
ARTICLE IN PRESS
Real-Time Imaging 10 (2004) 277–284
1077-2014/$ - se

doi:10.1016/j.rt

�Correspond

E-mail addr
www.elsevier.com/locate/rti
Real-time DSP implementation of motion-JPEG2000 using
overlapped block transferring and parallel-pass methods

Byeong-Doo Choi, Kang-Sun Choi, Min-Cheol Hwang, Jun-ki Cho, Sung-Jea Ko�

Department of Electronics and Computer Engineering, Korea University, Sungbuk-Ku, Seoul 136-701, South Korea

Available online 13 October 2004
Abstract

This paper presents a real-time implementation of Motion-JPEG2000 encoder using a fixed-point DSP chip. Among several

modules in JPEG2000 encoder, the lifting algorithm for discrete wavelet transform (DWT) and the embedded block coding with

optimized truncation (EBCOT) comprise more than 85% of the encoding complexity. Thus, it is very important to design and

optimize these two modules in order to increase the performance of the hardware implementation. First we propose an overlapped

block transferring (OBT) method that can significantly improve the performance of the lifting algorithm for DWT by increasing the

cache hit rate. We show that the execution time of the lifting scheme can be further reduced by programming the DSP software using

the single instruction multiple data (SIMD) instructions and the super scalar pipeline structure. Moreover, we introduce a parallel-

pass method for fast implementation of EBCOT. This method reduces the processing time of EBCOT by processing the three coding

passes of the same bit-plane in parallel. Experimental results show that our developed Motion-JPEG2000 DSP system meets the

common requirement of the real-time video coding [30 frames/s (fps)] and is proven to be a practical and efficient DSP solution.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

JPEG2000 compression standard has been created to
provide high compression efficiency compared to JPEG
[1]. It includes a rich set of features such as improved
compression efficiency, lossy to lossless compression,
multiple resolution representation, embedded bit-
stream, region-of-interest (ROI) coding, and error
resilience [2–4].

Motion-JPEG2000 (MJP2) is intended to create a new
coding system required by video communication market
and applications based on JPEG2000. The core technol-
ogy of MJP2 targets an intra-based coding system,
which differs from the current moving pictures stan-
dards, MPEG (MPEG-1, 2 and 4). It is well known that
MPEG outperforms Motion-JPEG in compression
efficiency because MPEG takes advantage of motion
prediction between pictures. However, it is notable that
e front matter r 2004 Elsevier Ltd. All rights reserved.

i.2004.08.003

ing author. Tel.: +822 3290 3228; fax: +82 2 925 5883.

ess: sjko@dali.korea.ac.kr (S.-J. Ko).
MJP2 outperforms MPEG-2 and MPEG-4 in both the
compression rate and error resiliency as presented in the
recent study [5]. In particular, the advantage of MJP2 is
outstanding in error prone environments. This is very
important for consumer application as well as profes-
sional broadcasting systems.

DSP technology applied to various multimedia
applications is also evolved fast. Recently, in the DSP
technology, the single instruction multiple data (SIMD)
instructions become usable [6]. As packing several small
data types into a larger register, the SIMD instructions
manipulate and process multiple data in an instruction,
and thus reduce the execution time drastically.

In this paper, we present an embedded MJP2 system
structure to encode video in real-time. The architecture
primarily consists of three modules: the video acquisi-
tion module which obtains image data from two analog
cameras, the MJP2 encoder module, and the local area
network (LAN) module to transmit encoded code-
streams via the Internet. For the MJP2 encoder, we
propose the overlapped block transferring (OBT)

www.elsevier.com/locate/rti

ARTICLE IN PRESS

Video Input
Processor

D S P

External Memory

LAN
Module

Controller

LAN
Module

Data
Control
Logic

Valid LLC
Generator

Interrupt
Generator

FPGA

Data

Control flow

SRAM1

Y

Cb
Cr1

F
ra

m
e

SRAM2

Y

Cb
Cr1

F
ra

m
e

SRAM3

Y

Cb
Cr1

F
ra

m
e

FIFO

Fig. 2. Main functions implemented in the FPGA and interaction with

external devices in the proposed hardware system.

