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1 Introduction

1.1 Motivation
Most current state-of-the-art dependency parsers take various statistical learning approaches (Mcdonald and
Pereira, 2006; Nivre, 2008; Huang and Sagae, 2010; Rush and Petrov, 2012). The biggest advantage of
statistical parsing is found in the ability to adapt to new data without modifying the parsing algorithm.
Statistical parsers can be trained on data from new domains, genres, or languages as long as they are
provided with sufficiently large training data from the new sources. On the other hand, this is also the
biggest drawback for statistical parsing because annotating such large training data is manually intensive
work that is costly and time consuming.

Although a few manually annotated dependency Treebanks are available for English (Rambow et al.,
2002; Čmejrek et al., 2004), constituent Treebanks are still more dominant (Marcus et al., 1993; Weischedel
et al., 2011). It has been shown that the Penn Treebank style constituent trees can reliably be converted
to dependency trees using head-finding rules and heuristics (Johansson and Nugues, 2007; de Marneffe and
Manning, 2008a; Choi and Palmer, 2010). By automatically converting these constituent trees to dependency
trees, statistical dependency parsers have access to a larger amount of training data. Few tools are available
for constituent to dependency conversion. Two of the most popular ones are the Lth and the Stanford
dependency converters.1 The Lth converter had been used to provide English data for the CoNLL’07-09
shared tasks (Nivre et al., 2007; Surdeanu et al., 2008; Hajič et al., 2009). The Lth converter makes several
improvements over its predecessor, Penn2Malt,2 by adding syntactic and semantic dependencies retained
from function tags (e.g., PRD, TMP) and producing long-distance dependencies caused by empty categories or
gapping relations.3 The Stanford converter was used for the SANCL’12 shared task (Petrov and McDonald,
2012), and is perhaps the most widely used dependency converter at the moment. The Stanford converter
gives fine-grained dependency labels useful for many nlp tasks. Appendix B shows descriptions of the
CoNLL and the Stanford dependency labels generated by these two tools.

Both converters perform well for most cases; however, they are somewhat customized to the Penn Tree-
bank (mainly to the Wall Street Journal corpus; see Marcus et al. (1993)), so do not work as well when
applied to different corpora. For example, the OntoNotes Treebank (Weischedel et al., 2011) contains addi-
tional constituent tags not used by the Penn Treebank (e.g., EDITED, META), and shows occasional departures
from the Penn Treebank guidelines (e.g., inserting NML phrases, separating hyphenated words; see Figure 1).
These new formats affect the ability of existing tools to find correct dependencies, motivating us to aim for
a more resilient approach.

ADJP

NNP JJ

New York-based

ADJP

NML

New York

NNP NNP

based

HYPH VBN

-

Figure 1: Structural differences in the Penn Treebank (left) and the OntoNotes Treebank (right). The
hyphenated word is tokenized, HYPH, and the nominal phrase is grouped, NML, in the OntoNotes.

Producing more informative trees provides additional motivation. The Stanford converter generates depen-
dency trees without using information such as function tags (Appendix A.3), empty categories (Section 2), or

1The Lth dependency converter: http://nlp.cs.lth.se/software/treebank_converter/
The Stanford dependency converter: http://nlp.stanford.edu/software/stanford-dependencies.shtml

2Penn2Malt: http://stp.lingfil.uu.se/~nivre/research/Penn2Malt.html
3The term “long-distance dependency” is used to indicate dependency relations between words that are not within the same

domain of locality.

5



gapping relations (Section 5.1), which is provided in manually annotated but not in automatically generated
constituent trees. This enables the Stanford converter to generate the same kind of dependencies given ei-
ther manually or automatically generated constituent trees. However, it sometimes misses important details
such as long-distance dependencies, which can be retrieved from empty categories, or produces unclassified
dependencies that can be disambiguated by function tags. This becomes an issue when this converter is
used for generating dependency trees for training because statistical parsers trained on these trees would not
reflect these details.

The dependency conversion described here takes the Stanford dependency approach as the core structure
and integrates the CoNLL dependency approach to add long-distance dependencies, to enrich important re-
lations like object predicates, and to minimize unclassified dependencies. The Stanford dependency approach
is taken for the core structure because it gives more fine-grained dependency labels and is currently used
more widely than the CoNLL dependency approach. For our conversion, head-finding rules and heuristics
are completely reanalyzed from the previous work to handle constituent tags and relations not introduced by
the Penn Treebank. Our conversion has been evaluated with several different constituent Treebanks (Marcus
et al., 1993; Nielsen et al., 2010; Weischedel et al., 2011; Verspoor et al., 2012) and showed robust results
across these corpora.

1.2 Background
1.2.1 Dependency graph

A dependency structure can be represented as a directed graph. For a given sentence s = w1, . . . , wn, where
wi is the i’th word token in the sentence, a dependency graph Gs = (Vs, Es) can be defined as follows:

Vs = {w0 = root, w1, . . . , wn}
Es = {(wi

r−→ wj) : i 6= j, wi ∈ Vs, wj ∈ Vs − {w0}, r ∈ Rs}
Rs = A subset of all dependency relations in s

wi
r−→ wj is a directed edge from wi to wj with a label r, which implies that wi is the head of wj with

a dependency relation r. A dependency graph is considered well-formed if it satisfied all of the following
properties:

• Root: there must be a unique vertex, w0, with no incoming edge.
¬[∃k. (w0 ← wk)]

• Single head: each vertex wi>0 must have a single incoming edge.
∀i. [i > 0⇒ ∀j. [(wi ← wj)⇒ ¬[∃k. (k 6= j) ∧ (wi ← wk)]]]

• Connected: there must be an undirected path between any two vertices.4
[∀i, j. (wi − wj)], where wi − wj indicates an undirected path between wi and wj .

• Acyclic: a directed path between any two vertices must not be cyclic.
¬[∃i, j.(wi ←∗ wj) ∧ (wi →∗ wj)], where wi →∗ wj indicates a directed path from wi to wj .

Sometimes, projectivity is also considered a property of a well-formed dependency graph. When projectivity
is considered, no crossing edge is allowed when all vertices are lined up in linear-order and edges are drawn
above the vertices (Figure 2). Preserving projectivity can be useful because it enables regeneration of the
original sentence from its dependency graph without losing the word order. More importantly, it reduces
parsing complexity to O(n) (Nivre and Scholz, 2004). Although preserving projectivity has a few advantages,
non-projective dependencies are often required, especially in flexible word order languages, to represent
correct dependencies. Even in rigid word order languages such as English, non-projective dependencies are
necessary to represent long-distance dependencies. In Figure 3, there is no way of describing the dependency
relations for both “bought → yesterday” and “car → is” without having their edges cross. Because of such
cases, projectivity is dropped from the properties of a well-formed dependency graph for this research.
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Figure 2: An example of a projective dependency graph.

Figure 3: An example of a non-projective dependency graph. The dependency between car and is is non-
projective because it crosses the dependency between bought and yesterday.

A well-formed dependency graph, with or without the projective property, satisfies all of the conditions for
tree structures, so is called a ‘dependency tree’.

1.2.2 Types of empty categories

Empty categories are syntactic units, usually nominal phrases, that appear in the surface form to signal
the canonical locations of syntactic elements in its deep structure (Cowper, 1992; Chomsky, 1995). Table 1
shows a list of empty categories used in constituent Treebanks for English. Some of these empty categories
have overloaded meanings. For instance, *PRO* indicates empty subjects caused by different pro-drop cases
(e.g., control, imperative, nominalization). See Bies et al. (1995); Taylor (2006) for more details about these
empty categories.

Type Description
*PRO* Empty subject of pro-drop (e.g., control, ecm, imperative, nominalization)
*T* Trace of wh-movement and topicalization
* Trace of subject raising and passive construction
0 Null complementizer
*U* Unit (e.g., $)
*ICH* Pseudo-attach: Interpret Constituent Here
*?* Placeholder for ellipsed material
*EXP* Pseudo-attach: EXPletives
*RNR* Pseudo-attach: Right Node Raising
*NOT* Anti-placeholder in template gapping
*PPA* Pseudo-attach: Permanent Predictable Ambiguity

Table 1: A list of empty categories used in constituent Treebanks for English.

1.3 Overview
Figure 4 shows the overview of our constituent to dependency conversion. Given a constituent tree, empty
categories are mapped to their antecedents first (step 2; see Section 2). This step relocates phrasal nodes
regarding certain kinds of empty categories that may cause generation of non-projective dependencies.5 Once
empty categories are mapped, special cases such as apposition, coordination, or small clauses are handled

4An ‘undirected path’ implies a path between two vertices, regardless of their directionality.
5Although phrases in constituency trees are relocated, word order in dependency trees remains the same.

7



next (step 3; see Sections 3.2 to 3.4). Finally, general cases are handled using head-finding rules and heuristics
(step 4; see Sections 3.1 and 4).

NN CC NN WDT PRP VB -NONE-

joyandPeace that we *T*-1

NP

want

SBAR

WHNP-1 S

NP VP

NP

NP

joyandPeace that we want

cc
conj

rcmod

nsubj
dobj

root

root

joyandPeace that we want

cc
conj

root

5. Add secondary dependencies.

joyandPeace that we want

cc
conj

rcmod

nsubj
dobj

root

root

ref

3. Handle special cases.

4. Handle general cases.

NN CC NN PRP VB WDT

joyandPeace we that

NP

want

SBAR

S

NP VP

WHNP-1

NP

2. Map empty categories.

1. Input a constituent tree.

6. Output a converted dependency tree.

Figure 4: The overview of constituent to dependency conversion.

Secondary dependencies are added as a separate layer of this dependency tree (step 5; see Section 5). Addi-
tionally, syntactic and semantic function tags in the constituent tree are preserved as features of individual
nodes in the dependency tree (not shown in Figure 4; see Appendix A.3).
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2 Mapping empty categories
Most long-distance dependencies can be represented without using empty categories in dependency structure.
In English, long-distance dependencies are caused by certain linguistic phenomena such as wh-movement,
topicalization, discontinuous constituents, etc. It is difficult to find long-distance dependencies during au-
tomatic parsing because they often introduce dependents that are not within the same domain of locality,
resulting in non-projective dependencies (McDonald and Satta, 2007; Koo et al., 2010; Kuhlmann and Nivre,
2010).

Four types of empty categories are used to represent long-distance dependencies during our conversion:
*T*, *RNR*, *ICH*, and *PPA* (see Table 1). Note that the CoNLL dependency approach used *EXP* to
represent extraposed elements in expletive constructions, which is not used in our approach because the
annotation of *EXP* is somewhat inconsistent across different corpora.

2.1 Wh-movement
Wh-movement is represented by *T* in constituent trees. In Figure 5, WHNP-1 is moved from the object
position of the subordinate verb liked and leaves a trace, *T*-1, at its original position. Figure 6 shows a
dependency tree converted from the constituent tree in Figure 5. The dependency of WHNP-1 is derived from
its original position so that it becomes a direct object of liked (DOBJ; Section 4.5.2).

Figure 5: An example of wh-movement.

Figure 6: A dependency tree converted from the constituent tree in Figure 5

Wh-complementizers can be moved from several positions. In Figure 7, WHNP-1 is moved from the preposi-
tional phrase, PP, so in Figure 8, the complementizer what becomes an object of the preposition in (POBJ;
Section 4.12.2). Notice that the POBJ dependency is non-projective; it crosses the dependency between knew
and was. This is a typical case of a non-projective dependency caused by wh-movement.
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Figure 7: Another example of wh-movement.

Figure 8: A dependency tree converted from the constituent tree in Figure 7. The dependency derived from
the wh-movement, POBJ, is indicated by a dotted line.

