

DESIGNING AND DEVELOPING MULTI-USER,
MULTI-DEVICE WEB INTERFACES

Fabio Paternò, Ines Santos
ISTI-CNR, Pisa (Italy)

Abstract: The need for support of multi-user interaction is growing in several application
domains, including the Web. However, there is a lack of tools able to support
designers and developers of multi-user, multi-device interactive applications.
In this paper we present a proposal for this purpose describing how it can
provide support at both design and run-time. The design and development
process can start with task model descriptions and such logical information is
used to generate interfaces adapted to the target platforms and mechanisms for
their coordination at run-time.

Key words: Multi-User, Multi-Device User Interfaces, Authoring environments, Model-
based design, Software architectures.

1. INTRODUCTION

The Web is the most common user interface. In this area there is an
increasing number of applications that can be accessed through both desktop
and mobile devices. Given the progress made in network technology and
access, we have reached a stage in which team-work is widely supported
even in Web applications (see for example [1]). Unfortunately, in most
systems data is organized and published on the Web using “Web oriented
database systems”. This type of application permits only asynchronous work.
Some support for cooperative applications is provided by workflow systems,
which are able to coordinate the tasks performed by various users (see for
example [2]) but they are not able to support synchronous work (multi-user
applications that allow cooperation between several users in real-time). The
few existing authoring environments for synchronous work applications do

2 Fabio Paternò, Ines Santos

not take into account that users can access them though different types of
devices.

The goal of this paper is to present an environment supporting the design
and generation of Web synchronous applications (same time, different place)
and an associated architecture able to support them at run-time. Our
environment allows developers of collaborative applications to focus on the
tasks that users wish to accomplish. The importance of such task-oriented
approach for cooperative application has been shown in several works, see
for example [3][4]. To this end, it allows them to identify, implement and
iterate over the main aspects of the cooperative applications. Since tasks in
some applications must be performed by a user before another user can
begin a different task, the desired order of task performance must be
preserved in the resulting cooperative system. Thus, the run-time
architecture must have a knowledge of the task model and how it is mapped
onto the user interface implementation in order to make them consistent in
terms of the possible dynamic evolution. While tools supporting model-
based approaches to user interface design and development exist, see for
example [5][6][7], none of them has addressed the possibility of supporting
generation and run-time support of multi-user, multi-device synchronous
applications.

In the following we first discuss background and related work. Then, we
show how cooperative multi-user applications can be designed and how the
corresponding user interface implementations adapted to different platforms
are obtained. Then, we present the corresponding software architecture,
including mechanisms for synchronous cooperation. We also briefly describe
an example application. Lastly, we draw some conclusions and provide
indications for future work.

2. BACKGROUND AND RELATED WORK

The new environment presented in this paper has been obtained by
extensively redesigning a previous tool (TERESA) [6]. TERESA is a multi-
device, single-user interface authoring environment that was developed to
allow designers to start with a task model in order to obtain different user
interfaces for different target platforms. By platform we mean a set of
devices that share similar interaction resources (such as the graphical
desktop, the graphical mobile device, the vocal device). In the development
process, logical descriptions of the user interface are used as well: the
abstract interface description is a modality-independent description and the
concrete interface description is a modality-dependent refinement of the
abstract one; both are implementation-language independent. Thus, for

Designing and Developing Multi-User, Multi-Device Web Interfaces 3

example at the abstract level we can say that we need a selection object
without any indication of how the selection can be performed: it could be a
graphical selection or a vocal command or a gesture. At the concrete level,
we assume a modality and we indicate an interaction techniques supported
by such a modality. In the case of a graphical desktop platform, we can
indicate a list or a radio-button or a pull-down menu to perform a selection.
In the logical user interface descriptions there are logical interactors (such as
edit, select, activator, description) and logical composition operators
indicating how they should be put together (such as grouping, hierarchy,
ordering). Thus, depending on the target platform, when designers move
from the abstract to the concrete level, different sets of possible interaction
techniques are considered, which are then implemented according to the
target implementation language (that can be, for example, XHTML, Java,
C++). However, TERESA supported only single user interfaces. Our new
tool extends its functionality in many respects in order to support the design
and development of Web applications involving cooperation among multiple
users performing different tasks through different devices.