B.-D. Choi et al. / Real-Time Imaging 10 (2004) 277–284278
method, based on the cache performance to improve
DWT. Instead of the line-based lifting scheme. An
image is divided into overlapped subblocks and then
each overlapped subblock is processed by a 2-D lifting
algorithm to increase the cache hit rate. We show that
the OBT-based lifting scheme with the SIMD instruc-
tions and the super scalar pipeline structure of DSP can
increase the performance of the DWT drastically.
Moreover, we propose a parallel-pass method for fast
implementation of EBCOT. This method reduces the
processing time of EBCOT by processing the three
coding passes of the same bit-plane in parallel.

The paper is organized as follows: The proposed
system level architecture is presented in Section 2. The
OBT-based lifting scheme with the SIMD instructions
and parallel-Pass processing for EBCOT are proposed
in Section 3. In Section 4, the performance of the
proposed system is discussed and conclusions are given
in Section 5.
2. The implemented MJP2 system architecture

Fig. 1 shows the proposed block diagram for a
hardware implementation of MJP2 encoder. This system
is under development with ALTERA MAX7256 (256
LEs) and TMS320C6416 (600MHz, 4800 MIPS, 128 kb
cache). The video acquisition module captures NTSC
and RS-170 analog video. The analog video is digitized
into YUV 4:2:2 formatted video with two separate
fields. These two fields are merged into a frame by an
FPGA in Fig. 1. The frame generated is fed to the MJP2
encoder module for compression. Since the input to the
MJP2 encoder has YUV format, the intercomponent
color transform in the preprocessing of JPEG2000 is not
required. The transmission module packetizes and
delivers generated bit-stream via the Internet.

As shown in Fig. 1, the FPGA used in our hardware
implementation plays an important role in transferring
various data and controlling each module in the system.
Fig. 2 depicts four main functions implemented in the
VIDEO
DECODER

FIFO

DSP FIFO

NTSC RS-170

FPGA
MEMORY
(SDRAM/
FLASH)

LAN
MODULE

LAN

Video Acquisition Motion-JPEG2000
Encoder

Transmission

Data flow Control flow

FPGA

Fig. 1. Proposed block diagram for a hardware implementation of

Motion-JPEG2000 encoder.
FPGA in the proposed system. The FPGA is consumed
up to 80%.

Video input processor chip represented as the video
decoder in Fig. 2 digitizes analog video into YUV
format video. The video input processor generates video
of size 720� 480 pixels. The input video can be cropped
into the one of a desired size. For example, a concentric
image of size 640� 480 pixels can be extracted from the
video. The video input processor generates a line-locked
system clock (LLC) every 27 ms for all signals including
blank signal as well as real pixel signal. The valid LLC
generator in Fig. 2 produces a clock (valid LLC) only
when the current signal outputted from the video input
processor resides in the desired region. The data control
logic (DCL) in the FPGA moves the current signal into
the high speed SRAM.

The video input processor produces the valid
pixel data for each field whose format is Cb0Y0Cr0Yl-
Cb2Y2Cr2Y3 � � � . To merge two parity fields into a
frame whose pixel data are arranged in the order of the
color component like Y0Y1Y2Y3 � � �Cb0Cb2-
� � �Cr0Cr2 � � � , the DCL should calculate the appro-
priate address where the current value is placed.

In order to cope with the case that the DSP may
encode a frame slower than the output rate of the video
input processor, the proposed system has three tempor-
ary high-speed SRAM’s, each of which holds only one
frame. Since the DCL contains the information about
which SRAM is being used or is filled up with the latest
video, the DCL always enables only one SRAM until
the SRAM becomes full. Then the DCL changes the
destination SRAM to next SRAM by rotating the
destination circularly. After an SRAM has been
filled up, the DCL signals the interrupt generator to
fetch the latest image into the external memory
associated with DSP chip via direct memory access
(DMA) channels.