2.2 Topicalization
Topicalization is also represented by *T*. In Figure 9, S-1 is moved from the subordinate clause, SBAR, and
leaves a trace behind. In Figure 10, the head of S-1, liked, becomes a dependent of the matrix verb seemed
(ADVCL; Section 4.9.1), and the preposition like becomes a dependent of the subordinate verb liked (MARK;
Section 4.9.3). The MARK dependency is non-projective such that it crosses the dependency between Root
and seemed.

Figure 9: An example of topicalization.

There are a few cases where *T* mapping causes cyclic dependency relations. In Figure 11, *T*-1 is mapped
to S-1 that is an ancestor of itself. Thus, the head of S-1, bought, becomes a dependent of the subordinate

10



Figure 10: A dependency tree converted from the constituent tree in Figure 9. The dependency derived from
the topicalization, MARK, is indicated by a dotted line.

verb said while the head of the subordinate clause, said, becomes a dependent of the matrix verb bought.
Since this creates a cyclic relation in the dependency tree, such traces are ignored during our conversion
(Figure 12).

Figure 11: An example of topicalization, where a topic movement creates a cyclic relation.

Figure 12: A dependency tree converted from the constituent tree in Figure 11.

2.3 Right node raising
Right node raising occurs in coordination where a constituent is governed by multiple parents that are not on
the same level (Levine, 1985). Right node raising is represented by *RNR* in constituent trees. In Figure 13,
NP-1 should be governed by both PP-1 and PP-2, where *RNR*-1’s are located. Making NP-1 dependents of
both PP-1 and PP-2 breaks the single head property (Section 1.2.1); instead, the dependency of NP-1 is
derived from its closest *RNR*-1 in our conversion. In Figure 14, her becomes a dependent of the head of
PP-2, in. The dependency between her and the head of PP-1, for, is preserved as a secondary dependency, REF
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(referent; see Section 5). Thus, her is a dependent of only PP-2 in our dependency tree while the dependency
to PP-2 can still be retrieved through the secondary dependency.6

Figure 13: An example of right node raising.

Figure 14: A dependency tree converted from the constituent tree in Figure 13. The secondary dependency,
RNR, is added to a separate layer to preserve tree properties.

Note that the CoNLL dependency approach makes her a dependent of the head of PP-1, which creates a non-
projective dependency (the dependency between for and her in Figure 15). This non-projective dependency
is avoided in our approach without losing any referential information.

Figure 15: A CoNLL style dependency tree converted from the constituent tree in Figure 13. The dependency
caused by right node raising, PMOD, is indicated by a dotted line.

6Secondary dependencies are not commonly used in dependency structures. These are dependencies derived from gapping
relations, referent relations, right node raising, and open clausal subjects, which may break tree properties (Section 5). During
our conversion, secondary dependencies are preserved in a separate layer so they can be learned either jointly or separately from
other dependencies.
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2.4 Discontinuous constituent
A discontinuous constituent is a constituent that is separated from its original position by some intervening
material. The original position of a discontinuous constituent is indicated by *ICH* in constituent trees.
In Figure 16, PP-1 is separated from its original position, *ICH*-1, by the adverb phrase, ADVP. Thus, in
Figure 17, the head of the prepositional phrase, than, becomes a prepositional modifier (PREP; Section 4.12.3)
of the head of the adjective phrase (ADJP-2), expensive. The PREP dependency is non-projective; it crosses
the dependency between is and now.

Figure 16: An example of discontinuous constituents.

Figure 17: A dependency tree converted from the constituent tree in Figure 16. The dependency derived
from the *ICH* movement, PREP, is indicated by a dotted line.
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3 Finding dependency heads

3.1 Head-finding rules
Table 2 shows head-finding rules (henceforth, headrules) derived from various constituent Treebanks. For
each phrase (or clause) in a constituent tree, the head of the phrase is found by using its headrules, and all
other nodes in the phrase become dependents of the head. This procedure goes on recursively until every
constituent in the tree becomes a dependent of one other constituent, except for the top constituent, which
becomes the root of the dependency tree. A dependency tree generated by this procedure is guaranteed to
be well-formed (Section 1.2.1), and may or may not be non-projective, depending on how empty categories
are mapped (Section 2).

ADJP r JJ*|VB*|NN*;ADJP;IN;RB|ADVP;CD|QP;FW|NP;*
ADVP r VB*;RP;RB*|JJ*;ADJP;ADVP;QP;IN;NN;CD;NP;*
CONJP l CC;VB*;NN*;TO|IN;*
EDITED r VP;VB*;NN*|PRP|NP;IN|PP;S*;*
EMBED r S*;FRAG|NP;*
FRAG r VP;VB*;-PRD;S|SQ|SINV|SBARQ;NN*|NP;PP;SBAR;JJ*|ADJP;RB|ADVP;INTJ;*
INTJ l VB*;NN*;UH;INTJ;*
LST l LS|CD;NN;*
META l NP;VP|S;*
NAC r NN*;NP;S|SINV;*
NML r NN*|NML;CD|NP|QP|JJ*|VB*;*
NP r NN*|NML;NX;PRP;FW;CD;NP;-NOM;QP|JJ*|VB*;ADJP;S;SBAR;*
NX r NN*;NX;NP;*
PP l RP;TO;IN;VB*;PP;NN*;JJ;RB;*
PRN r VP;NP;S|SBARQ|SINV|SQ;SBAR;*
PRT l RP;PRT;*
QP r CD;NN*;JJ;DT|PDT;RB;NP|QP;*
RRC l VP;VB*;-PRD;NP|NN*;ADJP;PP;*
S r VP;VB*;-PRD;S|SQ|SINV|SBARQ;SBAR;NP;PP;*
SBAR r VP;S|SQ|SINV;SBAR*;FRAG|NP;*
SBARQ r VP;SQ|SBARQ;S|SINV;FRAG|NP;*
SINV r VP;VB*;MD;S|SINV;NP;*
SQ r VP;VB*;SQ;S;MD;NP;*
UCP l *
VP l VP;VB*;MD|TO;JJ*|NN*|IN;-PRD;NP;ADJP|QP;S;*
WHADJP r JJ*|VBN;WHADJP|ADJP;*
WHADVP r RB*|WRB;WHADVP;*
WHNP r NN*;WP|WHNP;NP|NML|CD;JJ*|VBG;WHADJP|ADJP;DT;*
WHPP l IN|TO;*
X r *

Table 2: Head-finding rules. l/r implies the search direction for the leftmost/rightmost constituent. */+
implies 0/1 or more characters and -TAG implies any pos tag with the specific function tag. | implies a
logical or and ; is a delimiter between pos tags. Each rule gives higher precedence to the left (e.g., VP takes
the highest precedence in S).

Notice that the headrules in Table 2 give information about which constituents can be the heads, but do
not show which constituents cannot be the heads. Some constituents are more likely to be dependents than
heads. In Figure 18, both Three times and a week are noun phrases under another noun phrase. According
to our headrules, the rightmost noun phrase, NP-TMP, is chosen to be the head of this phrase. However,
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NP-TMP is actually an adverbial modifier of NP-H (NPADVMOD; Section 4.9.5); thus, NP-H should be the head of
this phrase instead. This indicates that extra information is required to retrieve correct heads for this kind
of phrases.

Figure 18: An example of a noun phrase modifying another noun phrase.

The getHead(N,R) method in Algorithm 3.1 finds the head of a phrase (lines 2-7) and makes all other
constituents in the phrase dependents of the head (lines 8-11). The input to the method is the ordered list of
children N and the corresponding headrules R of the phrase. The getHeadFlag(C) method in Algorithm 3.2
returns the head-flag of a constituent C, which indicates the dependency precedence of C: the lower the flag
is, the sooner C can be chosen as the head. For example, NP-TMP in Figure 18 is skipped during the first
iteration (line 2 in Algorithm 3.1) because it has the adverbial function tag TMP, so gets a flag of 1 (line 1 in
Algorithm 3.2). Alternatively, NP-H is not skipped because it gets a flag of 0. Thus, NP-H becomes the head
of this phrase.

Algorithm 3.1 : getHead(N,R)

Input: An ordered list N of constituent nodes that are siblings,
The headrules R of the parent of nodes in N .

Output: The head constituent of N with respect to R.
All other nodes in N become dependents of the head.

1: if the search direction of R is r then N .reverse() # the 2nd column in Table 2
2: for flag in {0 . . . 3} do
3: for tags in R do # e.g,. tags← NN*|NML
4: for node in N do
5: if (flag = getHeadFlag(node)) and (node is tags) then
6: head ← node
7: break the highest for-loop
8: for node in N do
9: if node 6= head then
10: node.head ← head
11: node.label ← getDependencyLabel(node, node.parent, head) # Section 4.3
12: return head

Algorithm 3.2 : getHeadFlag(C)

Input: A constituent C.
Output: The head-flag of C, that is either 0, 1, 2, or 3.

1: if hasAdverbialTag(C) return 1 # Section 4.9
2: if isMetaModifier(C) return 2 # Section 4.14.4
3: if (C is an empty category) or isPunctuation(C) return 3 # Section 4.14.8
4: return 0

The following sections describe heuristics to resolve special cases such as apposition, coordination, and small
clauses, where correct heads cannot always be retrieved by headrules alone.
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3.2 Apposition
Apposition is a grammatical construction where multiple noun phrases are placed side-by-side and later noun
phrases give additional information about the first noun phrase. For example, in a phrase “John, my brother ”,
both John and my brother are noun phrases such that my brother gives additional information about its
preceding noun phrase, John. The findApposition(C) method in Algorithm 3.3 makes each appositional
modifier a dependent of the first noun phrase in a phrase (lines 8-9). An appositional modifier is either a
noun phrase without an adverbial function tag (line 5), any phrase with the function tag HLN|TTL (headlines
or titles; line 6), or a reduced relative clause containing a noun phrase with the function tag PRD (non-VP
predicate; line 7).

Algorithm 3.3 : findApposition(C)

Input: A constituent C.
Output: True if C contains apposition; otherwise, False.

1: if (C is not NP|NML) or (C contains NN*) or (C contains no NP) return False
2: let f be the first NP|NML in C that contains no POS # skip possession modifier
3: b← False
4: for s in all children of C preceded by f do
5: if ((s is NML|NP) and (not hasAdverbialTag(s))) # Section 4.9
6: or (s has HLN|TTL)
7: or ((s is RRC) and (s contains NP-PRD)) then
8: s.head ← f
9: s.label ← APPOS
10: b← True
11: return b

3.3 Coordination
Several approaches have been proposed for coordination representation in dependency structure. The Stan-
ford dependency approach makes the leftmost conjunct the head of all other conjuncts and conjunctions.
The Prague dependency approach makes the rightmost conjunction the head of all conjuncts and conjunc-
tions (Čmejrek et al., 2004). The CoNLL dependency approach makes each preceding conjunct or conjunction
the head of its following conjunct or conjunction.

Stanford Prague

CoNLL Clear

Figure 19: Different ways of representing coordination in dependency structure.

Our conversion takes an approach similar to the CoNLL dependency approach, which had been shown to
work better for transition-based dependency parsing (Nilsson et al., 2006). There is one small change in our
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approach such that conjunctions do not become the heads of conjuncts (Clear in Figure 19). This way,
conjuncts are always dependents of their preceding conjuncts whether or not conjunctions exist in between.

