
A Universal Proof Technique for Deadlock-Free Routing in Interconnection Networks

Loren Schwiebert and D. N. Jayasimha
�

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210–1277�
loren,jayasim � @cis.ohio-state.edu

�����	��

�����

An important open problem in interconnection network rout-
ing has been to characterize the conditions under which rout-
ing algorithms are deadlock-free. Although this problem has
been resolved for restricted classes of routing algorithms, no
general solution has been found. In this paper, we solve this
problem by proving a necessary and sufficient condition that
can be used for any interconnection network routing algo-
rithm, as long as only local information is required for rout-
ing. Our proof technique is universal: it can be used with
any switching technique that is not inherently deadlock-free.
This includes switching techniques such as wormhole rout-
ing, store-and-forward routing, and virtual cut-through. The
proof technique for the necessary and sufficient condition in-
troduces a new type of dependency graph, the buffer waiting
graph, which omits most dependencies that cannot be used
to create a deadlock configuration. Our methodology is illus-
trated by proving deadlock freedom for a store-and-forward
routing algorithm for meshes and a wormhole routing algo-
rithm for hypercubes. The hypercube routing algorithm re-
quires only two virtual channels per physical channel and is
more adaptive than any previously proposed wormhole rout-
ing algorithm for hypercubes.

����� ��
������������ � �

Large-scale multiprocessors use an interconnection network
to support communication and synchronization among pro-
cessors. A variety of switching techniques have been pro-
posed for transmitting data through the interconnection net-
work, including circuit switching, store-and-forward rout-
ing, virtual cut-through, and wormhole routing.�

Part of this work was done when the author was on leave at NASA Lewis Research
Center, Cleveland, Ohio.

Circuit switching sends a probe from the source to the
destination and returns an acknowledgment once the path is
established. After the acknowledgment is received, multi-
ple messages can be transmitted on this path before the path
is released. Store-and-forward routing is implemented via
packet switching or message switching. Packet switching
first packetizes each message and then sends each packet in-
dividually, whereas message switching sends the entire mes-
sage at once. The network treats each packet as a separate
message, so for our purposes there is no need to distinguish
between packet switching and message switching. Packet
switching transmits an entire packet immediately to a neigh-
boring node. The entire packet is buffered at this node and
then forwarded to the next node in the path. Kermani and
Kleinrock [20] proposed virtual cut-through to combine the
best features of packet switching and circuit switching. Vir-
tual cut-through works like packet switching with one im-
portant difference. When the packet header arrives at an in-
termediate node and the next buffer in the path is available,
the packet is forwarded immediately to the next node. The
packet is buffered only when the next buffer is not available.
Adaptive cut-through [24] is a modification of virtual cut-
through, where all blocked packets are misrouted instead of
buffered. Dally and Seitz [8] proposed wormhole routing to
avoid the large buffers required for virtual cut-through and
store-and-forward routing. Wormhole routing works like vir-
tual cut-through except instead of buffering the entire packet
when the next buffer is unavailable, the packet remains in
the network. Small buffers are associated with each chan-
nel (link) in the network. The buffers are large enough to
hold only a few bytes (flits) of the packet. Hence, a blocked
packet can reserve many channels while waiting at an in-
termediate node. In order to reduce the effects of blocking,
Dally [6] proposed the use of multiple virtual channels on
each link. Each virtual channel has a separate buffer, with
multiple packets multiplexed over the same link. See Ni and
McKinley [25] for an in-depth discussion of wormhole rout-
ing.

The simplest routing algorithms are nonadaptive and de-
fine a single path between the source and destination. Adap-
tive routing algorithms, on the other hand, support multiple

paths between the source and destination. Latency and con-
tention can be reduced by using these multiple paths. Rout-
ing algorithms are either minimal or nonminimal. Minimal
routing allows only shortest paths to be chosen, while non-
minimal routing does not require packets to use only shortest
paths. Gaughan and Yalamanchili [13] present a comprehen-
sive overview of adaptive routing protocols. Whether mini-
mal or nonminimal, adaptive routing algorithms can be fur-
ther differentiated by the fraction of shortest paths they al-
low. Partially adaptive routing algorithms do not allow all
packets to use any shortest path. Fully adaptive routing algo-
rithms do allow all packets to use any shortest path. Adaptive
routing is typically implemented using additional buffers or
virtual channels.

Router latency and cycle time increase with the number
of virtual channels [3], so fewer virtual channels are gener-
ally better. Reducing the number of buffers (virtual channels)
needed for a given degree of adaptiveness is accomplished by
using a less restrictive routing algorithm. Conversely, when
the same number of buffers is used, a less restrictive rout-
ing algorithm has better performance than a more restrictive
routing algorithm [23, 14]. A natural question that arises
is: Exactly how restrictive must the routing algorithm be to
guarantee deadlock freedom? In other words, what is a nec-
essary and sufficient condition for deadlock-free routing? In
this paper, we present a theoretical result for minimizing the
restrictions imposed for deadlock-free routing. This proof
technique applies to switching techniques that prevent dead-
lock through routing restrictions. Other methods of prevent-
ing deadlock, such as abort/retry, which is used in circuit
switching, and misrouting, which is used in adaptive cut-
through, are inherently deadlock-free. The only restriction
we impose on the routing algorithms is that only local infor-
mation available at the router is used to make the routing de-
cision. In general, routing is done based solely on local in-
formation, because of the overhead of transmitting non-local
information and the additional router complexity that is re-
quired to utilize this information.

In addition to providing a necessary and sufficient condi-
tion for deadlock freedom, we propose a fully adaptive mini-
mal wormhole routing algorithm for hypercubes that is much
less restrictive than previous routing algorithms. We also
prove deadlock freedom for a store-and-forward mesh rout-
ing algorithm to demonstrate the ease with which our proof
technique can be applied.

� �
���� � � ����� �
	�

We briefly review the existing techniques for proving dead-
lock freedom. For nonminimal routing, the issue of livelock
freedom also arises, however, livelock freedom and deadlock
freedom are independent issues [28].

