has to rely on simulation-based inference. The SIENA software
instantiates simulation-based method of moments estimation of the models,
which we use for the estimations in this paper (newer versions also allow for
simulation-based maximum likelihood and Bayesian estimation; Snijders et
al., 2007; Koskinen and Snijders, 2006).

4 Missing data treatments

There are several ways to deal with missing data. Two general, popular
approaches are likelihood-based estimation based on the available data and
imputation (Schafer and Graham, 2002). The ERGM-based procedures pro-
posed by Robins et al. (2004), Gile and Handcock (2006), Handcock and Gile
(2007) and Koskinen (2007) are examples of the former group of treatments,
although the latter three can also be used to produce imputed data sets. The
reconstruction method suggested by Stork and Richards (1992), and the re-
placement of missing data with values representing weak relations suggested
by Burt (1987) are also examples of imputation procedures.

In this section four missing data treatments are discussed, two of which
are imputation methods. All four treatments are investigated in the simu-
lation study described in Section 5. The techniques are (i) complete case
analysis, i.e., reduction of the data set to the completely observed cases,
(ii) imputation by reconstruction, (iii) imputation by preferential attach-
ment, and (iv) missing data treatment within the framework of actor-driven
evolution models. The two imputation procedures are ad hoc procedures
that impute each observation of the network independently from other ob-
servations and result in completed networks at both time points, that is, all
actors in A1 ∪ ... ∪ A4 are available for analyses. The fourth procedure is
based on the simulation of micro steps in the estimation procedure of the
actor-driven models described in Section 3. As its primary concern is model
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estimation and uses only initial imputations at T1, this hybrid imputation
procedure does not automatically result in a completed data set.

While these techniques can be used for all types of non-response, this
paper is only concerned with missingness due to unit and wave non-response
– a situation we believe is close to what empirical network researchers typi-
cally face. For this situation Robins et al. (2004) remark that “imputation
is unlikely to be very successful” (p. 206). This may be particularly true for
the imputation methods (ii) and (iii), but it has never been investigated in a
longitudinal context. In any case, these methods are acceptable benchmarks
to investigate the effectiveness of other methods. Our focus of interest, nat-
urally, lies on assessing the quality of the model-based hybrid imputation
method available in the SIENA software.

4.1 Complete case analysis

Complete case analysis (CC) is based on the smaller network of completely
observed actors, i.e., those who gave valid responses at all measurement
points (‘listwise’ deletion of actors). The analyzed data set consists of the
incoming and outgoing ties of these actors, that is, the upper-left white
block in the sociomatrices depicted in Figure 1 for actor set A1. The ob-
served incoming ties for missing actors are ignored in this procedure. The
data reduction which this method implies can be considerable. If at k obser-
vation points independently the response rate is ρ, the probability for any
tie variable xij to be retained in the complete case data set is ρ2k. This
implies that in a two-wave design, already a response rate of 71% delivers
network matrices containing but 25% of the original number of cells. It can
be expected that this method will deliver results that are highly sensitive to
the fraction of missing cases, which should reasonably be taken serious only
for very low levels of missingness.

A straightforward strategy to avoid this loss of data is to impute artificial
observations for the missing values. The following three methods all employ
variants of this theme.

4.2 Imputation by reconstruction

Stork and Richards (1992) suggest reconstructing the missing part of the
network by using the observed incoming relations of the missing actors. As
the procedure does not allow reconstruction of ties between non-respondents,
additional imputations are necessary in order to reconstruct the whole net-
work. The following procedure is used:

1. For all ties between non-respondents i and respondents j, impute the
observed value of the opposite tie: ximp

ij = xji.
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2. For all ties between non-respondents, randomly impute a tie propor-
tional to the observed density (i.e., the probability of a tie is equal to
the observed density of the network).

The reconstruction procedure (RE) generates imputations for the two ob-
servation moments separately, that is, the missing actors A2 ∪A4 at T1 are
treated independently from the missing actors A3 ∪A4 at T2. It is assumed
that reported ties match across actors. This is true for undirected networks
(as those studied by Stork and Richards), but may not be the case for di-
rected networks. Even in networks with strong reciprocity effects, a large
number of ties may not be reciprocated. Hence, we can expect that the
degree of reciprocity in the data is exaggerated by this method, which will
have an impact on analytical results.

