A Universal Proof Technique for Deadlock-Free Routing in Interconnection Networks

Loren Schwiebert and D. N. Jayasimha*
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210-1277
{l'oren, jayasi m@i s. ohi o-state. edu

Abstract

Animportant open problem in interconnection network rout-
ing has been to characterize the conditionsunder which rout-
ing algorithms are deadl ock-free. Although this problem has
been resolved for restricted classes of routing algorithms, no
general solution has been found. In this paper, we solve this
problem by proving a necessary and sufficient condition that
can be used for any interconnection network routing algo-
rithm, aslong as only local information is required for rout-
ing. Our proof technique is universal: it can be used with
any switching technique that is not inherently deadl ock-free.
This includes switching techniques such as wormhole rout-
ing, store-and-forward routing, and virtual cut-through. The
proof techniquefor the necessary and sufficient conditionin-
troduces a new type of dependency graph, the buffer waiting
graph, which omits most dependencies that cannot be used
to create adeadlock configuration. Our methodology isillus-
trated by proving deadlock freedom for a store-and-forward
routing a gorithm for meshes and a wormhole routing algo-
rithm for hypercubes. The hypercube routing algorithm re-
quires only two virtual channels per physical channel and is
more adaptive than any previously proposed wormhole rout-
ing algorithm for hypercubes.

1 Introduction

L arge-scale multiprocessors use an interconnection network
to support communication and synchronization among pro-
cessors. A variety of switching techniques have been pro-
posed for transmitting data through the interconnection net-
work, including circuit switching, store-and-forward rout-
ing, virtual cut-through, and wormhole routing.

* Part of thiswork was done when the author wason leave at NASA LewisResearch
Center, Cleveland, Ohio.

Circuit switching sends a probe from the source to the
destination and returns an acknowledgment once the path is
established. After the acknowledgment is received, multi-
ple messages can be transmitted on this path before the path
is released. Store-and-forward routing is implemented via
packet switching or message switching. Packet switching
first packetizes each message and then sends each packet in-
dividually, whereas message switching sendsthe entire mes-
sage at once. The network treats each packet as a separate
message, so for our purposes there is no need to distinguish
between packet switching and message switching. Packet
switching transmits an entire packet immediately to aneigh-
boring node. The entire packet is buffered at this node and
then forwarded to the next node in the path. Kermani and
Kleinrock [20] proposed virtual cut-through to combine the
best features of packet switching and circuit switching. Vir-
tual cut-through works like packet switching with one im-
portant difference. When the packet header arrives at an in-
termediate node and the next buffer in the path is available,
the packet is forwarded immediately to the next node. The
packet is buffered only when the next buffer is not available.
Adaptive cut-through [24] is a modification of virtual cut-
through, where all blocked packets are misrouted instead of
buffered. Dally and Seitz [8] proposed wormhole routing to
avoid the large buffers required for virtual cut-through and
store-and-forwardrouting. Wormholeroutingworkslikevir-
tual cut-through except instead of buffering the entire packet
when the next buffer is unavailable, the packet remains in
the network. Small buffers are associated with each chan-
nel (link) in the network. The buffers are large enough to
hold only afew bytes (flits) of the packet. Hence, a blocked
packet can reserve many channels while waiting at an in-
termediate node. In order to reduce the effects of blocking,
Dally [6] proposed the use of multiple virtual channels on
each link. Each virtual channel has a separate buffer, with
multiple packets multiplexed over the samelink. See Ni and
McKinley [25] for an in-depth discussion of wormhole rout-
ing.

The simplest routing algorithms are nonadaptive and de-
fine asingle path between the source and destination. Adap-
tive routing algorithms, on the other hand, support multiple

paths between the source and destination. Latency and con-
tention can be reduced by using these multiple paths. Rout-
ing algorithms are either minimal or nonminimal. Minimal
routing allows only shortest paths to be chosen, while non-
minimal routing does not require packetsto use only shortest
paths. Gaughan and Yalamanchili [13] present acomprehen-
sive overview of adaptive routing protocols. Whether mini-
mal or nonminimal, adaptive routing algorithms can be fur-
ther differentiated by the fraction of shortest paths they al-
low. Partially adaptive routing algorithms do not allow all
packetsto use any shortest path. Fully adaptiverouting algo-
rithmsdo allow all packetsto useany shortest path. Adaptive
routing is typically implemented using additional buffers or
virtual channels.

Router latency and cycle time increase with the number
of virtual channels [3], so fewer virtua channels are gener-
ally better. Reducingthe number of buffers(virtual channels)
needed for agiven degree of adaptivenessisaccomplished by
using aless restrictive routing algorithm. Conversely, when
the same number of buffersis used, a less restrictive rout-
ing algorithm has better performance than a more restrictive
routing algorithm [23, 14]. A natura question that arises
is: Exactly how restrictive must the routing algorithm be to
guarantee deadlock freedom? In other words, what is a nec-
essary and sufficient condition for deadlock-freerouting? In
this paper, we present a theoretical result for minimizing the
restrictions imposed for deadlock-free routing. This proof
technique appliesto switching techniquesthat prevent dead-
lock through routing restrictions. Other methods of prevent-
ing deadlock, such as abort/retry, which is used in circuit
switching, and misrouting, which is used in adaptive cut-
through, are inherently deadlock-free. The only restriction
we impose on the routing algorithmsis that only local infor-
mation available at the router is used to make the routing de-
cision. In general, routing is done based solely on local in-
formation, because of the overhead of transmitting non-local
information and the additional router complexity that is re-
quired to utilize thisinformation.

In addition to providing a necessary and sufficient condi-
tion for deadlock freedom, we propose afully adaptive mini-
mal wormhol erouting algorithm for hypercubesthat ismuch
less restrictive than previous routing algorithms. We also
prove deadlock freedom for a store-and-forward mesh rout-
ing algorithm to demonstrate the ease with which our proof
technique can be applied.