The getCoordinationHead(C) method in Algorithm 3.4 finds dependencies between conjuncts and returns
the head of the leftmost conjunct in C. The algorithm begins by checking if C is coordinated (line 1). For
each constituent in C, the algorithm checks if it matches the conjunct head pattern of C (line 21), which
varies by C’s phrase type. For instance, only a non-auxiliary verb or a verb phrase can be a conjunct head in a
verb phrase (see getConjunctHeadPattern(C) in Algorithm 3.6). When a coordinator (a conjunction, comma,
or colon) is encountered, a sub-span is formed (line 9). If the span includes at least one constituent matching
the conjunct head pattern, it is considered a new conjunct and the head of the conjunct is retrieved by the
headrule of C (line 10). The head of the current conjunct becomes a dependent of the head of its preceding
conjunct if it exists (see getConjunctHead(S,R, pHead) in Algorithm 3.8). If there is no constituent matching
the pattern, all constituents within the span become dependents of the head of the previous conjunct if it
exists (lines 16-19). This procedure goes on iteratively until all constituents in C are encountered. Note
that the getCoordinationHead(C,R) method is called before the findApposition(C) method in Algorithm 3.3;
thus, a constituent can be a conjunct or an appositional modifier, but not both.

Algorithm 3.4 : getCoordinationHead(C,R)

Input: A constituent C and the headrule R of C.
Output: The head of the leftmost conjunct in C if exists; otherwise, null.

1: if not containsCoordination(C) return null
2: p← getConjunctHeadPattern(C)
3: pHead ← null # previous conjunct head
4: isPatternFound ← False
5: let f be the first child of C
6: for c in all children of C do
7: if isCoordinatingConjunction(c) or (c is ,|:) then # Section 4.10.2
8: if isPatternFound then
9: let S be a sub-span of C from f to c (exclusive)
10: pHead ← getConjunctHead(S,R, pHead)
11: c.head ← pHead
12: c.label ← getDependencyLabel(c, C, pHead) # Section 4.3
13: isPatternfound ← False
14: let f be the next sibling of c in C
15: elif pHead 6= null then
16: let S be a sub-span of C from f to c (inclusive)
17: for s in S do
18: s.head ← pHead
19: s.label ← getDependencyLabel(s, C, pHead) # Section 4.3
20: let f be the next sibling of c in C
21: elif isConjunctHead(c, C, p) then isPatternFound ← True # a conjunct is found
22: if pHead = null return null # no conjunct is found
23: let S be a sub-span of C from f to c (inclusive)
24: if S is not empty then getConjunctHead(S,R, pHead)
25: return the head of the leftmost conjunct

The containsCoordination(C) method in Algorithm 3.5 decides whether a constituent C is coordinated. C
is coordinated if it is an unlike coordinated phrase (line 1), a noun phrase containing a constituent with the
function tag ETC as the rightmost child (line 2-4), or contains a conjunction followed by a conjunct (lines 5-9).
The getConjunctHeadPattern(C) method in Algorithm 3.6 returns a pattern that matches potential conjunct
heads of C. In theory, a verb phrase should contain at least one non-auxiliary verb or a verb phrase that
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matches the pattern (VP|VB[ in line 9); however, this is not always true in practice (e.g., VP-ellipsis, randomly
omitted verbs in web-texts). Moreover, phrases such as unlike coordinated phrases, quantifier phrases, or
fragments do not always show clear conjunct head patterns. The default pattern of * is used for these cases,
indicating that any constituent can be the potential head of a conjunct in these phrases.

Algorithm 3.5 : containsCoordination(C)

Input: Constituent C.
Output: True if C contains coordination; otherwise, False.

1: if C is UCP return True # unlike coordinated phrase
2: if (C is NML|NP) and (C contains -ETC) then # et cetera (etc.)
3: let e be a child of N with -ETC
4: if e is the rightmost element besides punctuation return True
5: for f in all children of C do # skip pre-conjunctions
6: if not (isCoordinatingConjunction(f) or isPunctuation(f)) then # App. 4.10.2, 4.14.8
7: break
8: let N be all children of C preceded by f
9: return N contains CC|CONJP

Algorithm 3.6 : getConjunctHeadPattern(C)

Input: A constituent C.
Output: The conjunct head pattern of C if exists; otherwise, the default pattern, *.

If C contains no child satisfying the pattern, returns the default pattern, *.
VB[ implies a non-auxiliary verb (Section 4.6).
S[ implies a clause without an adverbial function tag (Section 4.9).

1: if C is ADJP then p← ADJP|JJ*|VBN|VBG
2: elif C is ADVP then p← ADVP|RB*
3: elif C is INTJ then p← INTJ|UH
4: elif C is PP then p← PP|IN|VBG
5: elif C is PRT then p← PRT|RP
6: elif C is NML|NP then p← NP|NML|NN*|PRP|-NOM
7: elif C is NAC then p← NP
8: elif C is NX then p← NX
9: elif C is VP then p← VP|VB[

10: elif C is S then p← S[|SINV|SQ|SBARQ
11: elif C is SQ then p← S[|SQ|SBARQ
12: elif C is SINV then p← S[|SINV
13: elif C is SBAR* then p← SBAR*
14: elif C is WHNP then p← NN*|WP
15: elif C is WHADJP then p← JJ*|VBN|VBG
16: elif C is WHADVP then p← RB*|WRB|IN
17: if (p is not found) or (C contains no p) return *
18: return p

A pattern p retrieved by the getConjunctHeadPattern(C) method in Algorithm 3.6 is used in the isCon-
junctHead(C,P, p) method in Algorithm 3.7 to decide whether a constituent C is a potential conjunct head
of its parent P . No subordinating conjunction is considered a conjunct head in a subordinate clause (line 1);
this rule is added to prevent a complementizer such as whether from being the head of a clause starting
with expressions like whether or not. When the default pattern is used, the method accepts any constituent
except for a few special cases (lines 3-7). The method returns True if C matches p (line 9).
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Algorithm 3.7 : isConjunctHead(C,P, p)

Input: Constituents C and P , where P is the parent of C,
and the conjunct head pattern p of P .

Output: True if C matches the conjunct head pattern; otherwise, False.

1: if (P is SBAR) and (C is ID|DT) return False # Section 4.9.3
2: if p is * then # the default pattern
3: if isPunctuation(C) return False # Section 4.14.8
4: if isInterjection(C) return False # Section 4.14.3
5: if isMetaModifier(C) return False # Section 4.14.4
6: if isParentheticalModifier(C) return False # Section 4.14.5
7: if isAdverbialModifier(C) return False # Section 4.9.2
8: return True
9: if C is p return True
10: return False

Finally, the getConjunctHead(S,R, pHead) method in Algorithm 3.8 finds the head of a conjunct S and makes
this head a dependent of its preceding conjunct head, pHead. The head of S is found by the getHead(N,R)
method in Algorithm 3.1 where R is the headrule of S’s parent. The dependency label CONJ is assigned to
this head except for the special cases of interjections and punctuation (lines 4-6).

Algorithm 3.8 The getConjunctHead(S,R, pHead) method.

Input: A constituent C, a sub-span S of C, the headrule R of C, and the previous conjunct head
pHead in C.

Output: The head of S. All other nodes in S become dependents of the head.

1: cHead ← getHead(S,R) # Section 3.1
2: if pHead 6= null then
3: cHead.head ← pHead
4: if isInterjection(C) then cHead.label ← INTJ # Section 4.14.3
5: elif isPunctuation(C) then cHead.label ← PUNCT # Section 4.14.8
6: else cHead.label ← CONJ # Section 4.10.1
7: return cHead

3.4 Small clauses
Small clauses are represented as declarative clauses without verb phrases in constituent trees. Small clauses
may not contain internal subjects. In Figure 20, both S-1 and S-2 are small clauses but S-1 contains an
internal subject, me, whereas the subject of S-2 is controlled externally. This distinction is made because
S-1 can be rewritten as a subordinate clause such as “I am her friend ” whereas such a transformation is not
possible for S-2. In other words, me her friend as a whole is an argument of considers whereas me and her
friend are separate arguments of calls.

Figure 21 shows dependency trees converted from the trees in Figure 20. A small clause with an internal
subject is considered a clausal complement (CCOMP; the left tree in Figure 20) whereas one without an internal
subject is considered an object predicate (OPRD; the right tree in Figure 20), implying that it is a non-VP
predicate of the object. This way, although me has no direct dependency to friend, their relation can be
inferred through this label. Note that the CoNLL dependency approach uses the object predicate for both
kinds of small clauses such that me and her friend become separate dependents of considers, as they are
for calls. This analysis is not taken in our approach because we want our dependency trees to be consistent
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with the original constituent trees. Preserving the original structure makes it easier to integrate additional
information to the converted dependency trees that has been already annotated on top of these constituent
trees (e.g., semantic roles in PropBank).

Figure 20: Examples of small clauses with internal (left) and external (right) subjects.

Figure 21: Dependency trees converted from the constituent trees in Figure 20.

For passive constructions, OPRD is applied to both kinds of small clauses because a dependency between the
object and the non-VP predicate is lost by the NP movement. In Figure 22, I is moved from the object
position to the subject position of considered (NSUBJPASS; Section 4.4.6); thus, it is no longer a dependent of
friend. The dependency between I and friend can be inferred through OPRD without adding more structural
complexity to the tree.

Figure 22: An example of a small clause in a passive construction.
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3.5 Hyphenation
Recent Treebanks tokenize certain hyphenated words.7 In Figure 23, a noun phrase “The Zhuhai-Hong Kong-
Macao bridge” is tokenized to “The Zhuhai - Hong Kong - Macao bridge”. In our dependency approach,
these hyphenated words are assigned special dependency labels, HMOD (modifier in hyphenation) and HYPH
(hyphen), which are borrowed from the CoNLL dependency approach. In Figure 24, −3 and −6 become
dependents of Kong and Macao respectively with the dependency label, HYPH. Similarly, Zhuhai and Kong
become dependents of Kong and Macao respectively with the dependency label, HMOD.

Figure 23: Examples of hyphenated words.

Figure 24: A dependency tree converted from the constituent tree in Figure 23.

The findHyphenation(C) method in Algorithm 3.9 finds dependencies in hyphenations and returns True if
such dependencies are found; otherwise, returns False.

Algorithm 3.9 : findHyphenation(C)

Input: A constituent C whose pos tag is VP.
Output: True if C contains hyphens; otherwise, False.

1: b← False
2: i← 0
3: while i+ 2 < the total number of C’s children do
4: ci ← i’th child of C
5: ci+1 ← (i+ 1)’th child of C
6: ci+2 ← (i+ 2)’th child of C
7: if ci+1 is HYPH then
8: ci.head ← ci+2; ci.label ← HMOD
9: ci+1.head ← ci+2; ci+1.label ← HYPH
10: b← True
11: i← i+ 1
12: return b

7See Section 1.1 for more details about the format changes in recent Treebanks.
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4 Assigning dependency labels

4.1 Clear dependency labels
Table 3 shows a list of dependency labels, called the Clear dependency labels, generated by our dependency
conversion. These labels are mostly inspired by the Stanford dependency approach, partially borrowed from
the CoNLL dependency approach, and newly introduced by the Clear dependency approach to minimize
unclassified dependencies. The following subsections show detailed descriptions of the Clear dependency
labels. Section 4.2 shows a comparison between the Clear and the Stanford dependencies.