4.3 Imputation by preferential attachment

This procedures uses the concept of preferential attachment, which states
that the probability that an actor will link to another actor is dependent
on the connectivity of other actors (Barabasi and Albert, 1999). Preferen-
tial attachment is incorporated in terms of indegrees by assuming that the
probability that a missing actor i will be connected to another (observed or
missing) actor j is proportional to the indegree kj of actor j:

Π(kj) =
kj∑
j 6=i kj

. (2)

The following two-step procedure is used to replace the missing ties by ran-
domly drawn zeros or ones:

1. For each missing actor i in either A3 ∪A4 or A2 ∪A4, randomly draw
an outdegree di from the observed outdegree distribution at the ob-
servation moment under consideration.

2. For the missing actor i, randomly draw a total of di actors j (j 6= i),
without replacement, from the total set of actors A1∪ ...∪A4 using the
the preferential attachment probabilities Π(kj). For the ties between
i and j impute the value ximp

ij = 1, otherwise ximp
ij = 0.

The preferential attachment procedure (PA) generates imputations for two
observation moments separately, such that the observed degree distributions
at both moments are retained.

4.4 Missing data treatment within actor-driven models

This fourth procedure is highly contingent on the analytical tool with which
the data are analyzed, i.e., a model-based method. It differs from the pre-
vious procedures in two ways. First, different subsets of missing actors (at
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different time points) are not treated similarly, as they were in all other
methods. And second, model estimation under this treatment is based on
the set of completely observed actors at both time points, A1, only, instead
of the completed data of all actors.

The procedure is based on the simulation of the network evolution process
within the estimation procedure of the actor-driven models. This estima-
tion procedure is based on the simulation of continuous-time Markov chains
of networks. Starting from the first observation at T1, a Markov chain of
networks (i.e., a series of micro steps) is simulated using the specified model
(objective function and rate function) and the current values of the model
parameters. At the second observation moment T2 the difference between
the simulated and observed network (expressed in a vector of differences
on network statistics) is used to update the parameter estimates. Then,
a new Markov chain of networks is simulated with the updated parameter
estimates, and the process is repeated until parameter values converge (see
Snijders, 2001, 2005, for details).

The missing data treatment starts with initial imputations at T1: all
missing ties are treated as being absent, that is, impute the value ximp

ij = 0.
This seems a reasonable choice, considering that the networks under study
typically are sparse (the mode of the tie values is zero), and that missingness
is found to coincide with weak ties (Burt2, 1987). The missing ties at T2 are
not replaced, but imputed by way of simulation. In the simulation phase of
the estimation procedure, all actors – observed and missing – are allowed to
make changes in their outgoing ties. As all actors have the opportunity to
interact between two observations, all ties are free to change, including the
imputed ones. This results in a simulated network at the second observation
moment T2, in which all ties have meaningful simulated values. These can be
used to impute the missing ties at T2. However, the parameter update step
(and hence model estimation) is based on the observed ties at both time
points only, that is, the network statistics used for the updating step are
calculated on this reduced data set, just as for the complete case treatment.
This way, the impact of missing actors at T1 and T2 on the estimates is
minimized. Still, the missing actors at T1 have an indirect effect on the
results by acting as constraints and opportunities for tie changes during the
simulations, thus affecting what happens in the non-missing part of the data.

In Table 2 an example of an indirect effect of a model-imputed tie is
presented. The table illustrates two micro steps in a network region involving
four actors: three observed (1, 2, 3) and one missing (4). For the first micro
step from τ1 to τ2, missing actor 4 is randomly chosen to apply a change to
his outgoing ties, with the result that a tie to actor 2 is created. In the second
micro step from τ2 to τ3, observed actor 1 makes a change by initiating a

2Note that Burt refers to missing ties in an ego-centered survey and his finding may
not be true for missing actors in a complete network.
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Table 2 : Example of the indirect effect of a model-imputed tie on
network structure.

Time τ1 τ2 τ3

Circles represent observed actors, boxes missing actors.

tie to actor 2, closing the triplet (1, 2, 4). This change may be induced
by a preference for transitive triplets, but this particular triplet will not be
counted in the network statistics used for the parameter updates because it
involves a missing actor. However, the second micro step did result in an
increase of the distance 2 statistic (between 1 and 3 via 2), which will be
used in parameter updating because all three actors involved are observed.