2 Previous Work

We briefly review the existing techniques for proving dead-
lock freedom. For nonminimal routing, the issue of livelock
freedom al so arises, however, livel ock freedom and deadl ock
freedom are independent issues [28].

For store-and-forward routing, most routing algorithms
have used the proof technique proposed by Gunther [19]
to prove deadlock freedom. This methodology requires an

acyclic ordering of the buffers. Touegand Steiglitz[30] have
shown that this is necessary and sufficient for nonadaptive
routing. Recently, Cypher and Gravano [5] have shown that
an acyclic ordering of the buffersis not necessary for adap-
tive routing. Guinther’s proof technique is also applicable to
virtual cut-through, because any deadl ock configuration con-
sists of blocked, and thus buffered, packets.

For wormhole routing, many nonadaptive and adaptive
routing algorithms have used the proof technique proposed
by Dally and Seitz [8], which requires an acyclic ordering
of the virtual channels. Dally and Seitz also proved that an
acyclic ordering of the channelsis a necessary and sufficient
condition for deadlock-free nonadaptive wormhole routing
algorithms. Glass and Ni [15, 16] and Boura and Das [2]
have also proposed methodologies for generating deadlock-
free wormhole routing algorithms that require an acyclic or-
dering of the channels.

Duato [9, 11] proved that requiring an acyclic ordering
of the channels is not necessary for adaptive routing algo-
rithmsif the output channel is selected independent of thein-
put channel. Schwiebert and Jayasimha [27] have used Du-
ato’'s proof technique to propose an optimal fully adaptive
routing algorithm for meshes. Berman, et al. [1] prove dead-
lock freedom for atorusrouting algorithmthat hasno acyclic
ordering of the channels and allows the router to consider
the input channel when selecting the output channel. Dally
and Aoki [7] prove deadlock freedomfor arouting algorithm
with cyclic dependencies by guaranteeing an acyclic packet
wait-for graph. A packet wait-for graph is defined dynami-
cally by the packetsin the network and containsan edgefrom
packet p; to packet p; if packet p; iswaiting for achannel oc-
cupied by packet p;.

All these proof techniques provide only a sufficient con-
dition for deadlock-free adaptive wormhole routing. Deter-
mining what constitutes a necessary and sufficient condition
for adaptive routing algorithms has remained an open prob-
lem. Lin, McKinley, and Ni [22] propose a proof technique
based on the fact that a routing algorithm is deadlock-freeif
none of the channelsin the network can be occupied forever.
This proof technique was proposed as a necessary and suf-
ficient condition, although Duato points out that only suffi-
ciency is proved [12]. Recently, we have proposed a nec-
essary and sufficient condition for arich class of wormhole
routing algorithms [28]. (Duato [12] has independently pro-
posed a necessary and sufficient condition for a restricted
class of adaptive wormhole routing algorithms.) In this pa-
per, we propose anecessary and sufficient conditionfor dead-
lock freedom that can be applied regardless of the switching
technique employed.

3 System Model

Each processing node contains a computation processor and
a communication processor. A communication processor
contains a finite number of buffers, called standard buffers,

that are used for routing packets between neighboring nodes.
Packets areinjected into the network by transferring a packet
from the computation processor to theinjection buffer onthe
communication processor. Similarly, apacket isdelivered by
transferring the packet from the delivery buffer on the com-
munication processor to the computation processor. (Thein-
jection and delivery buffers are introduced only to smplify
the model and may not actually exist in the communication
processor.) Neighboring nodesare connected by one or more
bidirectional channels (links) between their communication
processors. Thenetwork topology is defined by the choice of
neighboring nodes.

For wormhole routing, each link (physical channdl) is
partitionedinto aset of unidirectional virtual channels. Pack-
ets arerouted by transferring the data from the input channel
to an output channel on the same node and then transferring
the data across the physical channel to the input channel of
the neighboring node. Each virtual channel can store only a
few bytes(flits) of the packet. Since packetstypically consist
of many flits, packets can span many nodes and simultane-
ously occupy many virtual channels. For virtual cut-through
and store-and-forward routing, each communication proces-
sor has one or more standard buffers. Packets are routed
by transferring data between standard buffers on neighbor-
ing nodes. Virtua cut-through and store-and-forward rout-
ing require that each buffer is large enough to store an en-
tire packet. When transferring a packet between two buffers,
the packet temporarily occupies both buffersand is removed
from the first buffer in a finite amount of time after being
transferred to the second buffer.

Severa standard assumptions are used.

1. A node can generate messages of arbitrary length des-
tined for any other node at any generation rate. The
messages are then divided into fixed-length packets.
For wormholerouting, the packets can be large enough
to occupy al thevirtual channelsfromthe sourceto the
destination.

2. A packet arriving at its destination is eventually con-
sumed.

3. Once a buffer has accepted the packet header, it must
accept and transmit the entire packet before accepting
data from any other packet.

4. Without loss of generality, the buffers used with store-
and-forward routing and virtual cut-through can store
only one packet.

5. A router arbitrates among packets that simultaneously
reguest the same buffer. Packetswaiting for buffersare
chosen in an order that prevents starvation.

For readability, we use only theterm buffer in the remain-
der of the paper, rather than both buffer and virtual channel.
In the context of wormhole routing, a buffer refersto the flit
buffer associated with a particular virtual channel. When a

packet acquiresavirtual channel, it actually acquiresthe flit
buffer that congtitutes the virtual channel. Thus, thereis an
implicit one-to-one correspondence between a buffer and a
virtual channel. This formulation of the network resources
intermsof buffersallowsauniversal framework for address-
ing deadlock freedom that is independent of the particular
switching technique.

As a consequence of assumptions 3 and 4, two packets
can never be stored simultaneoudly in the same buffer. A
packet that arrives at its destination is transferred from the
communication processor to the computation processor in a
finite amount of time. Similarly, apacket istransferred from
an injection buffer or its current standard buffer to an empty
standard buffer or adelivery buffer in afinite amount of time.
Thus, packets always make progress if possible.