Label Description Label Description
ACOMP Adjectival complement META∗∗ Meta modifier
ADVCL Adverbial clause modifier NEG Negation modifier
ADVMOD Adverbial modifier NMOD∗ Modifier of nominal
AGENT Agent NN Noun compound modifier
AMOD Adjectival modifier NPADVMOD Noun phrase as ADVMOD
APPOS Appositional modifier NSUBJ Nominal subject
ATTR Attribute NSUBJPASS Nominal subject (passive)
AUX Auxiliary NUM Numeric modifier
AUXPASS Auxiliary (passive) NUMBER Number compound modifier
CC Coordinating conjunction OPRD∗ Object predicate
CCOMP Clausal complement PARATAXIS Parataxis
COMPLM Complementizer PARTMOD Participial modifier
CONJ Conjunct PCOMP Complement of a preposition
CSUBJ Clausal subject POBJ Object of a preposition
CSUBJPASS Clausal subject (passive) POSS Possession modifier
DEP Unclassified dependent POSSESSIVE Possessive modifier
DET Determiner PRECONJ Pre-correlative conjunction
DOBJ Direct object PREDET Predeterminer
EXPL Expletive PREP Prepositional modifier
HMOD∗ Modifier in hyphenation PRT Particle
HYPH∗ Hyphen PUNCT Punctuation
INFMOD Infinitival modifier QUANTMOD Quantifier phrase modifier
INTJ∗∗ Interjection RCMOD Relative clause modifier
IOBJ Indirect object ROOT Root
MARK Marker XCOMP Open clausal complement

Table 3: A list of the Clear dependency labels. Labels followed by ∗ are borrowed from the CoNLL
dependency approach. Labels followed by ∗∗ are newly introduced by the Clear dependency approach.
HMOD and HYPH labels are added later.

4.2 Comparison to the Stanford dependency approach
Treating dependency trees generated by the Stanford dependency approach as gold-standard, the Clear
dependency approach shows a labeled attachment score of 95.39%, an unlabeled attachment score of 90.39%,
and a label accuracy of 93.01%. For comparison, the OntoNotes Treebank is used, which consists of various
corpora in multiple genres. Out of 138K dependency trees generated by our conversion, 3.69% of them
contain at least one non-projective dependency. Out of 2.6M dependencies, 3.62% are unclassified by the
Stanford converter whereas 0.23% are unclassified by our approach, that is a 93.65% proportional reduction
in error. A dependency is considered unclassified if it is assigned with the label, DEP (Section 4.14.2). Table 5
shows a list of the top 40 dependency labels generated by our approach that are unclassified by the Stanford
dependency approach.8

8The following options are used for the Stanford dependency conversion, which is the same setup that was used for the
SANCL’12 shared task (Petrov and McDonald, 2012): -basic -conllx -keepPunct -makeCopulaHead.

22



Clear Count Stanford
ACOMP 20,325 ACOMP(98.19)
ADVCL 33,768 ADVCL(53.43), XCOMP(19.79), DEP(11.33), CCOMP(6.67), PARTMOD(6.04)
ADVMOD 101,134 ADVMOD(96.38)
AGENT 4,756 PREP(99.62)
AMOD 131,971 AMOD(97.93)
APPOS 17,869 APPOS(54.80), DEP(40.56)
ATTR 22,597 ATTR(81.87), NSUBJ(15.41)
AUX 106,428 AUX(99.98)
AUXPASS 19,289 AUXPASS(99.99)
CC 68,522 CC(99.26)
CCOMP 42,354 CCOMP(78.50), DEP(12.16), XCOMP(6.73)
COMPLM 13,130 COMPLM(94.94)
CONJ 61,270 CONJ(97.42)
CSUBJ 1,766 CSUBJ(92.19), DEP(5.32)
CSUBJPASS 72 CSUBJPASS(91.67), DEP(6.94)
DEP 4,046 DEP(90.06), NSUBJ(5.98)
DET 214,488 DET(99.82)
DOBJ 112,856 DOBJ(98.90)
EXPL 4,373 EXPL(99.20)
INFMOD 5,697 INFMOD(98.05)
INTJ 10,947 DEP(99.44)
IOBJ 2,615 IOBJ(86.16), DOBJ(10.48)
MARK 21,235 MARK(82.07), DEP(12.18), COMPLM(5.66)
META 5,620 DEP(99.00)
NEG 18,585 NEG(95.71)
NMOD 923 DEP(68.47), AMOD(30.23)
NN 149,201 NN(99.51)
NPADVMOD 21,267 TMOD(41.11), DEP(24.77), NPADVMOD(14.70), DOBJ(8.08), NSUBJ(5.01)
NSUBJ 208,934 NSUBJ(99.52)
NSUBJPASS 16,994 NSUBJPASS(99.82)
NUM 30,412 NUM(99.91)
NUMBER 3,456 NUMBER(98.96)
OPRD 2,855 DEP(49.91), ACOMP(26.90), XCOMP(22.42)
PARATAXIS 3,662 PARATAXIS(77.01), DEP(22.23)
PARTMOD 9,945 PARTMOD(94.17), DEP(5.39)
PCOMP 12,702 PCOMP(88.99), POBJ(7.98)
POBJ 222,115 POBJ(99.89)
POSS 45,156 POSS(99.91)
POSSESSIVE 16,608 POSSESSIVE(99.99)
PRECONJ 574 PRECONJ(76.83), DEP(20.56)
PREDET 2,409 PREDET(94.65), DEP(4.61)
PREP 231,742 PREP(97.52)
PRT 10,149 PRT(96.21), DEP(3.79)
PUNCT 280,452 PUNCT(93.39), DEP(6.56)
QUANTMOD 3,467 QUANTMOD(83.50), DEP(14.94)
RCMOD 22,781 RCMOD(96.28), DEP(3.09)
ROOT 132,225 ROOT(99.98)
XCOMP 25,909 XCOMP(89.61), CCOMP(7.13), DEP(3.17)

Table 4: Mappings between the Clear and the Stanford dependency labels. The Clear column show the
Clear dependency labels. The Count column shows the count of each label. The Stanford column shows
labels generated by the Stanford converter in place of the Clear dependency label with probabilities (in
%); labels with less than 3% occurrences are discarded.
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PUNCT 23.98 MARK 3.37 AMOD 0.83 PCOMP 0.49 PRECONJ 0.15
INTJ 14.18 PREP 1.97 NMOD 0.82 COMPLM 0.47 PREDET 0.14
APPOS 9.44 OPRD 1.86 NSUBJ 0.72 ACOMP 0.43 CSUBJ 0.12
META 7.25 ADVMOD 1.56 PARTMOD 0.70 NEG 0.39 INFMOD 0.12
NPADVMOD 6.86 XCOMP 1.07 NN 0.69 POBJ 0.29 IOBJ 0.09
CCOMP 6.71 PARATAXIS 1.06 QUANTMOD 0.67 DET 0.22 POSS 0.02
ADVCL 4.98 CONJ 1.06 CC 0.64 DOBJ 0.22 NUM 0.01
DEP 4.75 RCMOD 0.92 PRT 0.50 ATTR 0.18 AGENT 0.01

Table 5: A list of the Clear dependency labels that are unclassified by the Stanford dependency approach.
The first column shows the unclassified Clear dependency labels and the second column shows their pro-
portions to unclassified dependencies in the Stanford dependency approach (in %).

Table 4 shows mappings between the Clear and the Stanford dependency labels. Some labels in the Stanford
dependency approach are not used in our conversion. For instance, multi-word expressions (MWE) are not used
in our approach because it is not clear how to identify multi-word expressions systematically. Furthermore,
purpose clause modifiers (PURPCL) and temporal modifiers (TMOD) are not included as dependencies but added
as separate features of individual nodes in our dependency trees (see Appendix A.3 for more details about
these additional features).

4.3 Dependency label heuristics
The getDependencyLabel(C,P, p) in Algorithm 4.2 assigns a dependency label to a constituent C by using
function tags and inferring constituent relations between C, P , and p, where P is the parent of C and p
is the head constituent of P . Heuristics described in this algorithm are derived from careful analysis of
several constituent Treebanks (Marcus et al., 1993; Nielsen et al., 2010; Weischedel et al., 2011; Verspoor
et al., 2012) and manually evaluated case-by-case. All supplementary methods are described in the following
subsections. Algorithms followed by > (e.g., setPassiveSubject(D,H)> in Algorithm 4.4) are called after the
getDependencyLabel(C,P, p) method and applied to all dependency nodes.

The getSimpleLabel(C) method in Algorithm 4.1 returns the dependency label of a constituent C if it
can be inferred from the pos tag of C; otherwise, null.

Algorithm 4.1 : getSimpleLabel(C)

Input: A constituent C.
Output: The dependency label of C if it can be inferred from the pos tag of C;

otherwise, null.

1: let d be the head dependent of C
2: if C is HYPH return HYPH # Section 4.7.2
3: if C is ADJP|WHADJP|JJ* return AMOD # Section 4.14.1
4: if C is PP|WHPP return PREP # Section 4.12.3
5: if C is PRT|RP return PRT # Section 4.14.7
6: if isPreCorrelativeConjunction(C) return PRECONJ # Section 4.10.3
7: if isCoordinatingConjunction(C) return CC # Section 4.10.2
8: if isParentheticalModifier(C) return PARATAXIS # Section 4.14.5
9: if isPunctuation(C|d) return PUNCT # Section 4.14.8
10: if isInterjection(C|d) return INTJ # Section 4.14.3
11: if isMetaModifier(C) return META # Section 4.14.4
12: if isAdverbialModifier(C) return ADVMOD # Section 4.9.2
13: return null
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Algorithm 4.2 : getDependencyLabel(C,P, p)

Input: Constituents C, P , and p.
P is the parent of C, and p is the head constituent of P .

Output: The dependency label of C with respect to p in P .

1: let c be the head constituent of C
2: let d be the head dependent of C
3: if hasAdverbialTag(C) then # Section 4.9
4: if C is S|SBAR|SINV return ADVCL
5: if C is NML|NP|QP return NPADVMOD
6: if (label ← getSubjectLabel(C)) 6= null return label # Section 4.4
7: if C is UCP then
8: c.add(all function tags of C)
9: return getDependencyLabel(c, P, p)
10: if P is VP|SINV|SQ then
11: if C is ADJP return ACOMP
12: if (label ← getObjectLabel(C)) 6= null return label # Section 4.5
13: if isObjectPredicate(C) return OPRD # Section 4.5.4
14: if isOpenClausalComplement(C) return XCOMP # Section 4.8.3
15: if isClausalComplement(C) return CCOMP # Section 4.8.2
16: if (label ← getAuxiliaryLabel(C)) 6= null return label # Section 4.6
17: if P is ADJP|ADVP then
18: if isOpenClausalComplement(C) return XCOMP # Section 4.8.3
19: if isClausalComplement(C) return CCOMP # Section 4.8.2
20: if P is NML|NP|WHNP then
21: if (label ← getNonFiniteModifierLabel(C)) 6= null return label # Section 4.11
22: if isRelativeClauseModifier(C) return RCMOD # Section 4.11.10
23: if isClausalComplement(C) return CCOMP # Section 4.8.2
24: if isPossessionModifier(C,P ) return POSS # Section 4.14.6
25: if (label ← getSimpleLabel(C)) 6= null return label # Section 4.3
26: if P is PP|WHPP return getPrepositionModifierLabel(C, d) # Section 4.12
27: if (C is SBAR) or isOpenClausalComplement(C) return ADVCL # Section 4.8.3
28: if (P is PP) and (C is S*) return ADVCL
29: if C is S|SBARQ|SINV|SQ return CCOMP
30: if P is QP return (C is CD) ? NUMBER : QUANTMOD
31: if (P is NML|NP|NX|WHNP) or (p is NN*|PRP|WP) then
32: return getNounModifierLabel(C) # Section 4.11
33: if (label ← getSimpleLabel(c)) 6= null return label # Section 4.3
34: if d is IN return PREP
35: if d is RB* return ADVMOD
36: if (P is ADJP|ADVP|PP) or (p is JJ*|RB*) then
37: if C is NML|NP|QP|NN*|PRP|WP return NPADVMOD
38: return ADVMOD
39: return DEP
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4.4 Arguments: subject related
Subject-related labels consist of agents (AGENT), clausal subjects (CSUBJ), clausal passive subjects (CSUBJPASS),
expletives (EXPL), nominal subjects (NSUBJ), and nominal passive subjects (NSUBJPASS).