The data used for estimating the model are the network statistics cal-
culated on the actor set A1 only, i.e., those observed at both time points.
Different from the CC treatment method, though, the other data are not
discarded. All other actors are used in the simulation of the network, this
way providing structural constraints for how the reduced network among
actors in A1 evolves. For actor set A3, this inclusion is straightforward, as
the values of their outgoing ties at T1 are known. For actors in A2 ∪A4, the
inclusion requires a prior imputation of tie variables at T1, here by setting
them to zero. This missing data treatment is currently implemented in the
SIENA software to handle missing ties (i.e., both completely missing actors
and individual ties; see also Snijders, 2005), and will be referred to as the
SIENA method (SM) in the remainder of the paper.

5 Simulation study

In order to investigate the sensitivity of parameter estimates of the actor-
driven models to the various types of missing data treatments, a simulation
study is performed. The general pattern of the study is:

1. generate complete data under a known evolution model,

2. generate missing data by erasing a fraction of actors (i.e., all outgoing
ties of the actors),

3. treat the missing data using the procedures outlined in Section 4,
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4. re-estimate the evolution model on the data treated for missingness,

5. investigate the effect of the treatments on the estimation procedure
and the estimates.

5.1 Generating longitudinal network data

For generating simulated network evolution processes, the first two waves
of a sample data set of 50 actors are used. These sample data are provided
together with the SIENA software3. On these data, an actor-driven evolution
model was estimated that is used as the ‘known’ evolution model to generate
the data in the study. This way, our ‘true’ evolution model is close to
what can be encountered in actual research (our simulations are ‘empirically
informed’) – and does not incur overly long computer runs.

The model contains parameters for outdegree, reciprocity, transitive
triplets, geodesic distance 2, and similarity on the covariate dimension of
alcohol consumption. The parameter values are presented in Table 1. The
outdegree parameter (−2.01) indicates that actors generally avoid ties, which
is no surprise in a sparse network. They do have a preference for recipro-
cated ties (2.11), transitive closure (the transitivity parameter equals 0.27,
and the distance 2 parameter equals −0.79, together indicating that actors
prefer direct to indirect relations), and ties to others with the same score
on alcohol consumption (0.92). The rate parameter equals 6.87, indicating
the average frequency in-between observations by which network actors can
apply changes to their network neighborhood. All parameters are significant
at α = 0.01 in the original data.

In the simulations of the network evolution process, the first observation
of the network is taken as initial state of the process, and the observed data
on alcohol consumption at first measurement as a constant actor covariate.
Using the the estimated evolution model (based on the ‘true’ second ob-
servation), 500 times an actor-driven evolution process was simulated. This
resulted in 500 simulated networks at the end of the simulation period. Note
that these simulated evolution processes deliver different trajectories due to
the stochastic nature of the model. The simulated end networks were taken
as second observations in the simulation study.

5.2 Generating missing data

As we restrict our study to unit and wave non-response, missing data were
created by randomly selecting actors and deleting all outgoing ties of these
actors. This amounts to specifying rules by which actors are allocated to
sets A1 through A4, introduced in Section 2. Missing actors were selected

3The data are a ‘cleansed’ subset of the girls’ subnetwork in the Teenage Health and
Lifestyle study, as discussed by Michell and Amos (1997), Pearson and West (2003),
Steglich et al. (2006), and Steglich et al. (2007).
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independently at both time points, using the same selection mechanism.
The fractions missing actors at each time point are (1 − ρ) = 0.2, 0.4,
and 0.6, where ρ is the response rate at each wave. Independence between
time points in this procedure implies that the fraction of missing actors at
both waves (set A4) is, in expectation, equal to the product of the fractions
missing at the single time points (A3 ∪ A4 at T1 and A2 ∪ A4 at T2). Four
different missingness mechanisms were used, which define the probability
that an actor is missing in the following way:

• completely random selection of actors,

• probability proportional to 1
(alcohol score)2

• probability proportional to 1
(indegree+1)2

,

• probability proportional to 1
(outdegree+1)2

.

Each of these mechanisms can be viewed as operationalization of assump-
tions about how missing data may occur in real-world network studies. Ran-
dom deletion is a simple but coarse model of missingness and may be realistic
when there is no reason to assume that actors differ in their propensity to
fill in network questionnaires (or otherwise deliver their local part of the
data). The data are MCAR, as the missingness is unrelated to network or
actor characteristics.

