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Abstract

Modeling insurance claim counts is a critical component in the ratemaking process for prop-

erty and casualty insurance. This article explores the usefulness of copulas to model the number

of insurance claims for an individual policyholder within a longitudinal context. To address the

limitations of copulas commonly attributed to multivariate discrete data, we adopt a “jittering”

method to the claim counts which has the effect of continuitizing the data. Elliptical copulas are

proposed to accommodate the intertemporal nature of the “jittered” claim counts and the un-

observable subject-specific heterogeneity on the frequency of claims. Observable subject-specific

effects are accounted in the model by using available covariate information through a regres-

sion model. The predictive distribution together with the corresponding credibility of claim

frequency can be derived from the model for ratemaking and risk classification purposes. For

empirical illustration, we analyze an unbalanced longitudinal dataset of claim counts observed

from a portfolio of automobile insurance policies of a general insurer in Singapore. We further

establish the validity of the calibrated copula model, and demonstrate that the copula with

“jittering” method outperforms standard count regression models.
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1 Introduction

In property and casualty ratemaking, it is a common practice to account for the pattern of claims

observed over a period of time. Past claims experience may provide invaluable insight into some

of the risk characteristics of the policyholder that are typically considered unobservable and may

be difficult to assess a priori. To illustrate, in the case of automobile insurance, peculiar driving

abilities such as aggressiveness and judgement of the driver can be challenging to the actuary to

evaluate at a time when a new policy is issued. However, as claims are observed over a length of

time, the insurer is able to better assess the policyholder’s potential risk characteristics and as a

consequence, to make appropriate premium adjustments. In general terms, insured drivers with

past claims are penalized while those with good claim records are rewarded. Experience rating is

the term that is used to evaluate the past claim records of an insured policyholder in order to reach

a fair and more equitable premium structure.

For pure premium calculations, the most customary approach to model the claims distribution

is to use a two-part model which decomposes the total claims into claim frequency and claim

severity. The claim frequency accounts for the number of times, usually in a period e.g. year, the

policyholder makes a claim. The claim severity examines the amount of the claim, given a claim

occurs. See, for example, Klugman et al. (2008). We focus our attention in this paper on the claim

frequency or claim count component for which many believe to be the more important component.

This is because the number of claims better reveals the inherent risk of a policyholder, and thus

leads to a better risk classification. Besides, being unable to accurately predict the number of claims

can have a devastating effect in an insurance portfolio. For each single claim made, a claim amount

is often associated with it. Hence, each time a claim is not correctly predicted, the prediction bias

is transmitted into the total insurance claim amount of the portfolio. To further emphasize the

magnitude, according to the Department of Transportation and National Highway Traffic Safety

Administration, in 2007, there were a total of approximately 10.5 million car crashes in the United

States.

This paper considers modeling insurance claim counts observed over a period of time, or more

commonly referred to as ‘longitudinal insurance claim counts’. Assume that we observe claim

counts denoted by Nit for the ith policyholder, i = 1, . . . , I, in an insurance portfolio in year t,

t = 1, . . . , Ti. For each policyholder in the portfolio, the observable data is a vector of claim counts

that can be expressed in the form (Ni1, . . . , NiTi). The length of time Ti observed may differ among

policyholders in the case when the data is unbalanced. Additionally, we have a set of observable

covariates xit frequently useful for the purpose of sub-dividing the portfolio into classes of risks with

homogeneous characteristics. This process of risk classification is relevant for insurance pricing and

valuation. It is a common practice in insurance ratemaking to account for risk classifying variables

so that the insurer can optimally group homogeneous risks within an insurance portfolio. See

Antonio and Valdez (2011).

Since the seminal work of Jorgenson (1961), count data regression has received extensive at-

tention in the literature. Its applications range in various disciplines including but not limited
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to actuarial science, biomedical statistics, economics, and sociology. We refer readers to the two

excellent monograph, Cameron and Trivedi (1998) and Winkelmann (2008), and the vast literature

therein for count data regression models. One strand of studies take a semiparametric approach,

where the conditional mean of the count variable is estimated by a pseudolikelihood method. See,

for example, Nelder and Wedderburn (1972) and Gourieroux et al. (1984). The semiparametric

approach provides robust estimation of the expectation of the count of interest. However, little

information could be derived for other aspects of the conditional distribution, which makes it very

limited in many applied research. For example, the interest of our application is the predictive

distribution that is used in the ratemaking process for property and casualty insurers. As an alter-

native, part of the literature, following the early work of Hausman et al. (1984), has been devoted

to the development of fully parametric probabilistic count regression models. The most common

count distributions used are Poisson and negative binomial where the covariates are linked through

a function of the respective mean parameters. It is well-known for count data that sometimes we

observe an excessive number of zeros more so than what these distributions can accommodate;

hence, the use of generalized count distribution which includes zero-inflated and hurdle models, are

increasing in popularity.