Algorithm 4.3 : getSubjectLabel(C, d)

Input: Constituents C and d, where d is the head dependent of C.
Output: CSUBJ, NSUBJ, EXPL, or AGENT if C is a subject-related argument; otherwise, null.

1: if C has SBJ then
2: if C is S* return CSUBJ # Section 4.4.2
3: if d is EX return EXPL # Section 4.4.4
4: return NSUBJ # Section 4.4.5
5: if C has LGS return AGENT # Section 4.4.1
6: return null

Algorithm 4.4 : setPassiveSubject(D,H)>

Input: Dependents D and H, where H is the head of D.
Output: If D is a passive subject, append PASS to its label.

1: if H contains AUXPASS then
2: if D is CSUBJ then D.label ← CSUBJPASS # Section 4.4.3
3: elif D is NSUBJ then D.label ← NSUBJPASS # Section 4.4.6

4.4.1 AGENT: agent

An agent is the complement of a passive verb that is the surface subject of its active form. In our approach,
the preposition by is included as a part of AGENT.

(1) The car was bought [by John] AGENT(bought, by), POBJ(by, John)
(2) The car bought [by John] is red AGENT(bought, by), POBJ(by, John)

4.4.2 CSUBJ: clausal subject

A clausal subject is a clause in the subject position of an active verb. A clause with a SBJ function tag is
considered a CSUBJ.

(1) [Whether she liked me] doesn’t matter CSUBJ(matter, liked)
(2) [What I said] was true CSUBJ(was, said)
(3) [Who I liked] was you CCOMP(was, liked), NSUBJ(was, you)

In (3), Who I liked is topicalized such that it is considered a clausal complement (CCOMP) of was; you is
considered a nominal subject (NSUBJ) of was.

4.4.3 CSUBJPASS: clausal passive subject

A clausal passive subject is a clause in the subject position of a passive verb. A clause with the SBJ function
tag that depends on a passive verb is considered a CSUBJPASS.

(1) [Whoever misbehaves] will be dismissed CSUBJPASS(dismissed, misbehaves)
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4.4.4 EXPL: expletive

An expletive is an existential there in the subject position.
(1) There was an explosion EXPL(was, There)

4.4.5 NSUBJ: nominal subject

A nominal subject is a non-clausal constituent in the subject position of an active verb. A non-clausal
constituent with the SBJ function tag is considered a NSUBJ.

(1) [She and I] came home together NSUBJ(came, She)
(2) [Earlier] was better NSUBJ(was, Earlier)

4.4.6 NSUBJPASS: nominal passive subject

A nominal passive subject is a non-clausal constituent in the subject position of a passive verb. A non-clausal
constituent with the SBJ function tag that depends on a passive verb is considered a NSUBJPASS.

(1) I [am] drawn to her NSUBJPASS(drawn, I)
(2) We will [get] married NSUBJPASS(married, We)
(3) She will [become] nationalized NSUBJPASS(nationalized, She)

4.5 Arguments: object related
Object-related labels consist of attributes (ATTR), direct objects (DOBJ), indirect objects (IOBJ), and object
predicates (OPRD).

Algorithm 4.5 : getObjectLabel(C)

Input: A constituent C whose parent is VP|SINV|SQ.
Output: DOBJ or ATTR if C is in an object or an attribute; otherwise, null.

1: if C is NP|NML then
2: if C has PRD return ATTR # Section 4.5.1
3: return DOBJ # Section 4.5.2
4: return null

4.5.1 ATTR: attribute

An attribute is a noun phrase that is a non-VP predicate usually following a copula verb.

(1) This product is [a global brand] ATTR(is, brand)
(2) This area became [a prohibited zone] ATTR(became, zone)

4.5.2 DOBJ: direct object

A direct object is a noun phrase that is the accusative object of a (di)transitive verb.

(1) She bought me [these books] DOBJ(bought, books)
(2) She bought [these books] for me DOBJ(bought, books)
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4.5.3 IOBJ: indirect object

An indirect object is a noun phrase that is the dative object of a ditransitive verb.

(1) She bought [me] these books IOBJ(bought, me)
(2) She bought these books [for me] PREP(bought, for)
(3) [What] she bought [me] were these books DOBJ(bought, What), IOBJ(bought, me)
(4) I read [them] [one by one] DOBJ(read, them), NPADVMOD(read, one)

In (2), for me is considered a prepositional modifier although it is the dative object in an unshifted form. This
information is preserved with a function tag DTV as additional information in our representation (Section 6.2).
In (3), What andme are considered direct and indirect objects of bought, respectively. In (4), the noun phrase
one by one is not considered an IOBJ, but an adverbial noun phrase modifier (NPADVMOD) because it carries
an adverbial function tag, MNR. This kind of information is also preserved with semantic function tags in our
representation (Section 6.1).

Algorithm 4.6 : setIndirectObject(C)>

Input: A dependent D.
Output: If D is an indirect object, set its label to IOBJ.

1: if (D is DOBJ) and (D is followed by another DOBJ) then D.label ← IOBJ

4.5.4 OPRD: object predicate

An object predicate is a non-VP predicate in a small clause that functions like the predicate of an object.
Section 3.4 describes how object predicates are derived.

(1) She calls [me] [her friend] DOBJ(calls, me), OPRD(calls, friend)
(2) She considers [[me] her friend] CCOMP(considers, friend), NSUBJ(me, friend)
(3) I am considered [her friend] OPRD(considered, friend)
(4) I persuaded [her] [to come] DOBJ(persuaded, her), XCOMP(persuaded, come)

In (2), the small clause me her friend is considered a clausal complement (CCOMP) because we treat me
as the subject of the non-VP predicate, her friend. In (4), the open clause to come does indeed predicate
over her but is not labeled as an OPRD but rather an open clausal complement (XCOMP). This is because the
dependency between her and come is already shown in our representation as an open clausal subject (XSUBJ)
whereas such information is not available for the non-VP predicates in (1) and (3); thus, without labeling
them as object predicates, it can be difficult to infer the relation between the objects and object predicates.

Algorithm 4.7 : isObjectPredicate(C)

Input: A constituent C.
Output: True if C is an object predicate; otherwise, False.

1: if (C is S) and (C contains no VP) and (C contains both SBJ and PRD) then
2: if the subject of C is an empty category return True
3: return False
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4.6 Auxiliaries
Auxiliary labels consist of auxiliaries (AUX) and passive auxiliaries (AUXPASS). The getAuxiliaryLabel(C)
method in Algorithm 4.8 shows how these auxiliary labels are distinguished. Note that a passive auxiliary is
supposed to modify only a past participle (VBN), which is sometimes annotated as a past tense verb (VBD).
The condition in lines 5 and 8 resolves such an erroneous case. Lines 6-7 are added to handle the case of
coordination where vp1 is just an umbrella constituent that groups VP conjuncts together.

Algorithm 4.8 : getAuxiliaryLabel(C)

Input: A constituent C whose parent is VP|SINV|SQ.
Output: AUX or AUXPASS if C is an auxiliary or a passive auxiliary; otherwise, null.

1: if C is MD|TO return AUX # Section 4.6.1
2: if (C is VB*) and (C contains VP) then
3: if C is be|become|get then
4: let vp1 be the first VP in C
5: if vp1 contains VBN|VBD return AUXPASS # Section 4.6.2
6: if (vp1 contains no VB*) and (vp1 contains VP) then # for coordination
7: let vp2 be the first VP in vp1
8: if vp2 contains VBN|VBD return AUXPASS
9: return AUX
10: return null

4.6.1 AUX: auxiliary

An auxiliary is an auxiliary or modal verb that gives further information about the main verb (e.g., tense,
aspect). The preposition to, used for infinitive, is also considered an AUX. Auxiliary verbs for passive verbs
are assigned with a separate dependency label AUXPASS (Section 4.6.2).

(1) I [have] [been] seeing her AUX(seeing, have), AUX(seeing, been)
(2) I [will] meet her tomorrow AUX(meet, will)
(3) I [am] [going] [to] meet her tomorrow AUX(meet, am), AUX(meet, going), AUX(meet, to)

4.6.2 AUXPASS: passive auxiliary

A passive auxiliary is an auxiliary verb, be, become, or get, that modifies a passive verb.

(1) I [am] drawn to her AUXPASS(drawn, am)
(2) We will [get] married AUXPASS(married, get)
(3) She will [become] nationalized AUXPASS(nationalized, become)

4.7 Hyphenation
4.7.1 HMOD: modifier in hyphenation

A modifier in hyphenation is a constituent preceding a hyphen, which modifies a constituent following the
hyphen (see the example in Section 4.7.2).

4.7.2 HYPH: hyphen

A hyphen modifies a constituent following the hyphen.

(1) New - York Times HMOD(York, New), HYPH(York, -)
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4.8 Complements
Complement labels consists of adjectival complements (ACOMP), clausal complements (CCOMP), and open
clausal complements (XCOMP). Additionally, complementizers (COMPLM) are included to indicate the beginnings
of clausal complements.

4.8.1 ACOMP: adjectival complement

An adjectival complement is an adjective phrase that modifies the head of a VP|SINV|SQ, that is usually a
verb.

(1) She looks [so beautiful] ACOMP(looks, beautiful)
(2) Please make [sure to invite her] ACOMP(make, sure)
(3) Are you [worried] ACOMP(Are, worried)
(4) [Most important] is your heart ACOMP(is, important), NSUBJ(is, heart)

In (4), Most important is topicalized such that it is considered an ACOMP of is although it is in the subject
position; your heart is considered a nominal subject (NSUBJ) of is.

4.8.2 CCOMP: clausal complement

A clausal complement is a clause with an internal subject that modifies the head of an ADJP|ADVP|NML|
NP|WHNP|VP|SINV|SQ. For NML|NP|WHNP, a clause is considered a CCOMP if it is neither a infinitival modifier
(Section 4.11.4), a participial modifier (Section 4.11.7), nor a relative clause modifier (Section 4.11.10).

(1) She said [(that) she wanted to go] CCOMP(said, wanted)
(2) I am not sure [what she wanted] CCOMP(sure, wanted)
(3) She left no matter [how I felt] CCOMP(matter, felt)
(4) I don’t know [where she is] CCOMP(know, is)
(5) She asked [should we meet again] CCOMP(asked, meet)
(6) I asked [why did you leave] CCOMP(asked, leave)
(7) I said [may God bless you] CCOMP(said, bless)
(8) The fact [(that) she came back] made me happy CCOMP(fact, came)

In (4), where she is is considered a CCOMP although it carries arbitrary locative information. Clauses such as
polar questions (5), wh-questions (6), or inverted declarative sentences (7) are also considered CCOMP. A clause
with an adverbial function tag is not considered a CCOMP, but an adverbial clause modifier (Section 4.9.1).

Algorithm 4.9 : isClausalComplement(C)

Input: A constituent C whose parent is ADJP|ADVP|NML|NP|WHNP|VP|SINV|SQ.
Output: True if C is a clausal complement; otherwise, False.

1: if C is S|SQ|SINV|SBARQ return True
2: if C is SBAR then
3: if C contains a wh-complementizer return True
4: if C contains a null complementizer, 0 return True
5: if C contains a complementizer, if, that, or whether then
6: set the dependency label of the complementizer to COMPLM # Section 4.8.4
7: return True
8: return False
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4.8.3 XCOMP: open clausal complement

An open clausal complement is a clause without an internal subject that modifies the head of an ADJP|ADVP|VP|SINV|SQ.