However, often non-response will be related to network or actor char-
acteristics, resulting in data that are MAR or even MNAR. In the second
mechanism, deletion of actors is proportional to the covariate alcohol con-
sumption. The mechanism is such that actors with lower scores on the
covariate have a larger probability to be missing4. As the covariates are
completely observed, the data are MAR.

The third and fourth type of missingness are both related to network
properties, that is, the indegrees and outdegrees of the actors: actors with
low degrees have a larger probability to be missing. This reflects the ideas
that popular actors are more inclined to participate in a network study
(indegree) and that network data of socially active actors are collected more
easily than network data of inactive actors (outdegree), as inactive actors
are more difficult to recruit or care less to respond. The square was added
in the mechanism to make the distinction even more pronounced.

Both degree-mechanisms result in data that are MNAR, but the miss-
ingness patterns and biases may be quite different. As ties are missing
completely for non-respondents, outdegrees cannot be computed for miss-
ing actors. Indegrees, however, can always be estimated using the partially

4This means that the less alcohol respondents consume, the less they are inclined to
participate in the network study. It may not be overly realistic in every context, but
certainly does not diminish usefulness of the mechanism for illustrative purposes.
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observed incoming data of all respondents. This means that the (maybe
biased) estimates of the indegrees can be used to treat the missingness due
to the fourth mechanism in a MAR-based procedure. This might, at least
partly, correct for the non-randomness of the mechanism.

In order to minimize the impact of random noise on the estimation of the
evolution model, the missing actors of lower missingness levels are chosen
to be subsets of the actors missing at higher levels. In practice, this was
accomplished by establishing, for each of the networks analyzed and under
each type of missingness, a sequence of ‘dropping out’ for the actors. The
first ten actors in such a sequence then constitute the missing actors at the
20% level, the first twenty actors constitute the missing actors at the 40%
level, etc. As indicated in the beginning of this section, these dropping
out sequences are established independently for all networks. To further
reduce the impact of random noise on the estimation results, the same sets
of missing actors were used across the treatments procedures.

5.3 Model convergence

The generation of the networks and the missing data resulted in 500 com-
plete and 3 (missingness levels) ×4 (missingness mechanisms) ×500 = 6, 000
incomplete data sets (consisting of two waves). The complete data, gener-
ated according to a known (‘true’) evolution model, are used as a reference
category. On all data, the actor-driven evolution model is re-estimated ac-
cording to the four treatment methods proposed in Section 4, which amounts
to a total of 500 + 4× 6, 000 = 24, 500 estimation runs.

The chosen model specification, however, cannot be fit to each data set.
Even without missing data, the possible mismatch between model and data
needs to be monitored. Convergence diagnostics indicating the mismatch be-
tween model-consistent data and the to-be-analyzed data are implemented in
the SIENA software. They are used to monitor possible convergence prob-
lems. When estimating actor-driven models from deliberately mutilated
data sets, monitoring convergence problems is even more important because
we expect a growing mismatch as the fraction of missing actors in the data
increases.

Unfortunately, the SIENA convergence diagnostics do not necessarily de-
tect all ‘inaccurate’ solutions. Most importantly, during the estimation
process, parameter values may reach a region of the parameter space where
model-derived expected data are not sensitive to changes in specific parame-
ters any more, and where accordingly neither the parameter nor its standard
error can be estimated accurately5. Therefore, we decided to classify esti-
mation runs as divergent when at least one out of three conditions was

5This is similar to logistic regression models, where differences in the very high or
the very low region of parameter values have barely any impact on the modeled choice
probabilities, because the tails of the logistic link function are very flat.
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satisfied:

1. SIENA diagnosed divergence based on the convergence diagnostics.

2. At least one of the parameter estimates was unreasonably high, that
is, the absolute value is larger than 10 for the five parameters in the
objective function. For the rate parameter, a more liberal threshold
of 50 was chosen, as it already has the quite large value of 6.87 in the
true model.

3. At least one of the estimated standard errors was unreasonably high,
that is, the absolute value is larger than 10.

The (ad hoc) threshold values of 10 and 50 seem liberal in the sense that they
are much higher than what is usually reported for SIENA results, which can
also be seen from the results obtained for the complete data, yet they seem
to suffice for distinguishing completely meaningless results from reasonably
interpretable ones. The distribution of the results as shown in the boxplots
of Figures 2–4 does not crucially depend on the chosen thresholds.