A routing algorithm specifies which bufferscan receivea
packet from the current buffer. This decision is made based
on, in the case of virtual cut-through and store-and-forward
routing, the current node and destination node and either the
current buffer or the source node. In the case of wormhole
routing, this decision is made based on the input channel, the
current node, and the destination node. The routing algo-
rithm consists of two parts; arouting relation, which defines
the set of output buffers to which the packet can be routed,
and a selection function, which selects a single output buffer
based on the status of this set of output buffers.

A routing algorithm is prefix-closed if, between any pair
of nodes, every partial path through an intermediate node can
also be used by the source node to reach this intermediate
node. For example, any partial path from n; to n; through
ny can also be used to route a packet from n; to ny. Simi-
larly, arouting algorithmis suffix-closed if, between any pair
of nodes, every partia path through some intermediate node
can aso be used by this intermediate node to reach the des-
tination. A routing algorithm is coherent if the routing algo-
rithm is both prefix-closed and suffix-closed.

We define awaiting buffer to be abuffer that apacket can
walit to acquire when all the output buffers permitted by the
routing relation are unavailable. A packet may have multi-
ple waiting buffers. The idea of waiting channels was also
introduced independently by Lin, McKinley, and Ni [22] for
wormhole routing, however, the methodology used in this
paper is novel.

The buffer waiting graph (BW G) for agiven routing al-
gorithmisadirected graph, BW G = G(B, E). Thevertices
of the BW @ are the buffers and the edges of the BW G are
pairs of buffers (¢1, g2) where a packet that currently occu-
pies ¢; can wait for buffer ¢,. For virtual cut-through and
store-and-forward routing, (¢1,¢2) are buffers on the same
node or neighboring nodes, because blocked packets occupy
asinglebuffer. With virtual cut-through, thisoccursafter the
packet is blocked for afinite amount of time. For wormhole
routing, thereis no requirement that a packet waitsfor g im-
mediately after using ¢;, only that the packet length is suffi-
cient to fill the buffersfrom ¢; to ¢». (Otherwise, the packet

cannot occupy buffer ¢; while waiting for ¢.)

A routing algorithm is wait-connected if a packet always
has at least one waiting buffer. A packet that has not reached
its destination must wait for an output buffer when it is un-
able to proceed or the packet is never delivered. Hence, ev-
ery loss-less routing algorithm in our system model is wait-
connected.

A configurationisan assignment of packetsto buffers. A
configurationislegal if each bufferin the configurationhasat
most one packet. |n addition, the packetsin the configuration
must be stored in the buffersin accordance with the type of
routing chosen. A deadlock configurationfor agiven routing
algorithm is a non-empty legal configuration consisting of a
set of packets, p1, ps, - .., pn,n > 1. Each packet in the set,
p;, isnotinadelivery buffer and isunableto proceed because
every output buffer for p; is unavailable. Moreover, every
waiting buffer for p; is occupied by another packet in the set.
In the case of virtual cut-through, the entire packet has been
stored in asingle buffer. In the case of wormholerouting, all
the buffersoccupied by the packet arefull (with theexception
of thelast buffer, which may be only partialy filled), so none
of the buffers can be released. Thus, each packet is blocked
and must wait for an unavailable waiting buffer occupied by
another packet in the set. Whenn = 1, p; waitsfor a buffer
it already occupies. The set of packets can be ordered such
that:

p; waitsfor abuffer occupied by p;1Vi < n and
pr Waits for abuffer occupied by p;

4 Necessary and Sufficient Condition

Most techniques for proving deadlock freedom require the
existence of an acyclic ordering of the buffer usage. From
our definition of adeadl ock configuration, however, itisclear
that every deadlock configuration is formed with the wait-
ing buffers, rather than the entire set of output buffersthat a
packet could use. The routing algorithm may allow a packet
to use a buffer when the buffer is free, even if the packet is
not permitted to wait for this buffer when the buffer is occu-
pied. Thisisour motivation for using the BW G, sinceit ig-
nores dependenciesthat cannot result in deadlock. Requiring
an acyclic buffer waiting graphislessrestrictive than requir-
ing an acyclic ordering of the buffer usage. It also leads to
simpler proofswhen proving deadlock freedom.

Theorem 1 If routing algorithm R 4 is wait-connected and
the BWG for R4 isacyclic, then R 4 is deadlock-free.

Proof. R4 is wait-connected, so every packet aways has
awaiting buffer when all output buffers are occupied. As-
sume there is a deadlock configuration involving n. packets.
If n = 1, then thereis an edge in the BW G from a buffer
to itself, which is not possible since the BW(is acyclic.

Otherwise, (Vi < n) thereisan edgein the BWG from ev-
ery buffer occupied by p; to the buffer occupied by p; 1 for
which p; iswaiting (call this buffer ¢;, ;). Thereis also an
edge in the BW G from every buffer occupied by p,, to the
buffer occupied by p; for which p,, iswaiting (call thisbuffer
q1)- Hence, there is an edge in the BWG from ¢; to ¢;,
(Vi < n) and from ¢/, to ¢{. However, the BWG for R4
isacyclic, so no such set of edgesis possible. Therefore, no
deadlock configuration existsand R 4 is deadlock-free. O

The BW@ reflects only the static dependencies among
buffers. Note, however, that only as the buffers are used do
the dependencies among the buffersarise. The BW G does
not capture the dynamic way in which the dependencies are
created. Hence, itispossiblethat acycleinthe BW G exists,
but the cycle could arise only from the simultaneous use of
the same buffer by morethan one packet. For thisreason, we
divide cyclesin the BW G into two classes: False Resource
Cyclesand TrueCycles. A False Resource Cycleisacyclein
the BW G that requiresat |east one buffer to be used s multa-
neously by more than one packet in order to create the cycle.
Obvioudly, a False Resource Cycle cannot occur, since this
is physically impossible. Therefore, a False Resource Cycle
cannot be used to create a deadlock configuration. A True
Cycleisacycleinthe BW G that can be created without the
simultaneous use of any buffer. In other words, aTrue Cycle
is any cycle in the BW@G that is not a False Resource Cy-
cle. In Section 5, we provide amore compl ete description of
False Resource Cycles. A technique for distinguishing be-
tween False Resource Cycles and True Cycles can be found
in[28].