For store-and-forward routing, most routing algorithms
have used the proof technique proposed by Günther [19]
to prove deadlock freedom. This methodology requires an

acyclic ordering of the buffers. Toueg and Steiglitz [30] have
shown that this is necessary and sufficient for nonadaptive
routing. Recently, Cypher and Gravano [5] have shown that
an acyclic ordering of the buffers is not necessary for adap-
tive routing. Günther’s proof technique is also applicable to
virtual cut-through, because any deadlock configuration con-
sists of blocked, and thus buffered, packets.

For wormhole routing, many nonadaptive and adaptive
routing algorithms have used the proof technique proposed
by Dally and Seitz [8], which requires an acyclic ordering
of the virtual channels. Dally and Seitz also proved that an
acyclic ordering of the channels is a necessary and sufficient
condition for deadlock-free nonadaptive wormhole routing
algorithms. Glass and Ni [15, 16] and Boura and Das [2]
have also proposed methodologies for generating deadlock-
free wormhole routing algorithms that require an acyclic or-
dering of the channels.

Duato [9, 11] proved that requiring an acyclic ordering
of the channels is not necessary for adaptive routing algo-
rithms if the output channel is selected independent of the in-
put channel. Schwiebert and Jayasimha [27] have used Du-
ato’s proof technique to propose an optimal fully adaptive
routing algorithm for meshes. Berman, et al. [1] prove dead-
lock freedom for a torus routing algorithm that has no acyclic
ordering of the channels and allows the router to consider
the input channel when selecting the output channel. Dally
and Aoki [7] prove deadlock freedom for a routing algorithm
with cyclic dependencies by guaranteeing an acyclic packet
wait-for graph. A packet wait-for graph is defined dynami-
cally by the packets in the network and contains an edge from
packet
�� to packet
�
 if packet
�� is waiting for a channel oc-
cupied by packet
�
 .

All these proof techniques provide only a sufficient con-
dition for deadlock-free adaptive wormhole routing. Deter-
mining what constitutes a necessary and sufficient condition
for adaptive routing algorithms has remained an open prob-
lem. Lin, McKinley, and Ni [22] propose a proof technique
based on the fact that a routing algorithm is deadlock-free if
none of the channels in the network can be occupied forever.
This proof technique was proposed as a necessary and suf-
ficient condition, although Duato points out that only suffi-
ciency is proved [12]. Recently, we have proposed a nec-
essary and sufficient condition for a rich class of wormhole
routing algorithms [28]. (Duato [12] has independently pro-
posed a necessary and sufficient condition for a restricted
class of adaptive wormhole routing algorithms.) In this pa-
per, we propose a necessary and sufficient condition for dead-
lock freedom that can be applied regardless of the switching
technique employed.

����� ��������� �������

Each processing node contains a computation processor and
a communication processor. A communication processor
contains a finite number of buffers, called standard buffers,

that are used for routing packets between neighboring nodes.
Packets are injected into the network by transferring a packet
from the computation processor to the injection buffer on the
communication processor. Similarly, a packet is delivered by
transferring the packet from the delivery buffer on the com-
munication processor to the computation processor. (The in-
jection and delivery buffers are introduced only to simplify
the model and may not actually exist in the communication
processor.) Neighboring nodes are connected by one or more
bidirectional channels (links) between their communication
processors. The network topology is defined by the choice of
neighboring nodes.

For wormhole routing, each link (physical channel) is
partitioned into a set of unidirectional virtual channels. Pack-
ets are routed by transferring the data from the input channel
to an output channel on the same node and then transferring
the data across the physical channel to the input channel of
the neighboring node. Each virtual channel can store only a
few bytes (flits) of the packet. Since packets typically consist
of many flits, packets can span many nodes and simultane-
ously occupy many virtual channels. For virtual cut-through
and store-and-forward routing, each communication proces-
sor has one or more standard buffers. Packets are routed
by transferring data between standard buffers on neighbor-
ing nodes. Virtual cut-through and store-and-forward rout-
ing require that each buffer is large enough to store an en-
tire packet. When transferring a packet between two buffers,
the packet temporarily occupies both buffers and is removed
from the first buffer in a finite amount of time after being
transferred to the second buffer.

Several standard assumptions are used.

1. A node can generate messages of arbitrary length des-
tined for any other node at any generation rate. The
messages are then divided into fixed-length packets.
For wormhole routing, the packets can be large enough
to occupy all the virtual channels from the source to the
destination.

2. A packet arriving at its destination is eventually con-
sumed.

3. Once a buffer has accepted the packet header, it must
accept and transmit the entire packet before accepting
data from any other packet.

4. Without loss of generality, the buffers used with store-
and-forward routing and virtual cut-through can store
only one packet.

5. A router arbitrates among packets that simultaneously
request the same buffer. Packets waiting for buffers are
chosen in an order that prevents starvation.

For readability, we use only the term buffer in the remain-
der of the paper, rather than both buffer and virtual channel.
In the context of wormhole routing, a buffer refers to the flit
buffer associated with a particular virtual channel. When a

packet acquires a virtual channel, it actually acquires the flit
buffer that constitutes the virtual channel. Thus, there is an
implicit one-to-one correspondence between a buffer and a
virtual channel. This formulation of the network resources
in terms of buffers allows a universal framework for address-
ing deadlock freedom that is independent of the particular
switching technique.

As a consequence of assumptions 3 and 4, two packets
can never be stored simultaneously in the same buffer. A
packet that arrives at its destination is transferred from the
communication processor to the computation processor in a
finite amount of time. Similarly, a packet is transferred from
an injection buffer or its current standard buffer to an empty
standard buffer or a delivery buffer in a finite amount of time.
Thus, packets always make progress if possible.