6 Results

The effect of the missing data treatments on modeling the longitudinal net-
work data was evaluated using three measures of performance: practicability
(operationalized as number of converged estimation runs), absolute size of
error (operationalized as median parameter bias), and relative size of error
(operationalized as the relative position of the true score in the distribution
of estimates). The use of robust measures (percentiles) instead of sensitive
ones (like averages or standard deviations) reduces the impact of possibly
remaining outliers on the results. Figures 2–4 display, for each parameter
under each combination of missingness level, missingness type and treatment
method, the distribution of estimates in the shape of a boxplot. The width
of the boxes indicates the fraction of convergent projects (the less projects,
the narrower the box), the dotted lines indicate the true values of the pa-
rameters, and the four missing data treatments are labeled CC (complete
case), SM (SIENA method), PA (preferential attachment) and RE (recon-
struction). In the following, we aggregate the total information contained
in these diagrams in terms of the three criteria identified above.

6.1 Convergence

Convergence crucially depends on the amount of information that the data
set provides. It can be expected that the number of divergent projects
increases with higher fractions of missing data. In Table 3 the percentages
of diverging projects are presented, for each missing data mechanism and
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Figure 2: Boxplots of the estimated parameters outdegree (left) and rate (right).
From bottom to top, first a plot for the reference category (no missings) and next,
four blocks with plots for the missingness mechanisms are rendered (MCAR, Inde-
gree, Outdegree, Alcohol). Within each block, four sets of three plots are presented
for the techniques CC, SM, PA, and RE, each for the three missingness levels (0.2,
0.4, 0.6). The width of the boxes represent the number of converged projects.
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Figure 3: Boxplots of the parameters reciprocity (left) and transitivity (right).
From bottom to top, first a plot for the reference category (no missings) and next,
four blocks with plots for the missingness mechanisms are rendered (MCAR, Inde-
gree, Outdegree, Alcohol). Within each block, four sets of three plots are presented
for the techniques CC, SM, PA, and RE, each for the three missingness levels (0.2,
0.4, 0.6). The width of the boxes represent the number of converged projects.
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Figure 4: Boxplots for parameters distance-2 (left) and alcohol similarity (right).
From bottom to top, first a plot for the reference category (no missings) and next,
four blocks with plots for the missingness mechanisms are rendered (MCAR, Inde-
gree, Outdegree, Alcohol). Within each block, four sets of three plots are presented
for the techniques CC, SM, PA, and RE, each for the three missingness levels (0.2,
0.4, 0.6). The width of the boxes represent the number of converged projects.
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Table 3 : Percentage of divergent projects per cell of
the simulation design (500 projects per cell). For the
reference condition without missing data, the corre-
sponding number is 0.4%.

Missingness Fraction Method
mechanism missing CC SM PA RE
MCAR 0.2 4.2 4.2 <0.1 <0.1

0.4 40.8 33.4 4.4 0.4
0.6 99.4 97.8 15.4 6.4

Alcohol 0.2 1.2 3.6 0.8 0.2
0.4 35.6 16.0 2.8 0.2
0.6 74.6 47.0 9.8 2.6

Indegree 0.2 0.6 4.0 <0.1 0.2
0.4 29.4 18.4 2.0 0.2
0.6 86.4 58.4 12.4 1.8

Outdegree 0.2 1.6 3.0 0.2 1.8
0.4 21.4 21.2 1.6 0.4
0.6 86.4 74.4 13.0 1.0

fraction of missing data. From the table it follows that indeed, the number
of divergent projects increases with higher missingness fractions. This holds
in the first place for the CC method, and to a slightly lesser degree for the
SM method, because in these methods, the missing actors are not (or not
fully) used in the estimation procedure. For the two imputation methods
PA and RE, convergence is less of an issue, as the resulting data sets are
essentially complete, though increasingly distorted.

Compared to completely random missings, the more systematic missing-
ness mechanisms result in less divergent projects, due to the fact that these
mechanisms leave more network structure intact. For indegree and outde-
gree missings, this is so because predominantly the less network-involved
actors are eliminated. For alcohol missings, one needs to consider that simi-
lar alcohol consumption is a determinant of friendship selection (homophily).
Elimination of predominantly non-drinkers therefore is likely to affect only a
relatively self-contained non-drinkers’ subnetwork, while the also relatively
self-contained drinkers’ subnetwork remains in the data, carrying consider-
able part of the original network structure.