da1
Qo Q1 A2
No Ny Ny UE)
IR d.2 A3
U2

Figure 1. Duato’'s Example of an Incoherent Routing Algo-
rithm

To illustrate the difference between False Resource Cy-
cles and True Cycles, Duato’'s example [10] of an incoher-
ent wormhole routing algorithm is presented. The proces-
sorsand buffersare shownin Figure 1. Thebuffersarerepre-
sented by edgesthat indicate which two processorsthey con-
nect. The routing algorithm permits only minimal routing,
with theexception of buffer gg-. Buffer g2 canbeused only
by a packet destined for node ns. Clearly, this routing algo-
rithmis not coherent (not prefix-closed), since a packet from
no 10 n3 can be routed through n; using buffer ggo. How-
ever, a packet from ny to ny cannot use buffer ¢p,.

Figure 2 depicts the buffer waiting graph for the inco-
herent routing algorithm. The BW G for this routing algo-

Figure2: The BW@G for the Incoherent Routing Algorithm

rithm has a False Resource Cycleand aTrue Cycle. A packet
whose input buffer is gg» can wait for ga; or gg1. If the
packet waits for g1, thereis a True Cycle from g 41 t0 g1
that usesgp». Otherwise, the True Cycleisacyclefrom gy
to g1 that uses gp2. Thereis a False Resource Cycle that
involves two packets. A packet that occupies g4; and gpo
and waits for qg; and a packet that occupies gg1 and gpo
and waitsfor g 4;. Obvioudly, this False Resource Cycle ex-
ists only because both packets simultaneously occupy gpa,
which isimpossible.

A packet is unableto proceed when all output buffersfor
the packet are occupied. Thissituation can beresolvedinone
of two ways. (1) The packet could wait for a specific out-
put buffer to become free or (2) The packet could wait until
any permitted output buffer becomes free. For case (1), the
routing algorithm must choose a buffer for which waiting is
permitted. Althoughit is possible that the routing algorithm
has a choice of more than one waiting buffer, once awaiting
buffer is chosen, the packet must wait for that specific buffer
to become free. For case (2), the routing algorithm also has
the possibility of waiting for asubset of morethan one output
buffer. In fact, case (2) includes any routing agorithm that
does not conform to case (1). That is, any routing algorithm
that does not select a specific waiting buffer and wait for that
buffer until it becomes free. We first prove a necessary and
sufficient condition for routing algorithmsthat belong to case
(2), followed by anecessary and sufficient condition for rout-
ing algorithms that belong to case (2).

Theorem 2 A routing algorithm, R4, that requires a
blocked packet to wait for a specific output buffer is
deadlock-free iff R4 is wait-connected and the BWG for
R 4 hasno True Cycles.

Proof. Firgt, note that R 4 is wait-connected by definition.
From theorem 1, an acyclic BW G is a sufficient condition

for deadlock freedom. A False Resource Cycle cannot result
in deadlock, so any False Resource Cycles can be ignored.
Because there are no True Cycles, the routing algorithm is
deadlock-free.

To provenecessity, assumethat a True Cyclewith n pack-
etsexists. A deadlock configuration can be created from this
True Cycle. For eachi < m, allow packet p; to occupy
buffer ¢;, possibly some additional buffers, and then wait for
buffer ¢; , ; occupied by packet p; 1. (Assumethat p; and ¢
are defined as in theorem 1.) Similarly, packet p,, occupies
buffer ¢/, and waits for buffer ¢; . Since the cycle can be cre-
ated without the simultaneous use of any buffer by morethan
one packet, it is possible to generate a set of packetsthat are
ableto occupy therequired buffer(s) and then wait for the ap-
propriate buffer. To force p; to wait for ¢;, ,, it is necessary
to guarantee that any output buffer for p; is occupied. For
any output buffer availableto p; that is also available to the
source node of buffer ¢;, ;, assume the source hasinjected a
packet that isusing thisbuffer. If the routing algorithmis not
suffix-closed, however, then some of the output buffersavail-
ableto p; may be unavailableto the source node. For each of
these output buffers, assume that a previous packet, p;, that
was permitted to usethisoutput buffer is currently occupying
this output buffer. (For wormholerouting, the length of p; is
assumed to be short enough that it releases the input buffer
that p; occupies but long enough that it occupies the output
buffer at this node.) Since p; can occupy this buffer for an
indefinite amount of time, it is always possible to force p; to
wait for ¢} , . Clearly, each packet in the set iswaiting for a
buffer occupied by another packet in the set and none of the
packets can make progress. Therefore, a deadlock configu-
ration can always be constructed from a True Cycle. O

For routing algorithms that permit a packet to wait for
any of the output buffersto becomefree, an acyclic BW G is
not a necessary condition. Since each blocked packet has a
choiceof output buffers, packetsmay be ableto avoid buffers
that form cyclesin the BWG by using an aternative buffer
that is not part of a cycle. Deadlock can be avoided, how-
ever, only if at least one of the output buffers for which the
packet iswaiting is guaranteed to becomefree. For thisrea-
son, we selectively remove edges from the BW G to resolve
all True Cyclesaslong astherouting algorithm remainswait-
connected for the resulting graph, caled BWG'. Remov-
ing edgesfromthe BW G is equivalent to reducing the set of
waiting buffersfor a given buffer. Although the set of wait-
ing buffersis reduced, there is no change to the set of out-
put buffersthe routing algorithm can use. We next provethat
if no such BWG' exists, then the routing algorithm is not
deadlock-free. If sucha BW G’ doesexist, however, thenthe
following theorem can be used to prove deadlock freedom:

Theorem 3 Arouting algorithm, R 4, that allows a blocked
packet to wait for multiple output buffersis deadlock-freeiff
R 4 iswait-connected for some BWG' and this BWG' has
no True Cycles.