ARTICLE IN PRESS
B.-D. Choi et al. / Real-Time Imaging 10 (2004) 277–284 279
The LAN module controller indicates the buffer
status of FIFO connected with the LAN module. The
FIFO is used to suppress the difference of the
throughputs of the DSP and the LAN module. Each
time a buffer of the LAN module has a space for new
data, the LAN module requests the FIFO to send data.
The DSP output bitstream into the FIFO whenever the
LAN module controller indicates that the FIFO has a
space to be filled in.
3. The proposed software architecture of MJP2

Among several modules in JPEG2000 encoder, the
lifting algorithm for discrete wavelet transform (DWT)
and the embedded block coding with optimized trunca-
tion (EBCOT) comprise more than 85% of the encoding
complexity. Thus, it is very important to design and
optimize these two modules in order to increase the
performance. The latest DSP chip can enable the real-
time implementation of the DWT and adaptive binary
arithmetic coding [6]. Utilizing the hardware features of
the DSP chip, we optimize wavelet filtering and the
EBCOT algorithm.

3.1. OBT-based lifting scheme for efficient cache

utilization

The lifting algorithm, an alternative technique of
computing the wavelet coefficients efficiently, performs
the line-based DWT. Thus, lifting requires less compu-
tation as well as less memory. However, in a point of
view of memory management, it still has severe cache-
miss problems during the execution of the vertical
wavelet filtering. Fig. 3 shows the reason the cache-
misses occur in the vertical filtering with 128 set cache.
When filtering the first 128 pixels of the first column, all
data have to be fetched. When the 129th pixel is needed,
the cache stores the oldest data and fetches the pixel
Full

Full

1 1 129 1’

129

 1-2

129’

1-2

128
set

255

127

0

Full

1-2’

 129-2

129-2

Fetch

Fetch

Fetch

Fetch

Store

Store

Store

cache

image memory block

Fig. 3. Cache-misses in vertical wavelet filtering.
data. The same process executes in the 130th pixel, the
131st pixel, and so on. In the second column, the needed
data that have been fetched does not exist in the cache
any more. They have to be fetched again. Hence, all
pixel data have to be fetched before they are filtered.
Each of fetching takes 8 cycles of CPU processing. This
is a lot of burden on CPU performance.

To reduce the cache miss drastically by increasing
both the temporal locality and the spatial locality, we
propose an OBT-based lifting scheme. This scheme uses
hierarchical memory structure with two layers on DSP.
Fig. 4 shows the memory structure of the DSP. The
CPU interfaces directly to dedicated level-one data
caches (Ll) of 16Kbytes. This cache operates at the full
speed of CPU access. It is a two-way set associative
cache with a 64-bytes line size and 128 sets. A second
level (L2) data memory is entirely mapped SRAM.

It services cache misses from the LI cache. The
original image data are in the external memory mapped
DRAM. Data transfer between the L2 and the external
memory operates by a direct memory access (DMA)
controller. An OBT-based lifting scheme partitions an
entire image memory into blocks to fit into the cache size
and reorder the processing sequence for the efficient
lifting algorithm. It reduces the cache miss rate in the
horizontal filtering.

Generally, in order to perform a lifting scheme, the
image rows are filtered in the horizontal direction, and
the image columns are filtered in the vertical direction,
but the modified lifting scheme in the proposed method
is performed block by block. The block must have the
same size as one of the way in the LI cache. This is the
key feature of the proposed approach.

Before the wavelet lifting transform starts, the data in
the block 1 of the input image block are transferred
from the input image memory to the L2 by the DMA.
When the filtering in the horizontal direction starts, the
CPU needs the first line of the block 1 and finds it in the
L2 and fetches it in the L1 cache. After the filtering of
the first line finishes, it moves to the second line of the
block 1. Next, it moves to the third line and the fourth
line, and so on. After the filtering of the last line of the
block 1 finishes, the whole block 1 is located in the L1
cache, and then the filtering in the vertical direction
starts in the block 1 in the L1 cache. No data fetching is
needed in this vertical filtering. Therefore, during the
filtering both of the horizontal direction and the vertical
direction in the block 1, cache-miss occurs only when the
CPU needs the next horizontal line. This is the reason
the proposed method has prominent performance.

After the whole filtering of the block 1 finishes, the
block 2 fetches in the way 1 in the L1. After finishing the
filtering in the block 2, the block 3, starts to fetch from
the L2 to the way 0 of the L1. At the same time, the
filtered data of the block 1 in the way 0 move to the L2
line by line. The filtered data of the block 1 are already

ARTICLE IN PRESS

Way 0

Way 1

1

2

3

4

1

2

3

4

5

6

7

8

Line copy
by CPU

Block copy
by DMA

16 KB cache
(L1)

SRAM(L2)
DRAM(External)

Input Image
64 bytes

64 bytes

128
set

128
set

Fig. 4. Cache memory manipulation for efficient lifting algorithm.