6.2 Parameter bias

Bias in the parameter estimates can be caused by two distinct sources. On
the one hand, parameters of the actor-driven models have a built-in sensi-
tivity to network size. Coupled with the reduction of the effectively handled
number of respondents in the methods CC and SM, bias can be expected.
On the other hand, there can be a mismatch of the real type of missingness
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Table 4 : Main effects of fraction missing actors, missing data mech-
anism and missing data treatment: median parameter bias.

Outd. Recip. Trans. Dis. 2 Al.sim. Rate

True value −2.010 2.110 0.270 −0.790 0.920 6.870

Reference 0.016 −0.001 −0.026 −0.001 0.040 −0.109

p = 0.2 0.001 0.210 −0.037 0.049 0.015 0.588
p = 0.4 −0.031 0.431 −0.002 0.240 −0.073 2.473
p = 0.6 0.134 −0.015 0.002 0.457 −0.132 5.808

MCAR −0.024 0.161 −0.006 0.252 −0.043 2.252
Alcohol −0.026 0.125 0.008 0.239 −0.159 1.420
Indegree 0.040 0.151 −0.006 0.167 0.019 1.620
Outdegree 0.110 0.214 −0.059 0.230 0.002 2.198

CC −0.368 0.647 −0.044 −0.284 0.233 −3.148
SM 0.084 0.196 −0.016 −0.108 0.251 −1.077
PA 0.358 −1.023 0.064 0.400 −0.202 3.422
RE −0.141 0.479 −0.091 0.288 −0.064 4.278

and the assumptions about missingness made by applying the treatment
method. When comparing treatment methods, both causes should be taken
into account, although the extent of each separate cause here is not deter-
mined.

Table 4 shows the median biases of each parameter, separately grouped
according to the different factors of our design. This way, we identify main
effects of the fraction of missing actors, of the missing data mechanisms,
and of the treatment methods. A positive bias indicates that the estimated
parameter value is larger than the true value. For instance, at the 20%
missingness level, the median estimate of the rate parameter (over all con-
verging projects at this missingness level, regardless of treatment method
and missing data type) equals 0.59 + 6.87 = 7.46. The table shows that for
the parameters distance 2, alcohol similarity and rate, bias grows with the
fraction of missing actors, as was expected. At this level of aggregation, it
is difficult to say why the other three parameters deviate from this pattern.
By averaging over treatment methods and missingness types, several factors
may be at work that cancel out on the aggregate level.

A closer look at Figure 3 reveals that the reconstruction method (RE)
may be the culprit: for missingness levels of 20% and 40%, the reciprocity
parameter is strongly inflated by this method. This is no surprise because
at these missingness levels, the majority of imputed outgoing ties (80% and
60%, respectively) are reconstructed based on known incoming ties, and thus
automatically reciprocal. For a missingness level of 60%, however, this is no
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longer the case, as now only a minority of imputed ties (40%) can be recon-
structed based on known incoming ties, the rest is reconstructed at random
(see description of the method in Section 4). This model-induced reciprocity
bias of the RE method implies that the other parameters in the model are
calibrated against the artificially inflated reciprocity. The boxplots indicate
such a calibration effect on the outdegree parameter. Presumably, also the
transitivity parameter was affected, explaining that in Table 4, also these
two parameters show a nonlinear dependency of bias on missingness level.

Inspection of the main effects of missingness mechanisms shows that the
largest bias occurs when the parameter is sensitive to the mechanism. This
way, bias of the alcohol similarity parameter is largest when missingness
is related to alcohol consumption, and bias of the outdegree parameter is
largest when missingness is related to outdegree. In all other cases, bias is
largest either for random missings (MCAR, for parameters distance 2 and
rate) or for missings based on outdegree (MNAR, for parameters reciprocity
and transitivity). These are two extreme cases which have the largest nega-
tive effect on network structure and therefore lead to more extreme problems
than the MAR cases in-between.