A routing algorithm specifies which buffers can receive a
packet from the current buffer. This decision is made based
on, in the case of virtual cut-through and store-and-forward
routing, the current node and destination node and either the
current buffer or the source node. In the case of wormhole
routing, this decision is made based on the input channel, the
current node, and the destination node. The routing algo-
rithm consists of two parts; a routing relation, which defines
the set of output buffers to which the packet can be routed,
and a selection function, which selects a single output buffer
based on the status of this set of output buffers.

A routing algorithm is prefix-closed if, between any pair
of nodes, every partial path through an intermediate node can
also be used by the source node to reach this intermediate
node. For example, any partial path from � � to �
 through
��� can also be used to route a packet from � � to ��� . Simi-
larly, a routing algorithm is suffix-closed if, between any pair
of nodes, every partial path through some intermediate node
can also be used by this intermediate node to reach the des-
tination. A routing algorithm is coherent if the routing algo-
rithm is both prefix-closed and suffix-closed.

We define a waiting buffer to be a buffer that a packet can
wait to acquire when all the output buffers permitted by the
routing relation are unavailable. A packet may have multi-
ple waiting buffers. The idea of waiting channels was also
introduced independently by Lin, McKinley, and Ni [22] for
wormhole routing, however, the methodology used in this
paper is novel.

The buffer waiting graph
�����
	��

for a given routing al-
gorithm is a directed graph,

�
�
	���	����������
. The vertices

of the
���
	

are the buffers and the edges of the
�
�
	

are
pairs of buffers

�������������
where a packet that currently occu-

pies
���

can wait for buffer
���

. For virtual cut-through and
store-and-forward routing,

������� �����
are buffers on the same

node or neighboring nodes, because blocked packets occupy
a single buffer. With virtual cut-through, this occurs after the
packet is blocked for a finite amount of time. For wormhole
routing, there is no requirement that a packet waits for

� �
im-

mediately after using
� �

, only that the packet length is suffi-
cient to fill the buffers from

� �
to

� �
. (Otherwise, the packet

cannot occupy buffer
� �

while waiting for
� �

.)
A routing algorithm is wait-connected if a packet always

has at least one waiting buffer. A packet that has not reached
its destination must wait for an output buffer when it is un-
able to proceed or the packet is never delivered. Hence, ev-
ery loss-less routing algorithm in our system model is wait-
connected.

A configuration is an assignment of packets to buffers. A
configuration is legal if each buffer in the configuration has at
most one packet. In addition, the packets in the configuration
must be stored in the buffers in accordance with the type of
routing chosen. A deadlock configuration for a given routing
algorithm is a non-empty legal configuration consisting of a
set of packets,

� �

� ������� �

 � � � ��� . Each packet in the set,

 � , is not in a delivery buffer and is unable to proceed because
every output buffer for
 � is unavailable. Moreover, every
waiting buffer for
 � is occupied by another packet in the set.
In the case of virtual cut-through, the entire packet has been
stored in a single buffer. In the case of wormhole routing, all
the buffers occupied by the packet are full (with the exception
of the last buffer, which may be only partially filled), so none
of the buffers can be released. Thus, each packet is blocked
and must wait for an unavailable waiting buffer occupied by
another packet in the set. When � � � ,
 � waits for a buffer
it already occupies. The set of packets can be ordered such
that:

�� waits for a buffer occupied by
 ��� �
	���
 � and

 � waits for a buffer occupied by

�

� � � � � �����
 � � � � � ��� � � � � ��� � � ��� ��� � �

Most techniques for proving deadlock freedom require the
existence of an acyclic ordering of the buffer usage. From
our definition of a deadlock configuration, however, it is clear
that every deadlock configuration is formed with the wait-
ing buffers, rather than the entire set of output buffers that a
packet could use. The routing algorithm may allow a packet
to use a buffer when the buffer is free, even if the packet is
not permitted to wait for this buffer when the buffer is occu-
pied. This is our motivation for using the

�
�
	
, since it ig-

nores dependencies that cannot result in deadlock. Requiring
an acyclic buffer waiting graph is less restrictive than requir-
ing an acyclic ordering of the buffer usage. It also leads to
simpler proofs when proving deadlock freedom.

Theorem 1 If routing algorithm ��� is wait-connected and
the

�
�
	
for ��� is acyclic, then ��� is deadlock-free.

Proof. ��� is wait-connected, so every packet always has
a waiting buffer when all output buffers are occupied. As-
sume there is a deadlock configuration involving � packets.
If � � � , then there is an edge in the

�
�
	
from a buffer

to itself, which is not possible since the
�
�
	

is acyclic.

Otherwise, (
	���
 �) there is an edge in the

�
�
	
from ev-

ery buffer occupied by
 � to the buffer occupied by
 ��� � for
which
 � is waiting (call this buffer

���
��� �). There is also an

edge in the
���
	

from every buffer occupied by
 � to the
buffer occupied by

�
for which
 � is waiting (call this buffer� ��

). Hence, there is an edge in the
���
	

from
� �
� to

� �
��� �

(
	���
 �) and from

� �� to
� ��

. However, the
�
�
	

for ���
is acyclic, so no such set of edges is possible. Therefore, no
deadlock configuration exists and ��� is deadlock-free. �

The
�
�
	

reflects only the static dependencies among
buffers. Note, however, that only as the buffers are used do
the dependencies among the buffers arise. The

�
�
	
does

not capture the dynamic way in which the dependencies are
created. Hence, it is possible that a cycle in the

�
�
	
exists,

but the cycle could arise only from the simultaneous use of
the same buffer by more than one packet. For this reason, we
divide cycles in the

�
�
	
into two classes: False Resource

Cycles and True Cycles. A False Resource Cycle is a cycle in
the

���
	
that requires at least one buffer to be used simulta-

neously by more than one packet in order to create the cycle.
Obviously, a False Resource Cycle cannot occur, since this
is physically impossible. Therefore, a False Resource Cycle
cannot be used to create a deadlock configuration. A True
Cycle is a cycle in the

���
	
that can be created without the

simultaneous use of any buffer. In other words, a True Cycle
is any cycle in the

���
	
that is not a False Resource Cy-

cle. In Section 5, we provide a more complete description of
False Resource Cycles. A technique for distinguishing be-
tween False Resource Cycles and True Cycles can be found
in [28].