Way 1

1
(8KB)

2

3

4

Line copy
by CPU

Block copy
by DMA

16 KB cache
(L1)

SRAM(L2) DRAM(External)

Output Image
64 bytes

64 bytes

128
set

128
set

LL

LH

HL

HH

LL

LH

HL

HH

1
(8KB)

LL

LH

HL

HH

Fig. 5. Rearrangement of filtered data.

B.-D. Choi et al. / Real-Time Imaging 10 (2004) 277–284280
divided by each band such as LL, LH, HL, HH before
they move to the L2. After finishing the block 1
movement to the L2, the data in each band transfer
from the L2 to their correct final position in the output
image memory by DMA. Fig. 5 shows the movement of
the filtered data. Rearrangement of filtered data is
needed to prepare for block coding.

Data transfer between the L2 and the external
memory operates independently with data transfer
between the L1 and the L2. As block data transferring
is operated by DMA without CPU execution, the
overhead of block transferring does not affect total
processing time. Therefore, the proposed method
increases cache-hit rate without any load to the CPU.
We achieve this by reordering the sequence of the
wavelet lifting, and by controlling DMA.

This method can perfectly remove a cache-miss
problem. However, one problem exists in the proposed
method because the wavelet filtering cannot be per-
formed independently without coefficients of adjacent
blocks. The filter needs next block coefficients at the
edges to calculate exactly correct results. In the
proposed method, the vertical lifting process is not
related to this problem. Vertically two adjacent blocks
are always loaded in the L1 cache in the same time. But
in the horizontal lifting process, it is not easy to escape
this problem.

In order to solve this problem, when the next right
block is loaded, a part of the right side of the left block
should be overlapped with this block. This method is
referred to as overlapped block transferring (OBT)
method. In Fig. 6, memory blocks used for double
buffering from external memory to the L2 cache are laid
overlapping each other along the vertical direction. Area
1 in dark gray is completely wavelet processed, whereas
Area 2 in light gray contains data lifted partially. Thus,
the next block for the 2-D lifting is placed to include
Area 2 as well as Area 3. The remaining horizontal
lifting steps for values in Area 2 are completed and the
2-D lifting scheme is processed for Area 3.

3.2. Optimization of the lifting algorithm using SIMD

instructions and the super scalar pipeline structure

Although the lifting algorithm reduces computational
complexity as well as memory used, the lifting algorithm
still has much of computational burdens. In an attempt
to improve the performance of the lifting algorithm

ARTICLE IN PRESS

Area 1 Area 3

(Lifted partially)

Area 2

A column of blocks

Next column of blocks

Fig. 6. Overlapped block configuration.

s
0
0 d

0
0 s

1
0 d

1
0 d

2
0s

2
0 s

2
0

d0
1 d1

1 d2
1

s
0
1 s1

1 s
2
1 s

3
1

-1/2

1/4

1

Input
sequence-1/2 -1/2 -1/2 -1/2 -1/2

1

1

1

11 1

1/4 1/4 1/4 1/4 1/4

High-pass output

Low-pass output

Fig. 7. Lifting prediction/update steps for the (5,3) filter-bank.

Lambda1
= -1/2

Lambda2
= 1/4

s1

s0

d0
d1

Fig. 8. Block diagram for the lifting steps for the (5,3) filter-bank.

src1
16 bits

src2
16 bits

+

Lambda
16 bits

+

dest
16 bits

dest
16 bits

src1
16 bits

src2
16 bits

src3
16 bits

src4
16 bits

Memory

...

dest1
16 bits

dest2
16 bits

dest3
16 bits

Memory

Data load
(LDDW)

...

(PACK2)

(MPY2)

(ADD2)

(ADD2)

Data load (LDDW)

Fig. 9. Basic operation used in the lifting scheme for the integer (5,3)

filter-bank.

B.-D. Choi et al. / Real-Time Imaging 10 (2004) 277–284 281
further, we implement the lifting algorithm using the
SIMD instructions of DSP and the super scalar pipeline
structure.