Some environments for development of multi-user interfaces already
exist: for example, GroupKit [8] is a toolkit that simplifies the development
of groupware applications to support distance-separated collaborative work.
However, it does not address the issue of supporting interaction among
multiple users interacting through different device types. WebSplitter [9]
aims at supporting collaborative Web browsing by creating personalized
partial views of the same Web page depending on the user and the device.
To this end, developers have to specify the Web content in XML and define
a policy file indicating the tags content that can be presented depending on
the user and the device. In addition, they have to define XSL modules in
order to transform the XML content into HTML or WML. At run-time a
proxy-server generates the Web pages for multiple users, which provide each
user with a presentation depending on his/her privilege and device. This
approach has several drawbacks. Developers have to manage a plethora of
low-level details to specify XML content, policy files, and XSL
transformations.

We have similar goals but have adopted a different solution using logical
descriptions of interactive systems. They are still specified using XML-
based languages but developers can work directly on the logical
representations without having to learn the many possible implementation
languages. As Greenberg has indicated [10], we aim to remove low-level
implementation burdens and supply appropriate building blocks in order to
give people a language to think about their user interface and allow them to
concentrate on creative design. In addition, we are able to support the design

4 Fabio Paternò, Ines Santos

of collaborative applications, in which the results of the actions of one user
can change the interface of another.

Other work in this area is the thin-client groupware [11]. It focuses on the
use of server-side software components to obtain low-resource collaborative
client solutions (chat, email, etc.) through some basic mechanisms provided
for this purpose. Our solution differs in that it is based on the use of logical
descriptions that provide designers with easier to manage representations of
the underlying implementation.

3. THE AUTHORING OF MULTI-USER
INTERFACES

Our environment allows designers to develop multi-user, multi-device
interfaces starting with the task model of the application. It can be
graphically specified in the ConcurTaskTrees notation, a hierarchical
notation providing the possibility of specifying temporal relations among
tasks as well as the objects they manipulate and a number of their attributes.
The task model of a cooperative application is developed in such a way that
the task model of each role involved can be specified separately. In addition,
designers can specify the cooperative part. The purpose of this part is to
indicate temporal and semantic relations among tasks performed by different
users. Thus, it indicates high-level cooperative tasks, which are activities that
are decomposed into subtasks performed by different users, and specifies
their refinement, down to the corresponding basic tasks performed by each
user, along with their temporal constraints. Then, the tool is able to firstly
transform the task model into a logical user interface description and then
into a user interface implementation. Before starting such transformations
designers have to indicate the target platform for the user interface of each
role. Thus, the tool supports iterative refinement and generation of interfaces
structured according to the task model structure and selects the
implementation techniques depending on the interaction resources available
in the target platform. For example, a high cardinality selection can be
implemented with a list in the desktop and with a pull-down menu on a
mobile device in order to consume less screen space.

 Figure 1 shows the authoring environment when the logical interface is
obtained from the task model. The logical user interface is structured into
presentations listed in the top-left area. In the top-right part, the abstract
description of the selected presentation is highlighted, whereas the bottom-
right displays the possible refinement of the currently selected element in the
abstract part for the current target platform.

Designing and Developing Multi-User, Multi-Device Web Interfaces 5

Another addition in this new environment is the possibility of generating
interaction techniques supporting communication among users. Thus, for
example, while in the single user environment it is possible to associate the
activator interactor with calls to content-server or local functions, in this new
version it is also possible to include a type of activator interaction, which
sends information to the user interface of another user. In this case, the
designer should also indicate the user role and the interactor identifier in the
corresponding interface that is to receive the transmitted information.

Figure 1. The Cooperative TERESA authoring environment.

For example in Figure 1, the lower section of the part associated with the

concrete attributes provides a text box where the designer specifies that the
information corresponding to the value of the view question5 interactor
should be sent to the Professor when this button is selected and should also
be associated to the value of the read_question8 interactor of the
corresponding user interface. More in general, it is possible to indicate the

6 Fabio Paternò, Ines Santos

value of one or multiple interactors of the current user interface and specify
one or multiple interactors in the user interfaces of the target roles that
should receive such values.