Proof. If R 4 iswait-connected for the BW G andthe BW G
hasno True Cycles, then theresult followsimmediately from
theorem 2, with BWG = BWG'. Assumethe BW G con-
tains True Cycles. In this case, R4 must be wait-connected
for some BW G’ without True Cycles.

We first prove sufficiency. Consider a potential deadlock
configurationfor R 4, involvingacycle of n packets(n > 0).
Thisrequiresthat every packet in the configurationiswaiting
for abuffer occupied by itself or another packet in the cycle.
Because each packet can wait for multiple output buffersand
R4 iswait-connected for BWG', at least one of the waiting
buffers for each packet isin BWG'. Since BWG' has no
True Cycles, an output bufferin BW G’ eventually becomes
free and some packet in the set, p;, isforwarded. Thereisno
guarantee, however, that the output buffer that p; acquiresis
abufferin BW@G'. (Itispossiblethat p; proceedsto adiffer-
ent buffer before the buffer in BW G’ becomes free)) If p;
has reached its destination, then the cycle has been resolved.
Otherwise, whether or not p; acquiresabufferin BWG', p;
can acquire an output bufferin BWG' at the next router, be-
cause R 4 iswait-connected for BWG'. Hence, one of the
packets can always be routed and a deadlock configuration
cannot occur.

We now prove necessity by showing that the routing al-
gorithmis not deadlock-freeif every wait-connected BW G’
has True Cycles. Assume that every wait-connected BW G’
hasTrue Cycles. Thus, it ispossibleto generate aset of pack-
ets that have no waiting buffer that is guaranteed to become
available. Furthermore, these packets are all blocking each
other, since otherwise it would be possible to guarantee that
awaiting buffer does become free. Hence, this set of pack-
ets form a deadlock configuration. However, since the rout-
ing algorithm is deadlock-free, no deadlock configurationis
possible. Therefore, a wait-connected BW G’ without True
Cycles must exist. O

Reducing the BWG to BWG' should not be difficult.
For example, in Section 6.1 we present a proof that uses a
straightforward reduction from the BWG to BWG'. For
completeness, however, we present aforma method for re-
ducing the BW G to an appropriate BWG'. Our approach
congists of first distinguishing between False Resource Cy-
clesand True Cycles. If the BW @ isnot acyclic, edges are
removed from the BW G to generate BWG'. An overview
of these two steps can be found in Section 5.

5 False Resource Cycles

The BW @ is astatic graph, however, the dependencies that
arise among the buffers are dynamic. False Resource Cy-
cles capture this notion of dynamic dependenciesamong the
buffers. When two edgesin the BW G both require the use of
a common buffer, then these two dependencies cannot occur
simultaneously. Cycles in the BWG that are formed from
such dependencies cannot occur in reality, and hence, cannot
lead to adeadlock configuration. False Resource Cycles can

arise with minimal or nonminimal routing algorithms. Du-
ato’sincoherent routing algorithmis an example of thelatter.
An example of a False Resource Cycle using minimal rout-
ing can be found in [28].

In order to create a deadlock configuration, each packet
in the set, p;, must acquire ¢} beforep;_, arrivesat ¢}. This
is always possible with a True Cycle, since no buffer is oc-
cupied by morethan one packet at atime. A False Resource
Cyclerequiresthat at least two packetsshare abuffer and this
sharing leadsto acycleinthe BWG. Such acycle can arise
in one of two ways. Either a buffer in the cycleis shared, or
a buffer outside the cycle is shared simultaneously by more
than one packet before entering the cycle. The second pos-
sibility can be ignored for suffix-closed routing algorithms,
because a cycle can be created without using buffers outside
the cycle. If the shared buffer is part of the cycle, then each
packet, p;, that occupies the shared buffer has already ac-
quired ¢}. Hence, the False Resource Cycle would beaTrue
Cycle if p; could reach ¢;, , without using a shared buffer.
On the other hand, if the shared buffer is used prior to the
buffersin the cycle, then the False Resource Cycle exists be-
cause p; cannot acquire ¢} before p;,_1. Note, however, the
False Resource Cyclewould beaTrue Cycleif p; couldreach
g; without using a shared buffer.

Our method of distinguishing between True Cycles and
Fal se Resource Cycles requiresexamining the possible paths
each packet in the cycle could use, avoiding shared buffersif
possible, and backtracking as necessary to adjust paths used
by other packetsin the cycle. Thisisacomplete solution for
suffix-closed routing algorithms. For routing algorithmsthat
are not suffix-closed, thisisonly a partial solution. It isthen
necessary to determine whether the buffers that are shared
outside the cycle can be used consecutively instead of simul-
taneoudly. If thisisthe case, then sharing the buffer is possi-
ble. Otherwise, the buffer is a ssimultaneously shared buffer
andthe cycleisaFalse Resource Cycle. A completedescrip-
tion of the procedurefor distinguishing between True Cycles
and False Resource Cycles can be found in [28].

In practice, reducing the BWG to BWG' should not
be difficult. For completeness, however, a formal method
of reducing the BWG to BWG' is required. This reduc-
tion is only necessary for routing algorithms that do not re-
quire a packet to wait for a specific output buffer. The de-
sign methodology requires the identification of all True Cy-
clesin the BWG and proceeds by removing a dependency
from the BW @ to resolve each cycle, backtracking as nec-
essary to previoudy resolved cycles. Thisis an exponen-
tial time agorithm. Other general techniques for proving
deadlock freedom also require exponential time in the worst
case [9, 12, 22]. A description of the algorithm for reducing
the BW @G to BWG' can befoundin [28].