Various regression techniques have been proposed for longitudinal count data. In a longitudinal

context, one hopes to capture the unobserved individual heterogeneity that helps improve the pre-

diction of the count variable of interest. To capture the intertemporal dependence within subjects,

the most popular approach is to introduce a common random effect, say αi, to each observation. To

fix ideas, if (ni1, . . . , niTi) is the vector of observed counts, then the joint probability mass function

for (Ni1, . . . , NiTi) can be expressed as

Pr(Ni1 = ni1, . . . , NiTi = niTi) =

∫ ∞

0
Pr(Ni1 = ni1, . . . , NiTi = niTi |αi)f(αi)dαi

where f(αi) is the pre-specified density function of the random effect. To evaluate the conditional

probability in the first term of the above integral, the typical assumption is conditional independence

as follows:

Pr(Ni1 = ni1, . . . , NiTi = niTi |αi) = Pr(Ni1 = ni1|αi)× · · · × Pr(NiTi = niTi |αi).

Random effects models provide for an instinctive interpretation for insurance claims data. It cap-

tures unobservable individual risk characteristics that are not accounted for by the observable

covariates. For example, in the case of automobile insurance, this may include unobservable be-

havior and judgmental abilities of the driver which could possibly be reflected in the pattern of

claims observed over a period of time. The excellent survey paper in Boucher and Guillén (2009)

explores various random effects models applied to automobile insurance data. Additional actuarial

applications of these types of models are also discussed in the textbooks by Denuit et al. (2007)

and Frees (2010).

In this paper, to account for within-subject serial correlation or intertemporal dependence, we
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propose the use of indirect application of copula regression models to the vector of insurance claim

counts (Ni1, . . . , NiTi) for the ith policyholder. While copulas are undeniably popular partly because

of their exceptional flexibility in modeling a variety of dependence structure, it has been highly

debatable when they are directly applied to discrete data. This is because for multivariate discrete

observations, there is the non-uniqueness of the copula and the resulting vague interpretation of

the nature of dependence implied by the copula. See the arguments made by Genest and Nešlehová

(2007). Despite this debate, there has been a number of applications of copula regression models

to multivariate discrete data in various disciplines. For example, see Prieger (2002), Cameron et al.

(2004), and Zimmer and Trivedi (2006) in economics, Song et al. (2009) in biostatistics, Purcaru

and Denuit (2003) and Shi and Valdez (2011) in actuarial science.

To circumvent around the potential problems of direct applications of copulas, we apply the

concept of jittering where we subtract an independent continuous random variable from each com-

ponent of the multivariate discrete data. This has the effect of converting the discrete to continuous

data. Henceforth, we are able to more comfortably specify copula functions to the resulting jittered

multivariate continuous data. It has been demonstrated, in Denuit and Lambert (2005) where this

approach has been suggested, that the concordance-based association measures, such as Kendall’s

tau, are preserved when jittering the discrete data. This allows us to naturally interpret the de-

pendence implied by the copula for the jittered data. To our knowledge, this work is the first

application of the jitter approach to longitudinal count data. Additionally, we do note that two

studies employed copulas for the modeling of longitudinal insurance claims, Frees and Wang (2006)

and Boucher et al. (2008). The primary difference of these studies compared with ours is that the

former used copulas to construct the joint distribution of latent random variables, and the latter

used copulas to construct the joint mass probability function of the claim counts directly. Addition-

ally, we note that the jitter approach has recently been explored for multivariate random variables

in the biostatistics literature by Madsen and Fang (2010) where our work is imminently related.

For the type of copulas examined in this paper, we find that the class of elliptical copulas provides

the advantage of accommodating flexible intertemporal dependence structures. In addition, the

sub-copulas and marginals of elliptical copulas stay within the same copula family (see Landsman

and Valdez (2003)), which is particularly useful for the unbalanced longitudinal nature with our

application.

For empirical demonstration, we use claims experience data observed from an automobile in-

surance portfolio of a major general insurer in Singapore over a period of nine years: from 1993

to 2001. The data is considered unbalanced in the sense that we do not necessarily observe each

policyholder during the entire period of observation. Some policyholders may have already been

contracted after the start of the observation while others may have decided to leave the company

before the end of the observation. In our dataset, we have a grand total of 4,006 observations, large

enough to be able to comfortably perform model calibration and draw inference on the observed

data.