For each role, once the corresponding concrete interface has been defined
with the support of our authoring environment, then the system generates the
corresponding user interface for the indicated platform. For example,
Cooperative Teresa generates XHTML implementations for desktop
platforms and XHTML Mobile Profile implementations for mobile
platforms. This last transformation is performed in a modular way so as to
account for both the general settings and the indications provided by the
concrete interface regarding the techniques used to implement both
composition operators and single interaction objects. Thus, for the
implementation of interaction elements grouping, for example, the concrete
graphical desktop interface can choose from among fieldsets, bullets, the
same background colour or positioning the elements nearby vertically or
horizontally. As a further example, it can choose to implement a navigator
interactor through a graphical or a textual link or a button. When an
interaction technique is selected then the associated attributes are enabled so
that designers can specify the most suitable values. Thus, the concrete
interface has a role of connecting high-level descriptions (the task model and
the abstract interface) and implementations, which can be made in different
implementation languages. This means that the concrete interface takes into
account the features of the corresponding platform and there is a concrete
interface for each possible platform.

Once the user interfaces (one for each potential user role) are generated,
in order to make the cooperative interactive application work the developers
have to associate the potential user interface events with the corresponding
basic tasks in the task model. The basic tasks are those that cannot be further
logically decomposed. Creating this association will allow the run-time
support for the cooperative interface to have an updated view of the state of
the application and use the task model to enable and disable the elements of
the interfaces for the various users accordingly. To ease the creation of this
association, Cooperative TERESA is able to automatically identify the
events that can be generated in a user interface and may correspond to task
performance, such as selection of images, buttons, or links, change of text
fields and loading pages. Thus, it automatically lists, on one side, the basic
tasks supported by the interface considered and, on the other side, the list of
the potential events so that the designer only has to indicate their
correspondences. Two different events may happen to correspond to one
basic task (for example, when the selection of two different links has the
same effect).

Designing and Developing Multi-User, Multi-Device Web Interfaces 7

4. RUN-TIME SOFTWARE ARCHITECTURE

In our runtime software architecture for multi-device, multi-user Web
applications we have one groupware server and various clients, which can be
executed in different platforms (see Figure 2). At the implementation level
the groupware server is obtained by adding some servlets and JSP pages in
an Apache/Tomcat server, which also contains the application.

For each client, in addition to the application we have a JavaScript and an
applet. The JavaScript has to:

• Capture the events that occur on the Web application and
communicate them externally;

• Disable interface elements that correspond to basic tasks logically
disabled according to the task model;

• Change the state of some interface elements in order to present
information generated by other users.

The types of events that can be captured by the JavaScripts are clicks on
images and elements of a form, changes in form elements, and the loading of
Web pages. The communication between the JavaScripts and the external
world is performed through an applet, which communicates with a servlet in
the groupware server. The references to the applet and javascript are
automatically added to the Web page upon its generation.

The groupware server is mainly composed of three components: the
synchronizer manager, the interactive simulator and the event-task
association table. The synchronizer manager is implemented as a Java
Servlet, which can be called by the client applets and communicates with the
content server. It can also provide the client applets with some information.
The event-task associations table indicates which events should occur in
order to perform each basic task. It plays an important role because it allows
the environment to link the actual user behaviour with the semantic
information contained in the task model. The interactive simulator is
software that contains the task model of the cooperative application and is
able to list the basic tasks enabled according to the temporal relations
specified in the task model. When it receives notification that a basic task
has been performed then its state is updated so that it can provide an updated
list of enabled and disabled basic tasks.

8 Fabio Paternò, Ines Santos

Figure 2. Run-Time Architecture for Cooperative TERESA.