(1) I want [to go] XCOMP(want, go)
(2) I am ready [to go] XCOMP(ready, go)
(3) It is too soon [to go] XCOMP(soon, go)
(4) He knows [how to go] XCOMP(knows, go)
(5) What do you think [happend] XCOMP(think, happened)
(6) He forced [me] [to go] DOBJ(forced, me), XCOMP(forced, go)
(7) He expected [[me] to go] CCOMP(expected, go), NSUBJ(me, go)

In (7), me to go is not considered an XCOMP but a clausal complement (CCOMP) because me is considered a
nominal subject (NSUBJ) of go (see Section 5.4 for more examples of open clauses).

Algorithm 4.10 : isOpenClausalComplement(C)

Input: A constituent C whose parent is ADJP|ADVP|VP.
Output: True if C is an open clausal complement; otherwise, False.

1: if C is S then
2: return (C contains VP) and (the subject of C is an empty category)
3: if (C is SBAR) and (C contains a null complementizer) then
4: let c be S in C
5: return isOpenClausalComplement(c)
6: return False

4.8.4 COMPLM: complementizer

A complementizer is a subordinating conjunction, if, that, or whether, that introduces a clausal complement
(Section 4.8.2). A COMPLM is assigned when a clausal complement is found (see the line 6 of isClausalCom-
plement(C) in Section 4.8.2).

(1) She said [that] she wanted to go COMPLM(wanted, that)
(2) I wasn’t sure [if] she liked me COMPLM(liked, if)
(3) I wasn’t sure [whether] she liked me COMPLM(liked, whether)

4.9 Modifiers: adverbial related
Adverbial related modifiers consist of adverbial clause modifiers (ADVCL), adverbial modifiers (ADVMOD), mark-
ers (MARK), negation modifiers (NEG), and noun phrases as adverbial modifiers (NPADVMOD).

Algorithm 4.11 : hasAdverbialTag(C)

Input: A constituent C.
Output: True if C has an adverbial function tag; otherwise, False.

1: if C has ADV|BNF|DIR|EXT|LOC|MNR|PRP|TMP|VOC return True
2: return False
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4.9.1 ADVCL: adverbial clause modifier

An adverbial clause modifier is a clause that acts like an adverbial modifier. A clause with an adverbial
function tag (see hasAdverbialTag(C)) is considered an ADVCL. Additionally, a subordinate clause or an open
clause is considered an ADVCL if it does not satisfy any other dependency relation (see Appendices 4.8.2 and
4.8.3 for more details about clausal complements).

(1) She came [as she promised] ADVCL(came, promised)
(2) She came [to see me] ADVCL(came, see)
(3) [Now that she is here] everything seems fine ADVCL(seems, is)
(4) She would have come [if she liked me] ADVCL(come, liked)
(5) I wasn’t sure [if she liked me] CCOMP(sure, liked)

In (2), to see me is an ADVCL (with a semantic role, purpose) although it may appear to be an open clausal
complement of came (Section 4.8.3). In (4) and (5), if she liked me is considered an ADVCL and a clausal
complement (CCOMP), respectively. This is because if in (3) creates a causal relation between the matrix and
subordinate clauses whereas it does not serve any purpose other than introducing the subordinate clause in
(4), just like a complementizer that or whether.

4.9.2 ADVMOD: adverbial modifier

An adverbial modifier is an adverb or an adverb phrase that modifies the meaning of another word. Other
grammatical categories can also be ADVMOD if they modify adjectives.

(1) I did [not] know her ADVMOD(know, not)
(2) I invited her [[as] well] ADVMOD(invited, well), ADVMOD(well, as)
(3) She is [already] [here] ADVMOD(is, already), ADVMOD(is, here)
(4) She is [so] beautiful ADVMOD(beautiful, so)
(5) I’m not sure [any] more ADVMOD(more, any)

In (5), any is a determiner but considered an ADVMOD because it modifies the adjective, more.

Algorithm 4.12 : isAdverbialModifier(C)

Input: A constituent C.
Output: True if C is an adverbial function tag; otherwise, False.

1: if C is ADVP|RB*|WRB then
2: let P be the parent of C
3: if (P is PP) and (C’s previous sibling is IN|TO) and (C is the last child of P ) return False
4: return True

4.9.3 MARK: maker

A marker is a subordinating conjunction (e.g., although, because, while) that introduces an adverbial clause
modifier (Section 4.9.1).

(1) She came [as she promised] MARK(promised, as)
(2) She came [because she liked me] MARK(liked, because)

The setMarker(C,P ) method is called after P is identified as an adverbial modifier.
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Algorithm 4.13 : setMarker(C,P )

Input: Constituents C and P , where P is the parent of C.
Output: If C is a marker, set its label to MARK.

1: if (P is SBAR) and (P is ADVCL) and (C is IN|DT|TO) then C.label ← MARK

4.9.4 NEG: negation modifier

A negation modifier is an adverb that gives negative meaning to its head.

(1) She decided not to come NEG(come, not)
(2) She didn’t come NEG(come, n’t)
(3) She never came NEG(came, never)
(4) This cookie is no good NEG(is, no)

Algorithm 4.14 : setNegationModifier(D)>

Input: A dependent D.
Output: If D is a negation modifier, set its label to NEG.

1: if (D is NEG) and (D is never|not|n’t|’nt|no) then D.label ← NEG

4.9.5 NPADVMOD: noun phrase as adverbial modifier

An adverbial noun phrase modifier is a noun phrase that acts like an adverbial modifier. A noun phrase with
an adverbial function tag (see hasAdverbialTag(C)) is considered an NPADVMOD. Moreover, a noun phrase
modifying either an adjective or an adverb is also considered an NPADVMOD.

(1) Three times [a week] NPADVMOD(times, week)
(2) It is [a bit] surprising NPADVMOD(surprising, bit)
(3) [Two days] ago NPADVMOD(ago, days)
(4) It [all] feels right NPADVMOD(feels, all)
(5) I wrote the letter [myself] NPADVMOD(wrote, myself)
(6) I met her [last week] NPADVMOD(met, week)
(7) She lives [next door] NPADVMOD(lives, door)

In (6) and (7), both last week and next door are considered NPADVMOD although they have different semantic
roles, temporal and locative, respectively. These semantic roles can be retrieved from function tags and
preserved as additional information (Section 6.1).

4.10 Modifiers: coordination related
Coordination related modifiers consist of conjuncts (CONJ), coordinating conjunctions (CC), and pre-correlative
conjunctions (PRECONJ).

4.10.1 CONJ: conjunct

A conjunct is a dependent of the leftmost conjunct in coordination. The leftmost conjunct becomes the head
of a coordinated phrase. Section 3.3 describes how conjuncts are derived.
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(1) John, [Mary], and [Sam] CONJ(John, Mary), CONJ(John, Sam)
(2) John, [Mary], and [so on] CONJ(John, Mary), CONJ(John, on)
(3) John, [Mary], [Sam], [etc.] CONJ(John, Mary), CONJ(John, Sam), CONJ(John, etc.)

Although there is no coordinating conjunction in (3), the phrase is considered coordinated because of the
presence of etc.

4.10.2 CC: coordinating conjunction

A coordinating conjunction is a dependent of the leftmost conjunct in coordination.

(1) John, Mary, [and] Sam CC(John, and)
(2) I know John [[as] [well] as] Mary CC(John, as), ADVMOD(as, as), ADVMOD(as, well)
(3) [And], I know you CC(know, And)

In (1), and becomes a CC of John, which is the leftmost conjunct. In (2), as well as is a multi-word expression
so the dependencies between as and the others are not so meaningful but there to keep the tree connected.
In (3), And is supposed to join the following clause with its preceding clause; however, since we do not derive
dependencies across sentences, it becomes a dependent of the head of this clause, know.

Algorithm 4.15 : isCoordinatingConjunction(C)

Input: A constituent C.
Output: True if C is a coordinating conjunction; otherwise, False.

1: return C is CC|CONJP

4.10.3 PRECONJ: pre-correlative conjunction

A pre-correlative conjunction is the first part of a correlative conjunction that becomes a dependent of the
first conjunct in coordination.

(1) [Either] John [or] Mary PRECONJ(John, Either), CC(John, or), CONJ(John, Mary)
(2) [Not only] John [but also] Mary PRECONJ(John, Not), CC(John, but), CONJ(John, Mary)

Algorithm 4.16 : isPreCorrelativeConjunction(C)

Input: A constituent C.
Output: True if C is a pre-correlative conjunction; otherwise, False.

1: if (C is CC) and (C is both|either|neither|whether) return True
2: if (C is CONJP) and (C is not only) return True
3: return False

4.11 Modifiers: noun phrase related
Noun phrase related modifiers consist of appositional modifiers (APPOS), determiners (DET), infinitival mod-
ifiers (INFMOD), modifiers of nominals (NMOD), noun compound modifiers (NN), numeric modifiers (NUM), par-
ticipial modifiers (PARTMOD), possessive modifiers (POSSESSIVE), predeterminers (PREDET), and relative clause
modifiers (RCMOD).
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Algorithm 4.17 : getNonFiniteModifierLabel(C)

Input: A constituent C whose parent is NML|NP|WHNP.
Output: INFMOD or PARTMOD.

1: if isOpenClausalComplement(C) or (C is VP) then # Section 4.8.3
2: if isInfinitivalModifier(C) return INFMOD # Section 4.11.4
3: return PARTMOD # Section 4.11.7

Algorithm 4.18 : getNounModifierLabel(C)

Input: A constituent C whose parent is NML|NP|NX|WHNP.
Output: AMOD, DET, NN, NUM, POSSESSIVE, PREDET, or NMOD.

1: if C is VBG|VBN return AMOD # Section 4.14.1
2: if C is DT|WDT|WP return DET # Section 4.11.3
3: if C is PDT return PREDET # Section 4.11.9
4: if C is NML|NP|FW|NN* return NN # Section 4.11.5
5: if C is CD|QP return NUM # Section 4.11.6
6: if C is POS return POSSESSIVE # Section 4.11.8
7: return NMOD # Section 4.11.1

4.11.1 NMOD: modifier of nominal

A modifier of nominal is any unclassified dependent that modifies the head of a noun phrase.

4.11.2 APPOS: appositional modifier

An appositional modifier of an NML|NP is a noun phrase immediately preceded by another noun phrase, which
gives additional information to its preceding noun phrase. A noun phrase with an adverbial function tag
(Section 4.9.1) is not considered an APPOS. Section 3.2 describes how appositional modifiers are derived.

(1) John, [my brother] APPOS(John, bother)
(2) The year [2012] APPOS(year, 2012)
(3) He [himself] bought the car APPOS(He, himself)
(4) Computational Linguistics [(CL)] APPOS(Linguistics, CL)
(5) The book, Between You and Me APPOS(book, Between)
(6) MacGraw-Hill Inc., New York NPADVMOD(Inc., York)

4.11.3 DET: determiner

A determiner is a word token whose pos tag is DT|WDT|WP that modifies the head of a noun phrase.

(1) [The] US military DET(military, The)
(2) [What] kind of movie is this DET(movie, What)

4.11.4 INFMOD: infinitival modifier

An infinitival modifier is an infinitive clause or phrase that modifies the head of a noun phrase.

(1) I have too much homework [to do] INFMOD(homework, do)
(2) I made an effort [to come] INFMOD(effort, come)
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Algorithm 4.19 : isInfinitivalModifier(C)

Input: A constituent C whose parent is NML|NP|WHNP.
Output: True if C is an infinitival modifier; otherwise, False.

1: if C is VP then vp← C
2: else
3: let t be the first descendant of C that is VP
4: vp← (t exists) ? t : null
5: if vp 6= null then
6: let t be the first child of vp that is VP
7: while t exists do
8: vp← t
9: if vp’s previous sibling is TO return True
10: let t be the first child of vp that is VP
11: if vp contains TO return True
12: return False

4.11.5 NN: noun compound modifier

A noun compound modifier is any noun that modifies the head of a noun phrase.