6 Routing Examples

In order to demonstrate the usefulness of the necessary and
sufficient condition, deadlock freedom is proved for a fully
adaptive store-and-forward routing algorithm for n-dimen-
sional meshes. We then prove deadlock freedom for afully
adaptive wormhole routing algorithm for hypercubes. The
necessary and sufficient condition is then used to prove that
any relaxation of the restrictions imposed by the routing al-
gorithm introduces the possibility of deadlock.

6.1 Mesh Routing Algorithm

Many adaptive store-and-forward routing algorithms have
been proposed, including those described in [4, 17, 21, 26].
These routing algorithms are buffer reservation algorithms
and select an output buffer based on only local information,
such as the availability of the buffers at neighboring nodes.
To illustrate the simplicity of applying our proof technique
and to demonstrate the ease with which the BW G can be
reduced to BWG', we present an aternative proof of the
fully adaptive minimal n-dimensional mesh routing algo-
rithm proposed by Pifarré et al. [26].

Thisrouting algorithm, whichwewill call the Two-Buffer
routing algorithm, requires two standard buffers per router,
labeled A and B, respectively. A packet remainsin the A
buffersuntil it hascompleted routingin the positivedirection
of all dimensions. Since minimal routing is used, the packet
can moveto the A buffer of any neighboring nodethat moves
it closer to its destination. Once the packet has completed
routingin all positivedirections, the packet then movestothe
B buffersand routesin the B buffersuntil the destination is
reached.

Theorem 4 The Two-Buffer routing algorithmis deadl ock-
free.

Proof. The B buffersare used only when routing in the neg-
ative directionsand a packet can never movefroma B buffer
to an A buffer. Since there are no wrap-around links on a
mesh, it is obviousthat no cycle can be created using the B
buffers. Consider the A buffers. There are no restrictions
on the use of the A buffers, provided that the packet needs
to route in at least one positive direction. Hence, there are
cycles in the BWG. Define BWG' such that all edgesin
the BW G from an A buffer to aneighboring A buffer inthe
negative direction are removed. Noticethat BW G’ remains
wait-connected, since a packet isin an A buffer only if it
needsto routein the positive direction of at least one dimen-
sion. Also, BWG' isacyclic, sincethereare no wrap-around
linksand all the edges are either from an A buffer to another
A buffer in a positive direction or from an A buffer toa B
buffer or from a B buffer to another B buffer in a negative
direction. Deadlock freedom followsimmediately from the-
orem 3. m|

6.2 Hypercube Routing Algorithm

Thefollowing conventionsare used to present the hypercube
routing algorithm. B¢ . is used to denote buffer n in the &
direction of dimensioni. For example, B} _ is buffer onein
the negative direction of the third dimension. An asterisk in
the superscript denotes al dimensions. Thus, B_ denotes
the second buffer in the negative direction of all dimensions.
The + is omitted when referring to the channelsin both di-
rections, so B? denotesthe first virtual channel in either di-
rection of the second dimension.

Each processor of an n-dimensional hypercube can bela
beled with n bits. The source of a packet is denoted S =
(Sn—1,8n—2,--.,81,80) andthedestination is denoted D =
(dn-1,dn—2,...,d1,dy). A packet routesfromthe sourceto
the destination by routing in dimensions in which the corre-
sponding bit in the source differsfrom that of the destination.
The packet routes in the positive direction of dimension ¢ if
s; = 0and d; = 1. Similarly, the packet routes in the neg-
ative direction of dimensioni if s; = 1 andd; = 0. With
minimal routing, a packet routes in each dimension at most
once and a packet does not route in dimension i if s; = d;.

Partially adaptive routing algorithms for wormhole-
routed hypercubes and meshes have been proposed by many
authors. A survey of these results can be found in [28].
A fully adaptive hypercube routing agorithm has been
proposed by several authors [9, 18, 22, 29]. This routing
algorithm requires two buffers in each direction of each
dimension. A packet routes in dimension order along the
first set of buffers. Each packet also has the possibility of
routing in any dimension that moves the packet closer to the
destination along the second set of buffers.

We now propose a fully adaptive minimal routing ago-
rithm for hypercubes. Thisrouting algorithmis substantially
more adaptive than any previously proposed fully adaptive
wormhole routing algorithm for hypercubes. All previous
fully adaptive wormhole routing algorithms for hypercubes
require that thefirst set of buffersbe used only for nonadap-
tive routing. This new routing algorithm permitsthefirst set
of buffersto be used for partially adaptiverouting. Therout-
ing algorithm is defined as follows:

Enhanced Fully Adaptive Routing Algorithm
¢ Assigntwo buffersto each direction of each dimension.

o Allow apacket to route along the second buffer at any
time.

Let [be the lowest dimension in which the packet still needs
toroute. Thefirst set of buffersis used in thefollowing way:

o A packet that needsto routein the negative direction of
dimension can use any of thefirst set of buffers.

e A packet that needsto route in the positive direction of
dimension must use Bi , .

o If all output buffersa packet can use are occupied, the
packet waits for B!.

The Enhanced Fully Adaptive routing algorithm restricts
a packet from using the first buffer in the positive direction
after using thefirst buffer in ahigher dimension. However, a
packet can use the first buffer in a higher dimension when-
ever the packet needs to route in the negative direction of
thelowest dimensionin which the packet still needsto route.
Thisisasignificant relaxation of the routing restrictions, es-
pecially when compared with dimension-order routing.

The degree of adaptivenessis the ratio of the number of
paths permitted by the routing algorithm to the total number
of paths, averaged over all source-destinationpairs[16]. The
degree of adaptivenessfor the Enhanced Fully Adaptiverout-
ing algorithmand Duato’ srouting algorithmisshownin Fig-
ure 3. For comparison, the degree of adaptivenessfor e-cube
(nonadaptive dimension order) routing is also shown. Para-
doxically, the degree of adaptivenessisnot zero for nonadap-
tive routing. Nonadaptive routing always allows one path
and the degree of adaptiveness is zero only when there are
no permitted paths.