The rest of this paper has been structured as follows. Section 2 provides for a discussion of
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the various modeling framework suitable for longitudinal count data. Standard models examined

include random effects count models. These models are discussed in some detail here because they

are used to compare the performance of the jittered method. This section additionally describes

the concept of applying copula models to jittered data. Whenever copula models are applied to

data, some form of validation is necessary. We thus discuss the use of t-plots for validating the use

of elliptical copulas. Section 3 summarizes the data used in our empirical investigation. Section 4

provides the calibration results together with model validation. Finally, we conclude in Section 5.

2 Modeling

Assume an insurance portfolio consisting of I policyholders is observed for T periods, and let

Ni = (Ni1, . . . , NiTi) denote the vector of observable claim counts for the ith policyholder. Our

goal is to be able to draw prediction on the number of claims in the subsequent period T + 1 for

this policyholder.

2.1 Review of Alternative Models

Traditional approach for modeling longitudinal count data is to incorporate random effects in the

standard count regression model to account for individual heterogeneity. In this sub-section, we

briefly discuss four standard formulations: random effects Poisson model, random effects negative

binomial model, random effects zero-inflated Poisson model, and random effects zero-inflated neg-

ative binomial model. Because of the prediction purposes, we focus on fully parametric setup.

The proposed copula-based count regression model will be compared against these four alternative

models. We refer the reader to Denuit et al. (2007) and Frees (2010) for additional details on the

actuarial modeling of claim counts.

2.1.1 Random Effects Poisson Model

The simplest form of random effects count regression assumes that the conditional number of claims

follow a Poisson distribution, i.e.,

Pr(Nit = nit|ηi) =
λ̃nit
it e

−λ̃it

nit!
(1)

with

λ̃it = ηiλit = ηiωit exp(x
′
itβ).

Here, ωit is the weight parameter, representing the corresponding exposure, the length of time the

insured keeps the policy inforce during the year. xit denotes the vector of covariates in the tth

period for policyholder i, and β represents the vector of corresponding regression coefficients. The

subject-specific effect is captured by the random effect ηi. Many candidate distributions could be

chosen for ηi. As shown in Hausman et al. (1984), when a gamma distribution with mean 1 and
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variance 1/ψ is assumed for ηi, a closed form can be derived for the joint distribution of claim

counts. It is easily shown that this random effect Poisson specification implies E[Nit] = λit and

Var[Nit] = λit + λ2it/ψ. The variance to mean ratio of 1 + λit/ψ indicates the overdispersion could

be captured by the random effect.

Another way to think of Poisson model is to use generalized linear model framework, since

Poisson distribution is a member of exponential family. A random effect model could be specified

through the conditional link function. Using a canonical log link, one has

λ̃it = ωit exp(αi + x
′
itβ).

A natural choice for the random intercept is αi ∼ N(0, σ2). This specification is equivalent to a

lognormal assumption for parameter ηi.

2.1.2 Random Effects Negative Binomial Model

Negative binomial regression is another popular choice to model count data. In a cross-sectional

setup, it has the advantage of capturing overdispersion when compared with Poisson model. Dif-

ferent forms of negative binomial distribution are available for count data modeling, so with the

incorporation of random effects. One well-known procedure to construct a negative binomial dis-

tribution is through a gamma-Poisson mixture formulation. Hausman et al. (1984) considered the

random effect model:

Pr(Nit = nit|νi) =
Γ(nit + λit)

Γ(λit)Γ(nit + 1)

(
νi

1 + νi

)λit ( 1

1 + νi

)nit

, (2)

where λit = ωit exp(x
′
itβ), as defined above. This is known as NB1 distribution and could be derived

by assuming a gamma distribution with parameters (λit, νiλ) for λ̃it in the Poisson distribution

(Cameron and Trivedi (1998)). The conditional distribution has moments E[Nij |νi] = λit/νi and

Var[Nit|νi] = ϕiE[Nij |νi] with ϕi = 1+1/νi. A convenient distributional assumption for the random

effect is to assume that ϕi follows a beta distribution with parameters (a, b), under which, the joint

distribution of claim counts has a closed form solution after integrating out the random effect. See

Hausman et al. (1984).

As an alternative, when one assumes a gamma distribution with parameters (ψ,ψ) for the mean

parameter λ̃it in the Poisson distribution, the gamma-Poisson mixture leads to another negative

binomial distribution, known as NB2 distribution (see, for example, Greenwood and Yule (1920)

and Dionne and Vanasse (1992) for its applications). The corresponding random effect model can

be expressed as:

Pr(Nit = nit|αi) =
Γ(nit + ψ)

Γ(ψ)Γ(nit + 1)

(
ψ

λ̃it + ψ

)ψ ( λ̃it

λ̃it + ψ

)nit

, (3)
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with

E(Nit|αi) = λ̃it = ωit exp(αi + x
′
itβ),

and

Var(Nit|αi) = λ̃it + λ̃2it/ψ.