Finally, the most interesting of all main effects is the comparison between
treatment methods. Here, the clear winner is the SIENA method (SM), which
has smallest median bias for all parameters except the alcohol similarity
parameter – for this one, the reconstruction method (RE) performs best.
Again, the aggregate result of Table 4 in principle could be misleading. A
look at the boxplot diagrams, though, gives relief here. By comparison
across treatment methods, the SM boxplots are neatly centered around the
true value, for all missingness types and levels. Which brings us to our third
and final criterion for treatment method quality.

6.3 Centrality of true score

While in the previous section, the absolute size of the difference between
true parameters and median estimates was investigated, we now address the
relative size of this bias in the distribution of estimates. Looking again at
Table 4, consider the median bias of the outdegree parameter under CC and
under PA treatment, which are −0.368 and 0.358, respectively. The two
methods thus have about the same absolute bias – however, when looking
at Figure 2, it is obvious that the PA method scores much more consistently
above the true value than the CC method scores below it. This difference
is what we want to capture as third criterion of treatment performance: the
probability to estimate the true score – or, more precisely, the probability
that the estimate will surpass the true value. This can be done by studying
the percentile in the distribution of estimates at which the true score is
located.

In Table 5, we render it in terms of percentages relative to the median po-
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Table 5 : Main effects of fraction missing actors, missing data mech-
anism and missing data treatment: position of true value relative to
the median in the distribution of the estimates; (50 + cell entry)% =
percentile of the true value.

Outd. Recip. Trans. Dis. 2 Al.sim. Rate

Reference −4.1 +0.1 +8.1 +0.5 −3.1 +7.1

p = 0.2 −0.2 −9.9 +7.7 −5.5 −1.3 −7.1
p = 0.4 +2.0 −11.1 +0.6 −9.9 +4.6 −11.2
p = 0.6 −13.4 +1.1 −0.4 −39.2 +8.2 −32.4

MCAR +2.1 −6.1 +1.0 −20.4 +3.1 −16.4
Alcohol +2.4 −5.8 −1.8 −19.9 +10.3 −11.3
Indegree −4.0 −8.3 +1.5 −15.1 −1.2 −15.0
Outdegree −10.4 −10.6 +12.5 −19.1 −0.1 −15.7

CC +32.0 +16.5 +4.2 +16.6 −8.4 +47.8
SM −10.9 −11.8 +1.9 +9.2 −12.2 +28.9
PA −47.2 −21.1 −21.1 −42.9 +9.0 −48.8
RE +25.2 −44.6 +27.1 −35.8 +5.3 −49.4

sition. To come back to our example: the outdegree parameter’s true value
is located 32% above the median in the distribution of outdegree estimates
under CC treatment. That means that it lies inside two-sided confidence in-
tervals of confidence level 2× 32% = 64% or higher that can be constructed
based on this distribution. For PA treatment, the true value is located
47.2% below the median, meaning that only for much higher confidence
levels (≥ 94.4%), the true value will be included in confidence intervals.

Concerning the main effects of missingness level and missingness mech-
anism, results in Table 5 differ little from what Table 4 reported. The
main difference between the tables lies, as illustrated, in the comparison of
treatment methods. While the imputation methods PA and RE for some
parameters deliver comparatively small absolute median bias, this is not re-
flected in centrality of the true score in the distribution of estimates under
the method. In general, these methods impose their own structure on the
data – enhanced levels of reciprocity in the RE case, and enhanced popu-
larity of few actors in the PA case – which makes it extremely difficult to
recover the true parameters with any reliability. Inspection of Figures 2–4
suggests that there is no need to further refine these results. Overall, also
here, SM treatment is evaluated as the best treatment method in the field,
independent of missingness level or missingness type. Unexpectedly, also
the CC method is somewhat rehabilitated. This treatment is second-best
for five of the six parameters – so we may conclude that if it is possible to
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obtain estimates by this method (which can be difficult), these at least do
not depart from the true value as systematically as corresponding estimates
obtained by methods PA and RE would.

7 Discussion

Missing actors have a large effect on analyzing longitudinal network data.
The simulations show that ignoring the missing data and restricting the
analysis to completely observed cases leads to problems when using actor-
driven network evolution models. These problems are twofold. First, the
reduced sample size and the loss of information leads to problems in fitting
a model to the data (convergence problems). With large fractions of missing
data it is hardly possible to find a fitting evolution model. Second, ignoring
the missing data generally leads to biased parameter estimates.