(1) The [US] military PREDET(military, US)
(2) The [video] camera PREDET(camera, video)

4.11.6 NUM: numeric modifier

A numeric modifier is any number or quantifier phrase that modifies the head of a noun phrase.

(1) [14] degrees NUM(degrees, 14)
(2) [One] nation, [fifty] states NUM(nation, One), NUM(states, fifty)

4.11.7 PARTMOD: participial modifier

A participial modifier is a clause or phrase whose head is a verb in a participial form (e.g., gerund, past
participle) that modifies the head of a noun phrase.

(1) I went to the party [hosted by her] PARTMOD(party, hosted)
(2) I met people [coming to this party] PARTMOD(people, coming)

4.11.8 POSSESSIVE: possessive modifier

A possessive modifier is a word token whose pos tag is POS that modifies the head of a noun phrase.

(1) John[’s] car NMOD(John, ’s)

4.11.9 PREDET: predeterminer

A predeterminer is a word token whose pos tag is PDT that modifies the head of a noun phrase.

(1) [Such] a beautiful woman PREDET(woman, Such)
(2) [All] the books we read PREDET(books, All)
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4.11.10 RCMOD: relative clause modifier

A relative clause modifier is a either relative clause or a reduced relative clause that modifies the head of an
NML|NP|WHNP.

(1) I bought the car [(that) I wanted] RCMOD(car, wanted)
(2) I was the first person [to buy this car] INFMOD(person, buy)
(3) This is the car [for which I’ve waited] RCMOD(car, waited)
(4) It is a car [(that is) worth buying] RCMOD(car, worth)

In (2), to buy this car is considered an infinitival modifier (INFMOD) although it contains an empty wh-
complementizer in the constituent tree. (4) shows an example of a reduced relative clause.

Algorithm 4.20 : isRelativeClauseModifier(C)

Input: A constituent C whose parent is NML|NP|WHNP.
Output: True if C is a relative clause modifier; otherwise, False.

1: if C is RRC return True
2: if (C is SBAR) and (C contains a wh-complementizer) return True
3: return False

4.12 Modifiers: prepositional phrase related
Prepositional phrase related modifiers consist of complements of prepositions, objects of prepositions, and
prepositional modifiers.

Algorithm 4.21 : getPrepositionModifierLabel(C, d)

Input: A constituent C whose parent is NP|WHPP, and the head dependent d of C.
Output: POBJor PCOMP.

1: if (C is NP|NML) or (d is W*) return POBJ # Section 4.12.2
2: return PCOMP # Section 4.12.1

4.12.1 PCOMP: complement of a preposition

A complement of a preposition is any dependent that is not a POBJ but modifies the head of a prepositional
phrase.

(1) I agree with [what you said] PCOMP(with, said)

4.12.2 POBJ: object of a preposition

An object of a preposition is a noun phrase that modifies the head of a prepositional phrase, which is usually
a preposition but can be a verb in a participial form such as VBG.

(1) On [the table] POBJ(On, table)
(2) Including us POBJ(Including, us)
(3) Given us POBJ(Given, us)
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4.12.3 PREP: prepositional modifier

A prepositional modifier is any prepositional phrase that modifies the meaning of its head.

(1) Thank you [for coming [to my house]] PREP(Thank, for), PREP(coming, to)
(2) Please put your coat [on the table] PREP(put, on)
(3) Or just give it [to me] PREP(give, to)

In (1), to my house is a PREP carrying a semantic role, direction. These semantic roles are preserved as
additional information in our representation (Section 6.1). In (2), on the table is a PREP, which is considered
the locative complement of put in some linguistic theories. Furthermore, in (3), to me is the dative object
of give in the unshifted form, which is also considered a PREP in our analysis. This kind of information is
also preserved with syntactic function tags in our representation (Section 6.2).

4.13 Modifiers: quantifier phrase related
Quantifier phrase related modifiers consist of number compound modifiers (NUMBER) and quantifier phrase
modifiers (QUANTMOD).

4.13.1 NUMBER: number compound modifier

A number compound modifier is a cardinal number that modifies the head of a quantifier phrase.

(1) [Seven] million dollars NUMBER(million, Seven), NUM(dollars, million)
(2) [Two] to [three] hundred NUMBER(hundred, Two), NUMBER(hundred, three)

4.13.2 QUANTMOD: quantifier phrase modifier

A quantifier phrase modifier is a dependent of the head of a quantifier phrase.

(1) [More] [than] five AMOD(five, More), QUANTMOD(five, than)
(2) [Five] [to] six QUANTMOD(six, Five), QUANTMOD(six, to)

Quantifier phrases often form a very flat hierarchy, which makes it hard to derive correct dependencies for
them. In (1), More than is a multi-word expression that should be grouped into a separate constituent (e.g.,
[More than] one); however, this kind of analysis is not used in our constituent trees. Thus, More and than
become an AMOD and a QUANTMOD of five, respectively. In (2), to is more like a conjunction connecting Five
to six, which is not explicitly represented. Thus, Five and to become QUANTMODs of six individually. More
analysis needs to be done to derive correct dependencies for quantifier phrases, which will be explored in
future work.

4.14 Modifiers: miscellaneous
Miscellaneous modifiers consists of adjectival modifiers (AMOD), unclassified dependents (DEP), interjections
(INTJ), meta modifiers (META), parenthetical modifiers (PARATAXIS), possession modifiers (POSS), particles
(PRT), punctuation (PUNCT), and roots (ROOT).

4.14.1 AMOD: adjectival modifier

An adjectival modifier is an adjective or an adjective phrase that modifies the meaning of another word,
usually a noun.

(1) A [beautiful] girl AMOD(girl, beautiful)
(2) A [five year old] girl AMOD(girl, old)
(3) [How many] people came AMOD(people, many)
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4.14.2 DEP: unclassified dependent

An unclassified dependent is a dependent that does not satisfy conditions for any other dependency.

4.14.3 INTJ: interjection

An interjection is an expression made by the speaker of an utterance.

(1) [Well], it is my birthday INTJ(is, Well)
(2) I [um] will throw a party INTJ(throw, um)

Algorithm 4.22 : isInterjection(C)

Input: A constituent C.
Output: True if C is an interjection; otherwise, False.

1: return C is INTJ|UH

4.14.4 META: meta modifier

A meta modifier is code (1), embedded (2), or meta (3) information that is randomly inserted in a phrase
or clause.

(1) [choijd] My first visit META(visit, choijd)
(2) I visited Boulder and {others} [other cities] META(Boulder, others), CONJ(Boulder, cities)
(3) [Applause] Thank you META(Thank, Applause)

Algorithm 4.23 : isMetaModifier(C)

Input: A constituent C.
Output: True if C is a meta modifier; otherwise, False.

1: return C is CODE|EDITED|EMBED|LST|META

4.14.5 PARATAXIS: parenthetical modifier

A parenthetical modifier is an embedded chunk, often but not necessarily surrounded by parenthetical
notations (e.g,. brackets, quotes, commas, etc.), which gives side information to its head.

(1) She[, I mean,] Mary was here PARATAXIS(was, mean)
(2) [That is to say,] John was also here PARATAXIS(was, is)

Algorithm 4.24 : isParentheticalModifier(C)

Input: A constituent C.
Output: True if C is a parenthetical modifier; otherwise, False.

1: return C is PRN
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4.14.6 POSS: possession modifier

A possession modifier is either a possessive determiner (PRP$) or a NML|NP|WHNP containing a possessive
ending that modifies the head of a ADJP|NML|NP|QP|WHNP.

(1) I bought [his] car POSS(car, his)
(2) I bought [John’s] car POSS(car, John)
(3) This building is [Asia’s] largest POSS(largest, Asia)

Note that Asia’s in (3) is a POSS of largest, which is an adjective followed by an elided building. Such an
expression does not occur often but we anticipate it to appear more when dealing with informal texts (e.g.,
text-messages, conversations, web-texts).

Algorithm 4.25 : isPossessionModifier(C)

Input: Constituents C and P , where P is the parent of C.
Output: True if C is a possession modifier; otherwise, False.

1: if C is PRP$ return True
2: if P is ADJP|NML|NP|QP|WHNP then
3: return C contains POS
4: return False

4.14.7 PRT: particle

A particle is a preposition in a phrasal verb that forms a verb-particle construction.

(1) Shut [down] the machine PRT(Shut, down)
(2) Shut the machine [down] PRT(Shut, down)

4.14.8 PUNCT: punctuation

Any punctuation is assigned the dependency label PUNCT.

Algorithm 4.26 : isPunctuation(C)

Input: A constituent C.
Output: True if C is punctuation; otherwise, False.

1: return (C is :|,|.|“|”|-LRB-|-RRB-|HYPH|NFP|SYM|PUNC)

4.14.9 ROOT: root

A root is the root of a tree that does not depend on any node in the tree but the artificial root node whose ID
is 0. A tree can have multiple roots only if the top constituent contains more than one child in the original
constituent tree (this does not happen with the OntoNotes Treebank but happens quite often with medical
corpora).
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5 Adding secondary dependencies
Secondary dependencies are additional dependency relations derived from gapping relations (Section 5.1),
relative clauses (Section 5.2), right node raising (Section 5.3), and open clausal complements (Section 5.4).
These are separated from the other types of dependencies (Section 4) because they can break tree properties
(e.g., single head, acyclic) when combined with the others. Preserving tree structure is important because
most dependency parsing algorithms assume their input to be trees. Secondary dependencies give deeper
representations that allow extraction of more complete information from the dependency structure.

5.1 GAP: gapping
Gapping is represented by co-indexes (with the = symbol) in constituent trees. Gapping usually happens in
forms of coordination where some parts included in the first conjunct do not appear in later conjuncts (Jack-
endoff, 1971). In Figure 25, the first conjunct, VP-3, contains the verb used, which does not appear in the
second conjunct, VP-4, but is implied for both NP=1 and PP=2. The CoNLL dependency approach makes the
conjunction, and, the heads of both NP=1 and PP=2, and adds an extra label, GAP, to their existing labels
(ADV-GAP and GAP-OBJ in Figure 27). Although this represents the gapping relations in one unified format,
statistical dependency parsers perform poorly on these labels because they do not occur frequently enough
and are often confused with regular coordination.

Figure 25: An example of a gapping relation.

In our approach, gapping is represented as secondary dependencies; this way, it can be trained separately
from the other types of dependencies. The GAP dependencies in Figure 26 show how gapping is represented
in our structure: the head of each constituent involving a gap (road, as9) becomes a dependent of the head
of the leftmost constituent not involving a gap (railways, as4).

Figure 26: The Clear dependency tree converted from the constituent tree in Figure 25. The gapping
relations are represented by the secondary dependencies, GAP.
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Figure 27: The CoNLL dependency tree converted from the constituent tree in Figure 25. The dependencies
derived from the gapping relations, ADV-GAP, GAP-OBJ, are indicated by dotted lines.

5.2 REF: referent
A referent is the relation between a wh-complementizer in a relative clause and its referential head. In
Figure 28, the relation between the complementizer which and its referent Crimes is represented by the REF
dependency. Referent relations are represented as secondary dependencies because integrating them with
other dependencies breaks the single-head tree property (e.g., which would have multiple heads in Figure 28).

Figure 28: An example of a referent relation. The referent relation is represented by the secondary depen-
dency, REF.

Algorithm 5.1 : linkReferent(C)

Input: A constituent C.