The results clearly show the increase in adaptiveness
that the Enhanced Fully Adaptiverouting algorithm exhibits.
Duato’s routing algorithm, which was previoudy the most
adaptive, hasasignificant decreasein the degree of adaptive-
ness as the size of the hypercube increases. The Enhanced
Fully Adaptive routing algorithm also has a decreasing de-
gree of adaptiveness, however, the decrease is much more
modest. The difference in the degree of adaptiveness be-
tween Duato’s routing algorithm and Enhanced Fully Adap-
tive becomes more pronounced as the number of dimensions
increase. For a12D hypercube, Duato’shasadegreeof adap-
tiveness of about 16%, while the corresponding number for
Enhanced Fully Adaptiveis over 50%.

Theorem 5 The Enhanced Fully Adaptiverouting algorithm
is deadlock-free.

Proof. Thisproof usesthe sufficient condition provedin the-
orem 1. R 4 iswait-connected, since a packet is always per-
mitted towait for buffer onein thelowest dimensioninwhich
the packet needstoroute. Sinceapacket canwait for only B
buffers, any cyclein the BW G must be created from wait-
ing dependencies among the By buffers (although the inter-
mediate use of B buffers could be used to create these de-
pendencies). Wormhol e routing provides separate buffersin
each direction of adimensionand minimal routingisused, so
any cycleinthe BW @ requires at least two dimensions and
must use both directions of each dimensionin the cycle. Let
[be the lowest dimension of the potentia cycle. A cyclein
the BW G requiresone of two situations: either apacket, p;,
waits for B! + while occupying Bf in ahigher dimension of
thecycleor p; occupies BY | or B, aswell as B} inahigher
dimension and then waitsfor By in adifferent higher dimen-
sion. Sincel is the lowest dimension in the cycle, p; does
not need to route in any dimension lower than [after using
Bf in ahigher dimension. Otherwise, p; would be waiting
for a buffer in this lower dimension and [would not be the

lowest dimension in the cycle. Clearly, neither situation can
occur, since p; cannot use By in ahigher dimension when p;
needsto routein BY, and ! isthe lowest dimension in which
p; heedsto route. Sincethe BW (G isacyclic, therouting al-
gorithm is deadlock-free. m|

Theorem 6 No restrictions imposed on the Enhanced Fully
Adaptive routing algorithm can be relaxed without permit-
ting a deadlock configuration.

Proof. There are no restrictions on the use of the second set
of buffers, so the restrictions on only the first set of buffers
must be considered. The only restriction on the first set of
buffersisthat a buffer in a higher dimension cannot be used
by apacket that needsto routein the positive direction of the
lowest dimension in which the packet needs to route. Let]
be the lowest dimension and assume that the buffer used in a
higher dimensionisthefirst buffer in the positive direction of
dimensioni. Thenthereisan edgeinthe BW G from Bj , to
B!, . The BW@ dready has edgesfrom B to Bj_, from
B toB!_,andfromB!_toBi, . TheseedgesformaTrue
Cycle. A packet waitsfor only B! and the routing algorithm
is not wait-connected if B! isnot awaiting buffer. The exis-
tence of adeadlock configuration follows immediately from
theorem 2. O

7 Conclusion

A necessary and sufficient condition for proving deadlock
freedom for both nonadaptive and adaptive interconnection
network routing al gorithmshas been proposed. Thisisauni-
versal necessary and sufficient condition, which can be used
with any switching techniquethat is not inherently deadl ock-
free and can be applied to any network topology. The use-
fulness of our proof technique has been demonstrated with
a fully adaptive store-and-forward routing algorithm for n-
dimensional meshes. The technique described in this paper
has also been used to prove deadlock freedom for a fully
adaptive wormhole routing algorithm for hypercubes. This
new hypercuberouting algorithmis substantially more adap-
tive than any previous fully adaptive routing agorithm for
hypercubes.

We have shown that the restrictions on the Enhanced
Fully Adaptive routing algorithm cannot be relaxed without
creating a deadlock configuration. It is possible, although
unlikely, that a routing algorithm with a different set of re-
strictions could be deadl ock-freewhile being lessrestrictive.
The number of restrictionscannot bereduced, however, since
thereis only one restriction for each pair of dimensions.

A partial result hasbeen given for distinguishing between
False Resource Cycles and True Cycles. In practice, the
identification of Fal se Resource Cyclesshould not requirere-
sorting to this formal technique. This technique works for
all suffix-closed routing algorithms, which represent all but a
very restricted class of routing algorithms. Providing an al-
gorithm to distinguish between False Resource Cycles and

Comparison of Enhanced, e-cube, and Duato’s Algorithms

1.0 8

! ! ! !
* ‘ ‘ ‘

Degree of Adaptiveness

N

""""""" """"""" T"Duato; —+=-""]

T T T T T
1 1 Enhanced: <—

i e-cube & --

7 8 9 10 11 12

Hypercube Dimensions

Figure 3: Degree of Adaptivenessfor Hypercube Routing Algorithms

True Cyclesfor routing algorithmsthat are not suffix-closed
is an open problem.

The use of theorem 3 requires the identification of
BWG@G'. Thisis needed only for routing algorithms that do
not require a packet to wait for a specific output buffer. It
should be straightforward to determine BWG' for regular
topologies such as k-ary n-cubes and meshes. However,
a formal design methodology has been provided for those
cases where it is difficult to reduce the BWG to BWG'.
This automates the task of proving deadlock freedom and
should be of use for routing algorithm designers.

Acknowledgments

The authors thank José Duato for many helpful and detailed
suggestions; Yu-Chee Tseng for insightful comments on the
ideaof buffer waiting; Jeff May for valuablediscussionscon-
cerning the necessary and sufficient condition; and Anish
Arora, Dave Lutz, and Kant Patel for many thoughtful com-
ments which have improved the quality of the paper.

References

[1] P. Berman, L. Gravano, G. Pifarré, and J. Sanz. Adap-
tive Deadlock- and Livelock-Free Routing With All
Minimal Pathsin Torus Networks. In 4" Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 3-12, 1992.