The lifting operation consists of several steps. The
basic idea is to first compute a trivial wavelet transform,
called the lazy wavelet transform, by splitting the
original 1-D signal into odd and even indexed sub-
sequences, and then modifying these values using the
alternating prediction and updating steps. Fig. 7 depicts
an example of the lifting steps corresponding to the
integer (5,3) filter-bank which is used in the reversible
path for the lossless compression in JPEG2000. The
sequences fs0i g and fd0

i g denote the even and odd
sequences, respectively, that are results of the lazy
wavelet transform of the input sequence. The even and
odd samples are regarded as initial values of low-pass
and high-pass components, respectively. Then, values of
high-pass component are updated by adding values of
low-pass component with a weight. Next, values of low-
pass component are updated by adding values of high-
pass component with another weight. By iterating such
update procedures, 1-D DWT is realized.
The prediction and updating steps are given as

d1
i ¼ d0

i �
1
2
ðs0i þ s0iþ1Þ; (1)

s1i ¼ s0i þ
1
4ðd

1
i�1 þ d1

i Þ: (2)

Eqs. (1) and (2) are implemented by sequential update
using a weighted sum of the adjacent values. Fig. 8
represents this lifting steps as a block diagram,
where the lambdas, called lifting factors, in Fig. 10 are
–1/2 and 1/4 for (1) and (2), respectively.

Fig. 9 shows the flowchart of the basic operation in
the lifting scheme for the integer (5,3) filter-bank. The
SIMD instructions, PACK2, ADD2, MPY2 and
LDDW, are used. The PACK2 instruction takes the
lower half-words from two source word data and packs
them both into one destination word data. ADD2 and
MPY2 instructions make two half-word data add and
multiply on upper and lower register halves, respec-
tively. LDDW instruction loads double word from
memory with an unsigned constant offset or register
offset. In this lifting scheme using SIMD, different
pipeline hazards do not exist.

ARTICLE IN PRESS
B.-D. Choi et al. / Real-Time Imaging 10 (2004) 277–284282
Thus, for an N�M image, a generic C code for the
basic operation of the lifting scheme requires 2 �N �M

16-bit additions, N �M 16-bit multiplications, and
3 �N �M 16-bit data load. In general, a 16-bit multi-
plication, a 16-bit addition, and a 16-bit data load take 4
cycles, 1 cycle, and 5 cycles for execution, respectively.
Thus, the generic C code requires total 21 �N �M cycles
for processing an N�M image.

For the SIMD instruction can read 64 bits, that is,
four 16-bit values are loaded simultaneously. In addi-
tion, DSP provides multiplication and addition instruc-
tions for two 16-bit values. Since two instructions can be
used simultaneously by using the super scalar pipeline
structure, four 16-bit values can be added or multiplied
at the same time. Thus, using both the SIMD instruc-
tions and the super scalar pipeline structure reduces
execution time drastically. For the case described above,
the identical operation optimized requires only 5 �N �M

cycles for processing an N�M image.
Fig. 10. Context windows in parallel processing.
3.3. Parallel-pass architecture for EBCOT

Embedded block coding with optimal truncation
(EBCOT) is the most complicated part in JPEG2000.
The context of a sample coefficient is formed according
to the significant state of the sample and its eight
neighbors within a 3� 3 context window, and the
context data goes into the arithmetic coder. Each bit-
plane is encoded through three coding passes, called
significant propagation pass (Pass 1), magnitude refine-
ment pass (Pass 2) and clean up pass (Pass 3). During
each pass, all the samples of the bit-plane are scanned to
determine whether or not each sample is encoded in the
current pass. Therefore, all the samples need to be
scanned three times, requiring a lot of processing time.

To solve this problem, we propose a fast context
modeling method based on the parallel-pass scheme.
The strategy is to process the three coding passes of the
same bit-plane in parallel.
1

1

1

1

2,3

2,3

2,3

2,3

start

C
ur

re
nt

S
tr

ip
e

shift

Fig. 11. Context windows i
In EBCOT, a proper coding pass for the sample must
first be determined, and then the sample is encoded
during the coding pass. In this manner, each sample in
the bit plane is encoded in one of the three passes. In
order to reduce the processing time, three passes could
be processed in parallel. However, the parallel proces-
sing causes a problem. If the three coding passes are
concurrently executed, a sample in Pass 3 can become
significant prior to its neighboring samples in Passes 1
and 2, resulting in a wrong implementation of EBCOT.
Moreover, in EBCOT, the processing results of samples
in Pass 2 or 3 depend on those of Pass 1. However, in
parallel pass mode, samples in Pass 2 or 3 can not use
the results of Pass 1.