1: if C is WHADVP|WHNP|WHPP then
2: let c be the wh-complementizer of C
3: let s be the topmost SBAR of C
4: if the parent of s is UCP then s← s.parent
5: if isRelativizer(c) and (s has no NOM) then
6: let p be the parent of s
7: ref ← null
8: if p is NP|ADVP then
9: let ref be the previous sibling of s that is NP|ADVP, respectively
10: elif p is VP then
11: let t be the previous sibling of s that has PRD
12: if s has CLF then ref ← t
13: if (C is WHNP) and (t is NP) then ref ← t
14: if (C is WHPP) and (t is PP) then ref ← t
15: if (C is WHADVP) and (t is ADVP) then ref ← t
16: if ref 6= null then
17: while ref has an antecedent do ref ← ref.antecedent
18: c.rHead ← ref
19: c.rLabel ← REF
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The linkReferent(C) method in Algorithm 5.1 finds a wh-complementizer and makes it a dependent of its
referent. Note that referent relations are not provided in constituent trees; however, they are manually
annotated in the PropBank as LINK-SLC (Bonial et al., 2010, Chap. 1.8). This algorithm was tested against
the PropBank annotation using gold-standard constituent trees and showed an F1-score of approximately
97%.

Algorithm 5.2 : isRelativizer(C)

Input: A constituent C.
Output: True if C is a relativizer linked to some referent; otherwise, False.

1: return C is 0|that|when|where|whereby|wherein|whereupon|which|who|whom|whose

5.3 RNR: right node raising
As mentioned in Section 2.3, missing dependencies caused by right node raising are preserved as secondary
dependencies. In Figure 14 (page 12), her should be a dependent of both for and in; however, it is a
dependent of only for in our structure because making it a dependent of both nodes breaks a tree property
(e.g., her would have multiple heads). Instead, the dependency between her and for is preserved with the
RNR dependency. Figure 30 shows another example of right node raising where the raised constituent, VP-2,
is the head of the constituents that it is raised from, VP-4 and VP-5. In this case, done becomes the head of
can2 with the dependency label, RNR.

Figure 29: An example of right node raising where the raised constituent is the head.

Figure 30: The dependency tree converted from the constituent tree in Figure 29. Right node raising is
represented by the secondary dependency, RNR.
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5.4 XSUBJ: open clausal subject
An open clausal subject is the subject of an open clausal complement (usually non-finite) that is governed
externally. Open clausal subjects are often caused by raising and control verbs (Chomsky, 1981). In Fig-
ure 31, the subject of like is moved to the subject position of the raising verb seemed (subject raising) so
that She becomes the syntactic subject of seemed as well as the open clausal subject of like (see Figure 32).

Figure 31: An example of an open clausal subject caused by a subject raising.

Figure 32: The dependency tree converted from the constituent tree in Figure 31. The open clausal subject
is represented by the secondary dependency, XSUBJ.

In Figure 33, the subject of wear is shared with the object of the control verb forced (object control) so that
me becomes the direct object of forced as well as the open clausal subject of wear (Figure 34). Alternatively,
me in Figure 35 is not considered the direct object of expected but the subject of wear ; this is a special case
called “exceptional case marking (ECM)”, which appears to be very similar to the object control case but is
handled differently in constituent trees (see Taylor (2006) for more details about ECM verbs).
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Figure 33: An example of an open clausal subject caused by an object raising.

Figure 34: A dependency tree converted from the constituent tree in Figure 33. The open clausal subject is
represented by the secondary dependency, XSUBJ.

Figure 35: An example of exceptional case marking.

Figure 36: A dependency tree converted from the constituent tree in Figure 35.
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6 Adding function tags

6.1 SEM: semantic function tags
When a constituent is annotated with a semantic function tag (BNF, DIR, EXT, LOC, MNR, PRP, TMP, and VOC; see
Appendix A.3), the tag is preserved with the head of the constituent as an additional feature. In Figure 37,
the subordinate clause SBAR is annotated with the function tag PRP, so the head of the subordinate clause,
is, is annotated with the semantic tag in our representation (Figure 38). Note that the CoNLL dependency
approach uses these semantic tags in place of dependency labels (e.g., the dependency label between is
and let would be PRP instead of ADVCL). These tags are kept separate from the other kinds of dependency
labels in our approach so they can be processed either during or after parsing. The semantic function tags
can be integrated easily into our dependency structure by replacing dependency labels with semantic tags
(Figure 39).

Figure 37: A constituent tree with semantic function tags. The phrases with the semantic function tags are
indicated by dotted boxes.

Figure 38: A dependency tree converted from the constituent tree in Figure 37. The function tags PRP, LOC,
and TMP are preserved as additional features of is, here, and tomorrow, respectively.

Figure 39: Another dependency tree converted from the constituent tree in Figure 37. The function tags,
PRP, LOC, and TMP, replace the original dependency labels, ADVCL, ADVMOD, and NPADVMOD.
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6.2 SYN: syntactic function tags
When a constituent is annotated with one or more syntactic function tags (ADV, CLF, CLR, DTV, NOM, PUT,
PRD, RED, and TPC; see Appendix A.3), all tags are preserved with the head of the constituent as additional
features. In Figure 40, the noun phrase NP-1 is annotated with the function tag PRD and TPC so the head
of the noun phrase, slap, is annotated with both tags in our representation (Figure 41). Similarly to the
semantic function tags (Section 6.1), syntactic function tags can also be integrated into our dependency
structure by replacing dependency labels with syntactic tags.

Figure 40: A constituent tree with syntactic function tags. The phrase with the syntactic function tags is
indicated by a dotted box.

Figure 41: A dependency tree converted from the constituent tree in Figure 40. The function tags, PRD and
TPC, are preserved as additional features of slap.
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A Constituent Treebank Tags
This appendix shows tags used in various constituent Treebanks for English (Marcus et al., 1993; Nielsen
et al., 2010; Weischedel et al., 2011; Verspoor et al., 2012). Tags followed by ∗ are not the typical Penn
Treebank tags but used in some other Treebanks.

A.1 Part-of-speech tags

Word level tags
ADD Email POS Possessive ending
AFX Affix PRP Personal pronoun
CC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
CODE Code ID RBR Adverb, comparative
DT Determiner RBS Adverb, superlative
EX Existential there RP Particle
FW Foreign word TO To
GW Go with UH Interjection
IN Preposition or subordinating conjunction VB Verb, base form
JJ Adjective VBD Verb, past tense
JJR Adjective, comparative VBG Verb, gerund or present participle
JJS Adjective, superlative VBN Verb, past participle
LS List item marker VBP Verb, non-3rd person singular present
MD Modal VBZ Verb, 3rd person singular present
NN Noun, singular or mass WDT Wh-determiner
NNS Noun, plural WP Wh-pronoun
NNP Proper noun, singular WP$ Possessive wh-pronoun
NNPS Proper noun, plural WRB Wh-adverb
PDT Predeterminer XX Unknown

Punctuation like tags
$ Dollar -LRB- Left bracket
: Colon -RRB- Right bracket
, Comma HYPH Hyphen
. Period NFP Superfluous punctuation
“ Left quote SYM Symbol
” Right quote PUNC General punctuation

Table 6: A list of part-of-speech tags for English.
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A.2 Clause and phrase level tags

Clause level tags
S Simple declarative clause
SBAR Clause introduced by a subordinating conjunction
SBARQ Direct question introduced by a wh-word or a wh-phrase
SINV Inverted declarative sentence
SQ Inverted yes/no question, or main clause of a wh-question

Phrase level tags
ADJP Adjective phrase NX N-bar level phrase
ADVP Adverb phrase PP Prepositional phrase
CAPTION∗ Caption PRN Parenthetical phrase
CIT∗ Citation PRT Particle
CONJP Conjunction phrase QP Quantifier Phrase
EDITED Edited phrase RRC Reduced relative clause
EMBED Embedded phrase TITLE∗ Title
FRAG Fragment TYPO Typo
HEADING∗ Heading UCP Unlike coordinated phrase
INTJ Interjection VP Verb phrase
LST List marker WHADJP Wh-adjective phrase
META Meta data WHADVP Wh-adverb phrase
NAC Not a constituent WHNP Wh-noun phrase
NML Nominal phrase WHPP Wh-prepositional phrase
NP Noun phrase X Unknown

Table 7: A list of clause and phrase level tags for English.

A.3 Function tags

Syntactic roles
ADV Adverbial PUT Locative complement of put
CLF It-cleft PRD Non-VP predicate
CLR Closely related constituent RED∗ Reduced auxiliary
DTV Dative SBJ Surface subject
LGS Logical subject in passive TPC Topicalization
NOM Nominalization

Semantic roles
BNF Benefactive MNR Manner
DIR Direction PRP Purpose or reason
EXT Extent TMP Temporal
LOC Locative VOC Vocative

Text and speech categories
ETC Et cetera SEZ Direct speech
FRM∗ Formula TTL Title
HLN Headline UNF Unfinished constituent
IMP Imperative

Table 8: A list of function tags for English.
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B Dependency Labels

B.1 CoNLL dependency labels
This appendix shows a list of the CoNLL dependency labels. See Johansson (2008, Chap. 4) for more details
about the CoNLL dependency labels.

Labels retained from function tags
ADV Unclassified adverbial MNR Manner
BNF Benefactor PRD Predicative complement
DIR Direction PRP Purpose or reason
DTV Dative PUT Locative complement of put
EXT Extent SBJ Subject
LGS Logical subject TMP Temporal
LOC Locative VOC Vocative

Labels inferred from constituent relations
AMOD Modifier of adjective or adverb OPRD Object predicate
CONJ Conjunct P Punctuation
COORD Coordination PMOD Modifier of preposition
DEP Unclassified dependency PRN Parenthetical
EXTR Extraposed element PRT Particle
GAP Gapping QMOD Modifier of quantifier
IM Infinitive marker ROOT Root
NMOD Modifier of nominal SUB Subordinating conjunction
OBJ Object or clausal complement VC Verb chain

Table 9: A list of the CoNLL dependency labels.
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B.2 Stanford dependency labels
This appendix shows a list of the Stanford dependency labels. See de Marneffe and Manning (2008b) for
more details about Stanford dependency labels.

Label Description Label Description
ABBREV Abbreviation modifier NPADVMOD Noun phrase as ADVMOD
ACOMP Adjectival complement NSUBJ Nominal subject
ADVCL Adverbial clause modifier NSUBJPASS Nominal subject (passive)
ADVMOD Adverbial modifier NUM Numeric modifier
AGENT Agent NUMBER Element of compound number
AMOD Adjectival modifier PARATAXIS Parataxis
APPOS Appositional modifier PARTMOD Participial modifier
ATTR Attribute PCOMP Prepositional complement
AUX Auxiliary POBJ Object of a preposition
AUXPASS Auxiliary (passive) POSS Possession modifier
CC Coordination POSSESSIVE Possessive modifier
CCOMP Clausal complement PRECONJ Preconjunct
COMPLM Complementizer PREDET Predeterminer
CONJ Conjunct PREP Prepositional modifier
COP Copula PREPC Prepositional clausal modifier
CSUBJ Clausal subject PRT Phrasal verb particle
CSUBJPASS Clausal subject (passive) PUNCT Punctuation
DEP Dependent PURPCL Purpose clause modifier
DET Determiner QUANTMOD Quantifier phrase modifier
DOBJ Direct object RCMOD Relative clause modifier
EXPL Expletive REF Referent
INFMOD Infinitival modifier REL Relative
IOBJ Indirect object ROOT Root
MARK Marker TMOD Temporal modifier
MWE Multi-word expression XCOMP Open clausal complement
NEG Negation modifier XSUBJ Controlling subject
NN Noun compound modifier

Table 10: A list of the Stanford dependency labels.
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