At run-time, in order to coordinate the actions of users belonging to

different roles while interacting with an application developed with
Cooperative TERESA, it is necessary to capture the actions that each user
performs. For this purpose each Web applications contains a script, which
collects all the events performed by the users and sends them to the applet.
The most important features sent to the servlet are the events performed by
the user and the role that the user is playing. The groupware server of
Cooperative TERESA is responsible for the coordination and cooperation
between the roles. For this purpose it needs to know the basic tasks
performed by the user. This is obtained by exploiting the association table
created at design-time. After receiving information on the event performed,
the Synchronizer Manager in the groupware server uses these associations to
retrieve the corresponding task. If the corresponding task exists then it
communicates it, along with the associated role, to the interactive simulator.
If it does not exist, then the event does not correspond to any task and is
ignored. The interactive simulator updates its state by performing the
indicated basic task and identifying the updated list of enabled and disabled
basic tasks for each role. This information is passed on to the synchronizer
manager, which sends the corresponding list of disabled tasks to each client.
In particular, this information is sent to the applet, which, in turn,

G
ro

up
w

ar
e

Se
rv

er
C

lie
nt

sUser Interface 1

Applet

Script

Platform 1

……

User Interface N

Applet

Script

Platform N

Synchronization Manager

Interactive SimulatorEvent-Task Associations

event/task list
task/event list

(task, role)
(tasks, roles)

(event, role) (event, role)

Events not associated

G
ro

up
w

ar
e

Se
rv

er
C

lie
nt

sUser Interface 1

Applet

Script

Platform 1

……

User Interface N

Applet

Script

Platform N

Synchronization Manager

Interactive SimulatorEvent-Task Associations

event/task list
task/event list

(task, role)
(tasks, roles)

(event, role) (event, role)

Events not associated

Designing and Developing Multi-User, Multi-Device Web Interfaces 9

communicates it to the script, which disables the corresponding interface
elements that are not enabled at that time.

The run-time support is also able to manage the exchange of information
among various users so that if one user sends information to another one,
such information will appear in the user interface of the other user according
to the indications given at design-time. Indeed, there are interface elements
that allow the user to send information, not to the content server, but to
another user through the groupware server. In practise, Cooperative Teresa
is able to associate specific attributes to buttons used to send information to
other users. The JavaScript is able to recognise these attributes so that when
the corresponding buttons are selected then the information to transmit
externally is sent to the groupware server through the applet, with
indications on the user who should receive it and to which interactor of the
corresponding interface such information should be associated. Then, the
server communicates with the applet of the target interface, which uses the
local script to update the page content of the target interface, thus
implementing our push mechanism.

5. EXAMPLE APPLICATION

Web-based learning applications offer flexibility and saving costs. Online
courses can be taken in synchronous sessions. Taking into account this new
learning trend, the example chosen to demonstrate Cooperative TERESA
concerns an application that supports the cooperation and communication
between professors and students. Thus, the roles involved are:

Student – After inserting personal data, the student has a number of
options available, such as scheduling an appointment with the teacher,
answering to questions on a number of topics, and entering the books and
articles has read.

Professor – The professor has various options available: such as
consulting appointments, after viewing all the details of the appointment s/he
can send a confirmation or refuse the appointment, explaining the reason to
the student; visualizing the student’s answers, verifying them and submitting
a comment to the student.

In the example implemented, the student role uses a desktop environment
and the professor role a PDA because we assume that the teachers want to be
able to accomplish their tasks from any location. For example, the student
can choose a question from five different topics (see Figure 3, desktop
interface). Upon the choice of the topic, a question and a set of four possible
answers appear.

10 Fabio Paternò, Ines Santos

Figure 3. Example generated with Cooperative TERESA for desktop student interface.

After selecting one of the answers the student must press a button to send

it. This action disables all the previous actions, changing the fields to a grey
colour, and sends the student’s selected question and answer to the professor.
Upon the submission of the answer by the student, the professor is now able
to access the “Student’s Performance” link. In the Web page that appears, in
the top part the professor can analyze information about the student (sent by
the student upon the log in), the question and the answer, and in the bottom
part indicate to the student if the answer is correct or incorrect, including a
comment (see Figure 3 PDA interface). Then, the student can immediately
visualize the professor’s comment.