q

n n n n0 1 2 3

q q q

q

q

q qL1

H0

A1

H1

L2

B2

L3

H2

Figure 1: Duato’s Example of an Incoherent Routing Algo-
rithm

To illustrate the difference between False Resource Cy-
cles and True Cycles, Duato’s example [10] of an incoher-
ent wormhole routing algorithm is presented. The proces-
sors and buffers are shown in Figure 1. The buffers are repre-
sented by edges that indicate which two processors they con-
nect. The routing algorithm permits only minimal routing,
with the exception of buffer

�! �
. Buffer

�� ��
can be used only

by a packet destined for node �#" . Clearly, this routing algo-
rithm is not coherent (not prefix-closed), since a packet from
� �

to �$" can be routed through � �
using buffer

�! ��
. How-

ever, a packet from � �
to � �

cannot use buffer
�� �

.
Figure 2 depicts the buffer waiting graph for the inco-

herent routing algorithm. The
�
�
	

for this routing algo-

qq

q

qq

q

q

q

B2 H2 L1

L2H1A1

H0 L3

Figure 2: The
�
�
	

for the Incoherent Routing Algorithm

rithm has a False Resource Cycle and a True Cycle. A packet
whose input buffer is

�! ��
can wait for

� � � or
��� �

. If the
packet waits for

� � � , there is a True Cycle from
� � � to

� � �
that uses

�� ��
. Otherwise, the True Cycle is a cycle from

��� �
to

��� �
that uses

�� �
. There is a False Resource Cycle that

involves two packets. A packet that occupies
� � � and

�� �
and waits for

� � �
and a packet that occupies

� � �
and

� �
and waits for

� � � . Obviously, this False Resource Cycle ex-
ists only because both packets simultaneously occupy

� �
,

which is impossible.
A packet is unable to proceed when all output buffers for

the packet are occupied. This situation can be resolved in one
of two ways: (1) The packet could wait for a specific out-
put buffer to become free or (2) The packet could wait until
any permitted output buffer becomes free. For case (1), the
routing algorithm must choose a buffer for which waiting is
permitted. Although it is possible that the routing algorithm
has a choice of more than one waiting buffer, once a waiting
buffer is chosen, the packet must wait for that specific buffer
to become free. For case (2), the routing algorithm also has
the possibility of waiting for a subset of more than one output
buffer. In fact, case (2) includes any routing algorithm that
does not conform to case (1). That is, any routing algorithm
that does not select a specific waiting buffer and wait for that
buffer until it becomes free. We first prove a necessary and
sufficient condition for routing algorithms that belong to case
(1), followed by a necessary and sufficient condition for rout-
ing algorithms that belong to case (2).

Theorem 2 A routing algorithm, ��� , that requires a
blocked packet to wait for a specific output buffer is
deadlock-free iff ��� is wait-connected and the

���
	
for

� � has no True Cycles.

Proof. First, note that ��� is wait-connected by definition.
From theorem 1, an acyclic

���
	
is a sufficient condition

for deadlock freedom. A False Resource Cycle cannot result
in deadlock, so any False Resource Cycles can be ignored.
Because there are no True Cycles, the routing algorithm is
deadlock-free.

To prove necessity, assume that a True Cycle with � pack-
ets exists. A deadlock configuration can be created from this
True Cycle. For each

�
 � , allow packet
 � to occupy
buffer

� �
� , possibly some additional buffers, and then wait for

buffer
� �
��� � occupied by packet
���� � . (Assume that
 � and

� �
�

are defined as in theorem 1.) Similarly, packet
 � occupies
buffer

� �� and waits for buffer
� ��

. Since the cycle can be cre-
ated without the simultaneous use of any buffer by more than
one packet, it is possible to generate a set of packets that are
able to occupy the required buffer(s) and then wait for the ap-
propriate buffer. To force
 � to wait for

� �
��� � , it is necessary

to guarantee that any output buffer for
 � is occupied. For
any output buffer available to
 � that is also available to the
source node of buffer

� �
��� � , assume the source has injected a

packet that is using this buffer. If the routing algorithm is not
suffix-closed, however, then some of the output buffers avail-
able to
�� may be unavailable to the source node. For each of
these output buffers, assume that a previous packet,
�
 , that
was permitted to use this output buffer is currently occupying
this output buffer. (For wormhole routing, the length of

 is
assumed to be short enough that it releases the input buffer
that
 � occupies but long enough that it occupies the output
buffer at this node.) Since

 can occupy this buffer for an
indefinite amount of time, it is always possible to force
 � to
wait for

� �
��� �

. Clearly, each packet in the set is waiting for a
buffer occupied by another packet in the set and none of the
packets can make progress. Therefore, a deadlock configu-
ration can always be constructed from a True Cycle. �

For routing algorithms that permit a packet to wait for
any of the output buffers to become free, an acyclic

���
	
is

not a necessary condition. Since each blocked packet has a
choice of output buffers, packets may be able to avoid buffers
that form cycles in the

���
	
by using an alternative buffer

that is not part of a cycle. Deadlock can be avoided, how-
ever, only if at least one of the output buffers for which the
packet is waiting is guaranteed to become free. For this rea-
son, we selectively remove edges from the

���
	
to resolve

all True Cycles as long as the routing algorithm remains wait-
connected for the resulting graph, called

�
�
	 �
. Remov-

ing edges from the
���
	

is equivalent to reducing the set of
waiting buffers for a given buffer. Although the set of wait-
ing buffers is reduced, there is no change to the set of out-
put buffers the routing algorithm can use. We next prove that
if no such

���
	 �
exists, then the routing algorithm is not

deadlock-free. If such a
�
�
	 �

does exist, however, then the
following theorem can be used to prove deadlock freedom:

Theorem 3 A routing algorithm, � � , that allows a blocked
packet to wait for multiple output buffers is deadlock-free iff
� � is wait-connected for some

���
	 �
and this

���
	��
has

no True Cycles.