In order to solve this problem, the coding operations
for Passes 2 and 3 are delayed by one column to use the
result of Pass 1, and Passes 2 and 3 are simultaneously
processed. Figs. 10 and 11 show the proposed scheme.
The results of four samples (numbered as 1) are stored
after they are encoded in Pass 1. Then, the samples
(numbered as 2,3) are encoded in Pass 2 or 3. In this
case, the results of four samples (numbered as 1) are
used as neighbors for Passes 2 and 3. After Passes 2 and
3 are completed, the two columns in box move to the
right by one stripe. As a consequence, all three passes
are encoded in one scan.
start

C
ur

re
nt

S
tr

ip
e

shift

1

1

1

1

2,3

2,3

2,3

2,3

n parallel processing.

ARTICLE IN PRESS
B.-D. Choi et al. / Real-Time Imaging 10 (2004) 277–284 283
4. Experimental results

The proposed OBT-based lifting scheme with the
SIMD instructions and the parallel-pass processing are
demonstrated in this section.

Table 1 shows a comparison of execution time of 2-D
DWT for several image sizes. As shown in Table 1, the
lifting method using the proposed OBT memory
management scheme reduces the execution time of the
lifting algorithm significantly. Note that the execution
Table 4

Performance and consumed resources for the proposed system

Modules Algorithm Time

(ms)

Video acquisition Pre-processing 3.40

module (FPGA)

MJP2 encoding DWT 4.65

module (DSP) Quantization 1.02

EBCOT Tier-1 36.56

EBCOT Tier-2 14.18

Transmission Packetization 0.41

module (FPGA)

Total 60.32

Table 1

Comparison of execution time for different lifting schemes for Lena

image

Image size Generic (ms) OBT (ms)

352� 288 12.24 4.37

512� 512 58.07 11.31

640� 480 68.90 13.25

Table 2

Comparison of execution time of the (9,7) filter-bank lifting scheme

between the generic C code and the SIMD implementation using the

super scalar pipeline structure for 640� 480 Lena image

Lifting direction Generic C code (ms) SIMD

implementation (ms)

Horizontal 7.75 2.26

Vertical 7.75 2.39

Table 3

Comparison of the consuming time of the EBCOT between the non-

parallel and parallel-pass processing for 640� 480 Lena image

Pass type Non-parallel (ms) Parallel (ms)

Pass 1 14.49 14.76

Pass 2 7.02 4.43

Pass 3 26.75 17.37

Total 48.26 36.56
time is more reduced with the increase of the image size.
The lifting scheme using the proposed OBT in our
embedded MJP2 system performs over five times faster
than the generic line-based lifting method.

Table 2 shows the performance improvement by using
both the SIMD instructions and super scalar pipeline
structure of DSP. Since both the horizontal and the
vertical lifting are applied to every pixel, the DSP SIMD
implementation executes the lifting scheme about 3.4
times faster than the generic lifting method. Thus, our
embedded MJP2 system using the two proposed
schemes simultaneously performs encoding video over
18 times faster than the generic MJP2 encoder.

Table 3 shows the performance improvement by using
the proposed parallel-pass algorithm for EBCOT. As
shown in Table 3, for Pass 1, the proposed method does
not affect the execution time because there is no
difference between the proposed method and the generic
method. However, for Passes 2 and 3, the proposed
method reduces the calculation time up to 41% (Pass 2)
and 32% (Pass 3). This result indicates that the
proposed method significantly reduces the processing
time for scanning and masking in case of Pass 2 and 3 by
reusing the parameter and data used in Pass 1. In
general, the computation complexity of the whole
EBCOT can be reduced by 24% as compared with the
generic architecture.

To measure performance of the proposed system,
Table 4 shows time consumed and other dimensions of
the design space, which are cycles, usage memory size
and power consumption. Most computation time is
consumed for the calculation in the EBCOT Tier-1
coder. The resources of the FPGAs in video acquisition
module and transmission module are consumed up to
80% and 60% respectively.