Imputation of the missing data may solve the first problem: the data set
is completed and no information seems to be missing. However, this nice
feature of artificially completed data – or, as Dempster and Rubin (1983)
remark, “the pleasurable state of believing that the data are complete” – has
a major shortcoming: single imputation underestimates uncertainty levels,
because predictions are treated as observed values and the actual sample
size is overestimated (e.g., Schafer and Graham, 2002). Also, the second
problem of biased parameter estimates still exists, it may even be enhanced
by the imputation method when this method artificially injects network
features that do not correspond to real network structure. Imputation thus
has to be done in a more sophisticated way, should it result in trustworthy
estimates.

A model-based approach based on the available data (e.g., ERGM-based
procedures, Robins et al., 2004; Gile and Handcock, 2006; Handcock and
Gile, 2007; and Koskinen, 2007) does not underestimate uncertainty levels,
but uses a smaller network than originally intended. Although the reduction
may not be as large as analyzing only complete actors (the method CC in
the simulations), it still suffers from convergence problems. Moreover, the
methods assume MAR and non-random missing data lead to biased results.

In the simulations, these shortcomings of missing data treatments were
found. Imputation by preferential attachment (PA) and imputation by re-
construction (RE; Stork and Richards, 1992) lead to completed data sets
at both observation moments, and hardly have any convergence problems.
The parameters of the actor-driven models, however, are generally severely
biased. In the boxplots of Figures 2–4, the range of estimates under im-
putation methods PA and RE decreases for increasing missingness fraction
– creating the false impression that accuracy of estimates increases with
severity of the missing data problem. What happens, though, is that the
estimates are more and more determined by the artificially imputed struc-
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ture, which can be seen in median bias (Table 4) being very high and the
true score lying far out in the tails of the distribution of estimates (Table 5).

Handling the missing actors within the actor-driven model (SM: the
SIENA method) is a model-based approach based on available data. The un-
certainty levels are not underestimated, but convergence problems do arise.
These problems, however, are not as large as for the complete case method,
and relatively minor for small to medium fractions missing actors. SM treat-
ment generally resulted in small biases in model parameters, especially for
small to medium missingness levels. The distribution of estimates under
this method does reflect the increased uncertainty due to missing data, as
can be seen by an increased range of estimates for higher missing data frac-
tions. Median bias, however, is lowest among all methods compared, both
in absolute (Table 4) and relative terms (Table 5).

In this study we compared a model-based treatment of missing data
within actor-driven network evolution models with complete case analysis
and two naive imputation methods. In case of wave non-response there are
at least two other popular approaches: weighting and imputation by last
value carried forward/backward (Lepkowski, 1989). Weighting seems less
suitable for network data, as weights are usually computed using selection
probabilities and need auxiliary (non-network) information. Imputation by
last value carried forward leads to a reduction of the amount of change
between the observation moments and the imputed values do not add to
the estimation of the model parameters. In this respect it is similar to the
method SM, but has the shortcoming of underestimated uncertainty levels
(artificially reduced range of estimates). Moreover, extra imputations are
needed for actors who are missing at both observation moments.

In the case of actors joining or leaving the network, that is, missing
data that emerge due to network composition changes, a model-based ap-
proach was proposed by Huisman and Snijders (2003; and implemented in
the SIENA software). This specific form of wave non-response (drop-out due
to leaving the network, or new entry) remains outside the scope of this in-
vestigation, as it is a qualitatively different type of missing data – if one can
speak of ‘missing’ at all. In SIENA, it currently can be handled by modeling
the joining and leaving times as exogenous events in the continuous-time
Markov chain of micro steps in the actor-driven model.

¿From the simulations in this paper, it can be concluded that the model-
based approach within the actor-driven models is the best method to use:
parameter biases are not too large for small to medium fractions missing
and standard errors are not underestimated. For small networks, though,
convergence problems may arise due to the reduction of effectively handled
actors. For the SIENA users, therefore the best recommendation at this stage
of software development is to employ the software’s own missing data treat-
ment method, instead of mutilating the data sets by reduction to complete
cases, or falsifying it by imputation of alien structure. Possible improve-
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ments that need to be studied relate to the fine-tuning of this method. In
this vein, better initial imputations can be used (currently, the mode is im-
puted) and partially observed actors or even imputed actors can be included
in the estimation procedure.
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