Proof. If � � is wait-connected for the
���
	

and the
�
�
	

has no True Cycles, then the result follows immediately from
theorem 2, with

���
	 � ���
	 �
. Assume the

�
�
	
con-

tains True Cycles. In this case, ��� must be wait-connected
for some

�
�
	 �
without True Cycles.

We first prove sufficiency. Consider a potential deadlock
configuration for ��� , involving a cycle of � packets (� ���).
This requires that every packet in the configuration is waiting
for a buffer occupied by itself or another packet in the cycle.
Because each packet can wait for multiple output buffers and
� � is wait-connected for

���
	 �
, at least one of the waiting

buffers for each packet is in
���
	 �

. Since
���
	 �

has no
True Cycles, an output buffer in

�
�
	 �
eventually becomes

free and some packet in the set,
 � , is forwarded. There is no
guarantee, however, that the output buffer that
 � acquires is
a buffer in

�
�
	 �
. (It is possible that
 � proceeds to a differ-

ent buffer before the buffer in
�
�
	 �

becomes free.) If
 �
has reached its destination, then the cycle has been resolved.
Otherwise, whether or not
 � acquires a buffer in

�
�
	 �
,
��

can acquire an output buffer in
���
	 �

at the next router, be-
cause ��� is wait-connected for

���
	 �
. Hence, one of the

packets can always be routed and a deadlock configuration
cannot occur.

We now prove necessity by showing that the routing al-
gorithm is not deadlock-free if every wait-connected

�
�
	 �
has True Cycles. Assume that every wait-connected

�
�
	 �
has True Cycles. Thus, it is possible to generate a set of pack-
ets that have no waiting buffer that is guaranteed to become
available. Furthermore, these packets are all blocking each
other, since otherwise it would be possible to guarantee that
a waiting buffer does become free. Hence, this set of pack-
ets form a deadlock configuration. However, since the rout-
ing algorithm is deadlock-free, no deadlock configuration is
possible. Therefore, a wait-connected

�
�
	 �
without True

Cycles must exist. �
Reducing the

���
	
to

���
	 �
should not be difficult.

For example, in Section 6.1 we present a proof that uses a
straightforward reduction from the

�
�
	
to

�
�
	 �
. For

completeness, however, we present a formal method for re-
ducing the

�
�
	
to an appropriate

�
�
	 �
. Our approach

consists of first distinguishing between False Resource Cy-
cles and True Cycles. If the

���
	
is not acyclic, edges are

removed from the
�
�
	

to generate
�
�
	 �

. An overview
of these two steps can be found in Section 5.

� � ��� � ����� ������
 � � � � � � � �

The
���
	

is a static graph, however, the dependencies that
arise among the buffers are dynamic. False Resource Cy-
cles capture this notion of dynamic dependencies among the
buffers. When two edges in the

�
�
	
both require the use of

a common buffer, then these two dependencies cannot occur
simultaneously. Cycles in the

���
	
that are formed from

such dependencies cannot occur in reality, and hence, cannot
lead to a deadlock configuration. False Resource Cycles can

arise with minimal or nonminimal routing algorithms. Du-
ato’s incoherent routing algorithm is an example of the latter.
An example of a False Resource Cycle using minimal rout-
ing can be found in [28].

In order to create a deadlock configuration, each packet
in the set,
�� , must acquire

� �
� before
 ���

�
arrives at

� �
� . This

is always possible with a True Cycle, since no buffer is oc-
cupied by more than one packet at a time. A False Resource
Cycle requires that at least two packets share a buffer and this
sharing leads to a cycle in the

�
�
	
. Such a cycle can arise

in one of two ways. Either a buffer in the cycle is shared, or
a buffer outside the cycle is shared simultaneously by more
than one packet before entering the cycle. The second pos-
sibility can be ignored for suffix-closed routing algorithms,
because a cycle can be created without using buffers outside
the cycle. If the shared buffer is part of the cycle, then each
packet,
 � , that occupies the shared buffer has already ac-
quired

� �
� . Hence, the False Resource Cycle would be a True

Cycle if
�� could reach
� �
��� � without using a shared buffer.

On the other hand, if the shared buffer is used prior to the
buffers in the cycle, then the False Resource Cycle exists be-
cause
 � cannot acquire

� �
� before
����

�
. Note, however, the

False Resource Cycle would be a True Cycle if
 � could reach� �
� without using a shared buffer.

Our method of distinguishing between True Cycles and
False Resource Cycles requires examining the possible paths
each packet in the cycle could use, avoiding shared buffers if
possible, and backtracking as necessary to adjust paths used
by other packets in the cycle. This is a complete solution for
suffix-closed routing algorithms. For routing algorithms that
are not suffix-closed, this is only a partial solution. It is then
necessary to determine whether the buffers that are shared
outside the cycle can be used consecutively instead of simul-
taneously. If this is the case, then sharing the buffer is possi-
ble. Otherwise, the buffer is a simultaneously shared buffer
and the cycle is a False Resource Cycle. A complete descrip-
tion of the procedure for distinguishing between True Cycles
and False Resource Cycles can be found in [28].

In practice, reducing the
�
�
	

to
���
	 �

should not
be difficult. For completeness, however, a formal method
of reducing the

�
�
	
to

�
�
	 �
is required. This reduc-

tion is only necessary for routing algorithms that do not re-
quire a packet to wait for a specific output buffer. The de-
sign methodology requires the identification of all True Cy-
cles in the

���
	
and proceeds by removing a dependency

from the
���
	

to resolve each cycle, backtracking as nec-
essary to previously resolved cycles. This is an exponen-
tial time algorithm. Other general techniques for proving
deadlock freedom also require exponential time in the worst
case [9, 12, 22]. A description of the algorithm for reducing
the

���
	
to

�
�
	 �
can be found in [28].