Table 5 presents measured calculation time of
different processing unit of JPEG2000, when various
solutions for the realization of JPEG2000 are utilized.
Fossel’s implementation uses FPGAs (Xilinx XCV300E)
with an additional processor support (ARM7) and
Meerwald’s implementation is parallel coding solution
Cycles Memory (Mbytes) Power

(Kcycles) consumption

170 922 3.3V

80mA

2,790 922

612 461 3.3V

21,936 677 850mA

8,508 28

21 40 3.3V

60mA

34,037 2000 3.3V/1A

ARTICLE IN PRESS

Table 5

Comparison of total calculation time of JPEG2000 encoding for

256� 256 Lena image

Implementation Fossel’s

(ms)

Meerwald’s

(ms)

Proposed

(ms)

Wavelet 4.0 421 1.5

EBCOT Tier-1 76.8 426 14.5

EBCOT Tier-2 13.7 200 7.9

Total 84.5 1047 23.9

Fig. 12. The developed embedded Motion-JPEG2000 encoding

system. (a) The video acquisition module. (b) The MJP2 encoder

module. (c) The LAN Module.

B.-D. Choi et al. / Real-Time Imaging 10 (2004) 277–284284
on multiprocessors (Pentium II 500MHz). The pro-
posed system is about 3 times faster than Fossel’s
implementation [9] and 70 times faster than Meerwald’s
that [10]. Note that the processing time of DWT and
EBCOT Tier-1 is reduced remarkably.
Fig. 12 shows the developed Motion-JPEG2000
encoding system consisting of the video acquisition
module, the MJP2 encoder module, and the LAN
module described in Section 2. By connecting these
modules, the whole system can encode videos obtained
from two cameras as well as transmit bitstream via the
Internet in real-time.
5. Conclusions

In this paper, we have presented a real-time embedded
Motion-JPEG2000 encoding system using a fixed-point
DSP chip. To improve the performance of the system,
we have proposed OBT-based lifting scheme to increase
the cache hit rate. The OBT-based lifting scheme is over
five times faster than the line-based lifting scheme.
Moreover, the usage of the SIMD instructions and the
super scalar pipeline architecture of DSP has reduced
the wavelet execution time by over three times. In
addition, we showed that the proposed parallel-pass
algorithm can significantly reduce the execution time of
EBCOT. Consequently, the MJP2 implementation on a
fixed-point DSP meets common requirement of real-
time video coding [30 frames/s (fps)] and is proven to be
a practical and efficient DSP solution.
References

[1] Rabbani M, Joshi R. An overview of the JPEG2000 still image

compression standard. Signal Processing: Image Communication

2002;17:3–48.

[2] Taubman DS, Marellin MW. JPEG2000: Image compression

fundamentals, standards and practice. Dordrecht: Kluwer Aca-

demic Publishers; 2002.

[3] Information Technology—JPEG2000 Image coding system: Part

1. ISO/IEC International Standard 15444-1 2000.

[4] Information Technology—JPEG2000 Image coding system: Part

5—Reference Software. ISO/IEC International Standard 15444-5

2001.

[5] Yu W, Qiu R, Fritts J. Advantages of motion-JPEG2000 in video

processing. In: Proceedings of the SPIE, Visual Communications

and Image Processing 2002;4671:635–45.

[6] TMS320C64x Technical Overview. Texas Instruments 2001.

[9] Fossel S, Fottinger G, Mohr J. Motion JPEG2000 for high

quality video systems. IEEE Transactions on Consumer Electro-

nics 2003;49:787–91.

[10] Meerwald P, Norcen R, Uhl A. Parallel JPEG2000 image coding

on multiprocessors. In: Proceedings of the International Parallel

& Distributed Processing Symposium, 2002.

	Real-time DSP implementation of motion-JPEG2000 using overlapped block transferring and parallel-pass methods
	Introduction
	The implemented MJP2 system architecture
	The proposed software architecture of MJP2
	OBT-based lifting scheme for efficient cache utilization
	Optimization of the lifting algorithm using SIMD instructions and the super scalar pipeline structure
	Parallel-pass architecture for EBCOT

	Experimental results
	Conclusions
	References