[2] Y. M. Bouraand C. R. Das. A Class of Partially Adap-
tive Routing Algorithmsfor n_dimensional Meshes. In
International Conference on Parallel Processing, vol-
umellll, pages 175-182, 1993.

[3] A.A.Chien. A Cost and Speed Model for k-ary n-cube
Wormhole Routers. In Hot Interconnects’ 93, August
1993.

[4] R. Cypher and L. Gravano. Adaptive, Deadlock-Free
Packet Routing in Torus Networks with Minimal Stor-
age. In International Conference on Parallel Process-
ing, volume 11, pages 204-211, 1992.

[5] R. Cypher and L. Gravano. Requirements for
Deadlock-Free, Adaptive Packet Routing. SAM
Journal on Computing, 23(6):1266-1274, December
1994,

[6] W. J. Ddly. Virtua-Channel Flow Control. |IEEE
Transactions on Paralldl and Distributed Systems,
3(2):194-205, March 1992.

[71 W. J. Dally and H. Aoki. Deadlock-Free Adap-
tive Routing in Multicomputer Networks Using Virtual
Channels. |EEE Transactions on Parallel and Dis-
tributed Systems, 4(4):466-475, April 1993.

[8] W. J. Dadly and C. L. Seitz. Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks.
|IEEE Transactions on Computers, C-36(5):547-553,
May 1987.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Duato. On the Design of Deadlock-Free Adap-
tive Routing Algorithms for Multicomputers. Design
Methodologies. In Parallel Architectures and Lan-
guages Europe 91, volume, pages 390405, 1991.

J. Duato. A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole Net-
works. Technical report, Universidad Politecnica de
Valencia, 1993.

J. Duato. A New Theory of Deadlock-Free Adaptive
Routing in Wormhole Networks. |1EEE Transactions
on Parallel and Distributed Systems, 4(12):1320-1331,
December 1993.

J. Duato. A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole Net-
works. In International Conference on Parallel Pro-
cessing, volume |, pages 142-149, 1994.

P. T. Gaughan and S. Yalamanchili. Adaptive Rout-
ing Protocolsfor Hypercubel nterconnection Networks.
|EEE Computer, 26(5):12—23, May 1993.

C.Glassand L. M. Ni. Maximally Fully Adaptive Rout-
ing in 2D Meshes. In International Conference on Par-
allel Processing, volume |, pages 101-104, 1992.

C. Glassand L. M. Ni. The Turn Model for Adaptive
Routing. In 19** Annual International Symposium on
Computer Architecture, pages 278-287, 1992.

C. Glassand L. M. Ni. The Turn Model for Adaptive
Routing. Journal of the Association for Computing Ma-
chinery, 41(5):874-902, September 1994.

I. S. Gopal. Prevention of Store-and-Forward Deadlock
in Computer Networks. | EEE Transactionson Commu-
nications, COM-33(12):1258-1264, December 1985.

L. Gravano, G. Pifarré, G. Denicolay, and J. Sanz.
Adaptive Deadl ock-free Worm-hole Routing in Hyper-
cubes. In International Parallel Processing Sympo-
sium, pages 512-515, 1992.

K. D. Gunther. Prevention of Deadlocks in Packet-
Switched Data Transport Systems. |EEE Transac-
tions on Communications, COM-29(4):512-524, April
1981.

P. Kermani and L. Kleinrock. Virtual Cut-Through: A
New Computer Communication Switching Technique.
Computer Networks, 3(4):267—286, September 1979.

S. Kongtantinidou and L. Snyder. Chaos router: archi-
tecture and performance. In 18" Annual International
Symposiumon Computer Architecture, pages 212221,
1991.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

X. Lin, P. K. McKinley, and L. M. Ni. The Message
Flow Model for Routing in Wormhole-Routed Net-
works. In International Conference on Parallel Pro-
cessing, volume |, pages 294-297, 1993.

J. May, D. N. Jayasimha, and K. Patel. Compar-
ison of Multiplexing Schemes for Wormhole-Routed
Distributed Memory Multiprocessors. In 1%t Interna-
tional Workshop on Parallel Processing, pages 211—
215, 1994.

J. Y. Ngai and C. L. Seitz. A Framework for Adap-
tive Routing in Multicomputer Networks. In15¢ Annual
ACM Symposiumon Parallel Algorithmsand Architec-
tures, pages 1-9, 1989.

L. M. Ni and P. K. McKinley. A Survey of Wormhole
Routing Techniques in Direct Networks. |EEE Com-
puter, 26(2):62—76, February 1993.

G. D. Pifarrg, L. Gravano, S. A. Felperin, and J. L. C.
Sanz. Fully Adaptive Minimal Deadlock-Free Packet
Routing in Hypercubes, Meshes, and Other Networks:
Algorithms and Simulations. IEEE Transactions
on Parallel and Distributed Systems, 5(3):247-263,
March 1994.

L. Schwiebert and D. N. Jayasimha. Optimal Fully
Adaptive Wormhole Routing for Meshes. In Supercom-
puting ' 93, pages 782—791, 1993. An extended version
of this paper will appear in the Journal of Parallel and
Distributed Computing.

L. Schwiebert and D. N. Jayasimha. A Necessary
and Sufficient Condition for Deadlock-Free Wormhole
Routing. Technical Report OSU-CISRC-4/94-TR22,
The Ohio State University, April 1994. Revised De-
cember 10, 1994. Accepted for publication in the Jour-
nal of Parallel and Distributed Computing.

C.-C. Su and K. G. Shin. Adaptive Deadlock-Free
Routing in Multicomputers Using Only One Extra Vir-
tual Channel. In International Conference on Parallel
Processing, volume |, pages 227-231, 1993.

S. Toueg and K. Steiglitz. Some Complexity Results
in the Design of Deadlock-Free Packet Switching Net-
works. SSAM Journal on Computing, 10(4):702-712,
November 1981.