� � ������� ������� ����� � � �

In order to demonstrate the usefulness of the necessary and
sufficient condition, deadlock freedom is proved for a fully
adaptive store-and-forward routing algorithm for � -dimen-
sional meshes. We then prove deadlock freedom for a fully
adaptive wormhole routing algorithm for hypercubes. The
necessary and sufficient condition is then used to prove that
any relaxation of the restrictions imposed by the routing al-
gorithm introduces the possibility of deadlock.

�
	 � � � ��� � ������� �
� � � � ��
 � ��� �
Many adaptive store-and-forward routing algorithms have
been proposed, including those described in [4, 17, 21, 26].
These routing algorithms are buffer reservation algorithms
and select an output buffer based on only local information,
such as the availability of the buffers at neighboring nodes.
To illustrate the simplicity of applying our proof technique
and to demonstrate the ease with which the

�
�
	
can be

reduced to
�
�
	 �

, we present an alternative proof of the
fully adaptive minimal � -dimensional mesh routing algo-
rithm proposed by Pifarré et al. [26].

This routing algorithm, which we will call the Two-Buffer
routing algorithm, requires two standard buffers per router,
labeled � and

�
, respectively. A packet remains in the �

buffers until it has completed routing in the positive direction
of all dimensions. Since minimal routing is used, the packet
can move to the � buffer of any neighboring node that moves
it closer to its destination. Once the packet has completed
routing in all positive directions, the packet then moves to the�

buffers and routes in the
�

buffers until the destination is
reached.

Theorem 4 The Two-Buffer routing algorithm is deadlock-
free.

Proof. The
�

buffers are used only when routing in the neg-
ative directions and a packet can never move from a

�
buffer

to an � buffer. Since there are no wrap-around links on a
mesh, it is obvious that no cycle can be created using the

�
buffers. Consider the � buffers. There are no restrictions
on the use of the � buffers, provided that the packet needs
to route in at least one positive direction. Hence, there are
cycles in the

�
�
	
. Define

�
�
	 �
such that all edges in

the
�
�
	

from an � buffer to a neighboring � buffer in the
negative direction are removed. Notice that

�
�
	 �
remains

wait-connected, since a packet is in an � buffer only if it
needs to route in the positive direction of at least one dimen-
sion. Also,

�
�
	 �
is acyclic, since there are no wrap-around

links and all the edges are either from an � buffer to another
� buffer in a positive direction or from an � buffer to a

�
buffer or from a

�
buffer to another

�
buffer in a negative

direction. Deadlock freedom follows immediately from the-
orem 3. �

�
	 � � � � ��
 � ��� � � ������� �
� � � � ��
 � ��� �
The following conventions are used to present the hypercube
routing algorithm.

� ���� is used to denote buffer � in the �
direction of dimension

�
. For example,

� "�
� is buffer one in

the negative direction of the third dimension. An asterisk in
the superscript denotes all dimensions. Thus,

����
� denotes

the second buffer in the negative direction of all dimensions.
The � is omitted when referring to the channels in both di-
rections, so

� ��
denotes the first virtual channel in either di-

rection of the second dimension.
Each processor of an � -dimensional hypercube can be la-

beled with � bits. The source of a packet is denoted � �
��� � � ����� � � ����������������������� and the destination is denoted � �
��� � � � ��� � � � ����������� � ��� � � . A packet routes from the source to
the destination by routing in dimensions in which the corre-
sponding bit in the source differs from that of the destination.
The packet routes in the positive direction of dimension

�
if�

�
� � and

�
�
� � . Similarly, the packet routes in the neg-

ative direction of dimension
�

if
�
�

� � and
�
�

� � . With
minimal routing, a packet routes in each dimension at most
once and a packet does not route in dimension

�
if
�
�
���

� .
Partially adaptive routing algorithms for wormhole-

routed hypercubes and meshes have been proposed by many
authors. A survey of these results can be found in [28].
A fully adaptive hypercube routing algorithm has been
proposed by several authors [9, 18, 22, 29]. This routing
algorithm requires two buffers in each direction of each
dimension. A packet routes in dimension order along the
first set of buffers. Each packet also has the possibility of
routing in any dimension that moves the packet closer to the
destination along the second set of buffers.

We now propose a fully adaptive minimal routing algo-
rithm for hypercubes. This routing algorithm is substantially
more adaptive than any previously proposed fully adaptive
wormhole routing algorithm for hypercubes. All previous
fully adaptive wormhole routing algorithms for hypercubes
require that the first set of buffers be used only for nonadap-
tive routing. This new routing algorithm permits the first set
of buffers to be used for partially adaptive routing. The rout-
ing algorithm is defined as follows:

Enhanced Fully Adaptive Routing Algorithm
 Assign two buffers to each direction of each dimension.
 Allow a packet to route along the second buffer at any

time.

Let ! be the lowest dimension in which the packet still needs
to route. The first set of buffers is used in the following way:

 A packet that needs to route in the negative direction of
dimension ! can use any of the first set of buffers.

 A packet that needs to route in the positive direction of
dimension ! must use

�#"� � .
 If all output buffers a packet can use are occupied, the

packet waits for
� "�

.

The Enhanced Fully Adaptive routing algorithm restricts
a packet from using the first buffer in the positive direction
after using the first buffer in a higher dimension. However, a
packet can use the first buffer in a higher dimension when-
ever the packet needs to route in the negative direction of
the lowest dimension in which the packet still needs to route.
This is a significant relaxation of the routing restrictions, es-
pecially when compared with dimension-order routing.

The degree of adaptiveness is the ratio of the number of
paths permitted by the routing algorithm to the total number
of paths, averaged over all source-destination pairs [16]. The
degree of adaptiveness for the Enhanced Fully Adaptive rout-
ing algorithm and Duato’s routing algorithm is shown in Fig-
ure 3. For comparison, the degree of adaptiveness for e-cube
(nonadaptive dimension order) routing is also shown. Para-
doxically, the degree of adaptiveness is not zero for nonadap-
tive routing. Nonadaptive routing always allows one path
and the degree of adaptiveness is zero only when there are
no permitted paths.