Another possibility of interaction between professor and student is the
scheduling of an appointment with the professor. The student can schedule
an appointment by sending the date, the hour and the motive of the
appointment. After visualizing the appointment information, the professor
can choose if he/she is available. If not available, the professor writes the
reason and submits it to the student. If available, the professor simply sends
the date and time back to the student as confirmation. After, the student can
see if the professor will be at the appointment, and if not, why. The example
chosen covers the communication and cooperation aspects of multi-user
applications.

Designing and Developing Multi-User, Multi-Device Web Interfaces 11

Figure 4. Example generated with Cooperative TERESA for PDA teacher interface.

6. CONCLUSIONS AND FUTURE WORK

We have presented an environment able to support design, development
and run-time support for multi-user, multi-device Web applications. Our
prototype has been validated with the development of an application for e-
learning supporting cooperation between students and teachers. This has
shown the feasibility of the approach and its possible advantages: the
environment actually allows designers to focus on the tasks to support, the
relations among tasks performed by different users, and the logical structure
of the corresponding user interface without having to manage a plethora of
low-level implementation details. Then, a specific run-time architecture is
able to support even synchronous communication among users interacting

12 Fabio Paternò, Ines Santos

through different types of devices. Thus, the Web interface of one user can
be dynamically modified to present information generated by other users.

Future work will be dedicated to extending the set of possible platforms
for the user interfaces involved in the multi-user application, also
considering various modalities, such as vocal, gestural and graphical
modality, and different ways to combine them. This means integrating into
Cooperative Teresa the already existing transformations: from abstract
TERESA XML first to the concrete descriptions of the corresponding
platforms and then to the final interfaces in implementation languages able
to support such modalities.

7. REFERENCES

[1] Girgensohn A. and Lee, A., Developing Collaborative Applications On the World Wide
Web, CHI 98 conference summary on Human factors in computing systems, 141-142,
ACM Press, April 1998

[2] Trætteberg, H., Modeling work: Workflow and Task modeling. In: Vanderdonckt, J.,
Puerta, A.R. (eds.): Proc. of 3 rd Conf. on Computer-Aided Design of User Interfaces
CADUI’99 (Louvain-la-Neuve, 21-23 October 1999). Kluwer Academics, Dordrecht
(1999) 275–280.

[3] Pinelle, D., Gutwin, C., Greenberg, S. Task analysis for groupware usability evaluation:
Modeling shared-workspace tasks with the mechanics of collaboration Pages: 281 – 311,
ACM Transactions on Computer-Human Interaction, December 2003.

[4] Paternò, F. Model-based Design and Evaluation of Interactive Applications. Springer
Verlag, ISBN 1-85233-155-0, 1999.

[5] Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J., 1994. UIML: An
Appliance-Independent XML User Interface Language, Proceedings of the 8th WWW
conference.

[6] Mori, G. , Paternò, F., and Santoro, C., Design and Development of Multi-Device User
Interfaces through Multiple Logical Descriptions, IEEE Transactions on Software
Engineering, August 2004, Vol.30, N.8, pp.507-520, IEEE Press.

[7] Stanciulescu A., Limbourg Q., Vanderdonckt J., Michotte B., Montero F., A
Transformational Approach for Multimodal Web User Interfaces based on USIXML.
Proceedings ICMI 2005, pages 259-266, ACM Press.

[8] Roseman, M. and Greenberg, S. (1996). Building Real Time Groupware with GroupKit, A
Groupware Toolkit. March. ACM Transactions on Computer Human Interaction, 3(1),
p.66-106, ACM Press.

[9] Han, R., Perret, V., Naghshineh, M., "WebSplitter: Orchestrating Multiple Devices for
Collaborative Web Browsing", ACM Conference on Computer Supported Cooperative
Work (CSCW), December 2, 2000, Pages: 221 – 230.

[10] Greenberg, S. Toolkits and Interface Creativity, Special Issue on Groupware, Journal
Multimedia Tools and Applications, Kluwer.

[11] Grundy, J. , Wang X. and Hosking, J. , Building Multi-device, Component-based, Thin-
client Groupware: Issues and Experiences, Australian Computer Science Communications,
Third Australasian Conference on User Interfaces, Volume 7 CRPITS ’02, 71-80,
Australian Computer Society, Inc., January 2002.