The results clearly show the increase in adaptiveness
that the Enhanced Fully Adaptive routing algorithm exhibits.
Duato’s routing algorithm, which was previously the most
adaptive, has a significant decrease in the degree of adaptive-
ness as the size of the hypercube increases. The Enhanced
Fully Adaptive routing algorithm also has a decreasing de-
gree of adaptiveness, however, the decrease is much more
modest. The difference in the degree of adaptiveness be-
tween Duato’s routing algorithm and Enhanced Fully Adap-
tive becomes more pronounced as the number of dimensions
increase. For a 12D hypercube, Duato’s has a degree of adap-
tiveness of about 16%, while the corresponding number for
Enhanced Fully Adaptive is over 50%.

Theorem 5 The Enhanced Fully Adaptive routing algorithm
is deadlock-free.

Proof. This proof uses the sufficient condition proved in the-
orem 1. � � is wait-connected, since a packet is always per-
mitted to wait for buffer one in the lowest dimension in which
the packet needs to route. Since a packet can wait for only

����
buffers, any cycle in the

�
�
	
must be created from wait-

ing dependencies among the
� ��

buffers (although the inter-
mediate use of

� ��
buffers could be used to create these de-

pendencies). Wormhole routing provides separate buffers in
each direction of a dimension and minimal routing is used, so
any cycle in the

�
�
	
requires at least two dimensions and

must use both directions of each dimension in the cycle. Let
! be the lowest dimension of the potential cycle. A cycle in
the

���
	
requires one of two situations: either a packet,
 � ,

waits for
� "� � while occupying

� ��
in a higher dimension of

the cycle or
 � occupies
� "� � or

� "� � as well as
� ��

in a higher
dimension and then waits for

� ��
in a different higher dimen-

sion. Since ! is the lowest dimension in the cycle,
 � does
not need to route in any dimension lower than ! after using� ��

in a higher dimension. Otherwise,
 � would be waiting
for a buffer in this lower dimension and ! would not be the

lowest dimension in the cycle. Clearly, neither situation can
occur, since
 � cannot use

� ��
in a higher dimension when
 �

needs to route in
� "� and ! is the lowest dimension in which

 � needs to route. Since the
���
	

is acyclic, the routing al-
gorithm is deadlock-free. �
Theorem 6 No restrictions imposed on the Enhanced Fully
Adaptive routing algorithm can be relaxed without permit-
ting a deadlock configuration.

Proof. There are no restrictions on the use of the second set
of buffers, so the restrictions on only the first set of buffers
must be considered. The only restriction on the first set of
buffers is that a buffer in a higher dimension cannot be used
by a packet that needs to route in the positive direction of the
lowest dimension in which the packet needs to route. Let !
be the lowest dimension and assume that the buffer used in a
higher dimension is the first buffer in the positive direction of
dimension

�
. Then there is an edge in the

���
	
from

� �� � to� "� � . The
���
	

already has edges from
�#"� � to

� ��
� , from� ��

� to
� "�
� , and from

� "�
� to

� �� � . These edges form a True
Cycle. A packet waits for only

�#"�
and the routing algorithm

is not wait-connected if
�#"�

is not a waiting buffer. The exis-
tence of a deadlock configuration follows immediately from
theorem 2. �

� � � � ��� ��� � � �

A necessary and sufficient condition for proving deadlock
freedom for both nonadaptive and adaptive interconnection
network routing algorithms has been proposed. This is a uni-
versal necessary and sufficient condition, which can be used
with any switching technique that is not inherently deadlock-
free and can be applied to any network topology. The use-
fulness of our proof technique has been demonstrated with
a fully adaptive store-and-forward routing algorithm for � -
dimensional meshes. The technique described in this paper
has also been used to prove deadlock freedom for a fully
adaptive wormhole routing algorithm for hypercubes. This
new hypercube routing algorithm is substantially more adap-
tive than any previous fully adaptive routing algorithm for
hypercubes.

We have shown that the restrictions on the Enhanced
Fully Adaptive routing algorithm cannot be relaxed without
creating a deadlock configuration. It is possible, although
unlikely, that a routing algorithm with a different set of re-
strictions could be deadlock-free while being less restrictive.
The number of restrictions cannot be reduced, however, since
there is only one restriction for each pair of dimensions.

A partial result has been given for distinguishing between
False Resource Cycles and True Cycles. In practice, the
identification of False Resource Cycles should not require re-
sorting to this formal technique. This technique works for
all suffix-closed routing algorithms, which represent all but a
very restricted class of routing algorithms. Providing an al-
gorithm to distinguish between False Resource Cycles and

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12

D
eg

re
e

of
 A

da
pt

iv
en

es
s

Hypercube Dimensions

Comparison of Enhanced, e-cube, and Duato’s Algorithms

Enhanced
Duato
e-cube

Figure 3: Degree of Adaptiveness for Hypercube Routing Algorithms

True Cycles for routing algorithms that are not suffix-closed
is an open problem.

The use of theorem 3 requires the identification of�
�
	 �
. This is needed only for routing algorithms that do

not require a packet to wait for a specific output buffer. It
should be straightforward to determine

�
�
	 �
for regular

topologies such as � -ary � -cubes and meshes. However,
a formal design methodology has been provided for those
cases where it is difficult to reduce the

�
�
	
to

���
	 �
.

This automates the task of proving deadlock freedom and
should be of use for routing algorithm designers.

� � � � ��� � � � � � � � �	�

The authors thank José Duato for many helpful and detailed
suggestions; Yu-Chee Tseng for insightful comments on the
idea of buffer waiting; Jeff May for valuable discussions con-
cerning the necessary and sufficient condition; and Anish
Arora, Dave Lutz, and Kant Patel for many thoughtful com-
ments which have improved the quality of the paper.

� ��� �
�� � � � �

[1] P. Berman, L. Gravano, G. Pifarré, and J. Sanz. Adap-
tive Deadlock- and Livelock-Free Routing With All
Minimal Paths in Torus Networks. In ���	� Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 3–12, 1992.

[2] Y. M. Boura and C. R. Das. A Class of Partially Adap-
tive Routing Algorithms for n dimensional Meshes. In
International Conference on Parallel Processing, vol-
ume III, pages 175–182, 1993.

[3] A. A. Chien. A Cost and Speed Model for k-ary n-cube
Wormhole Routers. In Hot Interconnects ’93, August
1993.

[4] R. Cypher and L. Gravano. Adaptive, Deadlock-Free
Packet Routing in Torus Networks with Minimal Stor-
age. In International Conference on Parallel Process-
ing, volume III, pages 204–211, 1992.

[5] R. Cypher and L. Gravano. Requirements for
Deadlock-Free, Adaptive Packet Routing. SIAM
Journal on Computing, 23(6):1266–1274, December
1994.

[6] W. J. Dally. Virtual-Channel Flow Control. IEEE
Transactions on Parallel and Distributed Systems,
3(2):194–205, March 1992.

[7] W. J. Dally and H. Aoki. Deadlock-Free Adap-
tive Routing in Multicomputer Networks Using Virtual
Channels. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(4):466–475, April 1993.

[8] W. J. Dally and C. L. Seitz. Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks.
IEEE Transactions on Computers, C-36(5):547–553,
May 1987.

[9] J. Duato. On the Design of Deadlock-Free Adap-
tive Routing Algorithms for Multicomputers: Design
Methodologies. In Parallel Architectures and Lan-
guages Europe 91, volume I, pages 390–405, 1991.

[10] J. Duato. A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole Net-
works. Technical report, Universidad Politecnica de
Valencia, 1993.

[11] J. Duato. A New Theory of Deadlock-Free Adaptive
Routing in Wormhole Networks. IEEE Transactions
on Parallel and Distributed Systems, 4(12):1320–1331,
December 1993.

[12] J. Duato. A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole Net-
works. In International Conference on Parallel Pro-
cessing, volume I, pages 142–149, 1994.

[13] P. T. Gaughan and S. Yalamanchili. Adaptive Rout-
ing Protocols for Hypercube InterconnectionNetworks.
IEEE Computer, 26(5):12–23, May 1993.

[14] C. Glass and L. M. Ni. Maximally Fully Adaptive Rout-
ing in 2D Meshes. In International Conference on Par-
allel Processing, volume I, pages 101–104, 1992.

[15] C. Glass and L. M. Ni. The Turn Model for Adaptive
Routing. In ��� �	� Annual International Symposium on
Computer Architecture, pages 278–287, 1992.

[16] C. Glass and L. M. Ni. The Turn Model for Adaptive
Routing. Journal of the Association for Computing Ma-
chinery, 41(5):874–902, September 1994.

[17] I. S. Gopal. Prevention of Store-and-Forward Deadlock
in Computer Networks. IEEE Transactions on Commu-
nications, COM-33(12):1258–1264, December 1985.

[18] L. Gravano, G. Pifarré, G. Denicolay, and J. Sanz.
Adaptive Deadlock-free Worm-hole Routing in Hyper-
cubes. In International Parallel Processing Sympo-
sium, pages 512–515, 1992.

[19] K. D. Günther. Prevention of Deadlocks in Packet-
Switched Data Transport Systems. IEEE Transac-
tions on Communications, COM-29(4):512–524, April
1981.

[20] P. Kermani and L. Kleinrock. Virtual Cut-Through: A
New Computer Communication Switching Technique.
Computer Networks, 3(4):267–286, September 1979.

[21] S. Konstantinidou and L. Snyder. Chaos router: archi-
tecture and performance. In ��� �	� Annual International
Symposium on Computer Architecture, pages 212–221,
1991.

[22] X. Lin, P. K. McKinley, and L. M. Ni. The Message
Flow Model for Routing in Wormhole-Routed Net-
works. In International Conference on Parallel Pro-
cessing, volume I, pages 294–297, 1993.

[23] J. May, D. N. Jayasimha, and K. Patel. Compar-
ison of Multiplexing Schemes for Wormhole-Routed
Distributed Memory Multiprocessors. In ��� � Interna-
tional Workshop on Parallel Processing, pages 211–
215, 1994.

[24] J. Y. Ngai and C. L. Seitz. A Framework for Adap-
tive Routing in Multicomputer Networks. In ��� � Annual
ACM Symposium on Parallel Algorithms and Architec-
tures, pages 1–9, 1989.

[25] L. M. Ni and P. K. McKinley. A Survey of Wormhole
Routing Techniques in Direct Networks. IEEE Com-
puter, 26(2):62–76, February 1993.

[26] G. D. Pifarré, L. Gravano, S. A. Felperin, and J. L. C.
Sanz. Fully Adaptive Minimal Deadlock-Free Packet
Routing in Hypercubes, Meshes, and Other Networks:
Algorithms and Simulations. IEEE Transactions
on Parallel and Distributed Systems, 5(3):247–263,
March 1994.

[27] L. Schwiebert and D. N. Jayasimha. Optimal Fully
Adaptive Wormhole Routing for Meshes. In Supercom-
puting ’93, pages 782–791, 1993. An extended version
of this paper will appear in the Journal of Parallel and
Distributed Computing.

[28] L. Schwiebert and D. N. Jayasimha. A Necessary
and Sufficient Condition for Deadlock-Free Wormhole
Routing. Technical Report OSU-CISRC-4/94-TR22,
The Ohio State University, April 1994. Revised De-
cember 10, 1994. Accepted for publication in the Jour-
nal of Parallel and Distributed Computing.

[29] C.-C. Su and K. G. Shin. Adaptive Deadlock-Free
Routing in Multicomputers Using Only One Extra Vir-
tual Channel. In International Conference on Parallel
Processing, volume I, pages 227–231, 1993.

[30] S. Toueg and K. Steiglitz. Some Complexity Results
in the Design of Deadlock-Free Packet Switching Net-
works. SIAM Journal on Computing, 10(4):702–712,
November 1981.