Without loss of generality, a normal distribution is typically used for the random effect under the

above specification.

2.1.3 Random Effects Zero-Inflated Models

Typically the number of claims contains a significant percentage of zeros, which cannot be captured

by the variance function of Poisson and negative binomial distributions. One solution to address

the issue of excess zeros is to use the zero-inflated count regression model introduced by Lambert

(1992). Zero-inflated regression could be considered as a mixture of two stochastic processes,

one only generating zeros and the other generating non-negative counts according to a standard

count distribution. The probability that an individual count outcome is from the zero-generating

process is usually determined by a binary regression model, for example, logit model with binomial

distribution assumption. In a longitudinal context, subject-specific effects could be accommodated

through random effects specification. In this application, we consider the following random effects

formulation:

Pr(Nit = nit|δi, αi) =

{
πit + (1− πit)f(nit|αi) if nit = 0

(1− πit)f(nit|αi) if nit > 0
. (4)

In this model, πit represents the probability that the observation nit is from the zero-only process,

and f(nit|αi) represents a standard count regression with subject-specific random effect αi. In

particular, we consider a random effects zero-inflated Poisson model (ZIP) with f(nit|αi) following
(1), and a random effects zero-inflated negative binomial model (ZINB) with f(nit|αi) following

(3). The probability πit is determined by a logit regression of the form

log

(
πit

1− πit

∣∣∣δi) = δi + z
′
itγ,

where random intercept δi captures individual heterogeneity, zit is a set of covariates that could be

different from the count data model and γ is the corresponding vector of regression coefficients.

2.2 Copula Model

In contrast to random effects, individual unobserved heterogeneity could be accommodated by the

serial correlation among repeated observations in a longitudinal context. Towards this direction,

we consider using a copula function to construct the joint distribution and thus capture the in-

tertemporal dependence among insurance claims. Since claim counts are discrete, suppose there
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exists a copula C, then the joint probability mass function of (Ni1, · · · , NiT ) could be expressed as:

Pr(Ni1 = ni1, · · · , NiT = niTi) =

1∑
j1=0

· · ·
1∑

jTi=0

(−1)j1+···+jTiC(u1j1 , · · · , uTjTi ), (5)

where Fit denotes the distribution of Nit, ut0 = Fit(nit) and ut1 = Fit(nit − 1) for t = 1, · · · , Ti.
See Song et al. (2009). This approach is subject to at least three computational difficulties. First,

equation (5) contains 2Ti terms, and thus become unmanageable to evaluate for Ti larger than

four or five. Second, the calculation of the copula function C might involve high-dimensional non-

tractable integration, for example, the family of elliptical copulas. Third, the non-uniqueness of the

copula according to the Sklar’s representation adds extra difficulty of applying copulas directly to

discrete data (see, for example, Genest and Nešlehová (2007) for some discussion in the actuarial

literature).

2.2.1 Continuous Extension with Jitters

To address the issues raised above, we adopt a “jitter” approach proposed by Madsen and Fang

(2010). In this approach, the integer-valued claim count is converted to a continuous random

variable. A copula is then used to model the dependency among the jittered continuous variables,

while preserving the dependence relationship between the original discrete variables (see Denuit

and Lambert (2005)).

Specifically, define N∗
it = Nit − Uit where Uit ∼ Uniform(0, 1) and are independent for t =

1, · · · , T and i = 1, · · · , I. Then given the distribution of the count variable Nit (we use Fit and

fit to denote its cumulative distribution function and probability function, respectively), one could

derive the distribution of N∗
it as:

F ∗
it(n) = Fit([n]) + (n− [n])fit([n+ 1])

= Pr(Nit ≤ [n]) + (y − [y])Pr(Nit = [n+ 1]) (6)

and

f∗it(n) = fit([n+ 1]) = Pr(Nit = [n+ 1]), (7)

where F ∗
it and f

∗
it indicate the cumulative distribution function and density function of the jittered

continuous random variable N∗
it, respectively. In this process, the claim count Nit could be retrieved

from Nit = [N∗
it + 1], and the parameters in F ∗

it and f∗it are exactly those of Fit and fit, thus no

information is lost in the ”jitter” process.

According to Sklar’s theorem, there exists a conditional copula C(·|Ω) such that the joint

distribution of the jittered claims for the ith policyholder (N∗
i1, N

∗
i2, · · · , N∗

iT ) could be expressed

as:

F ∗
i (n

∗
i1, · · · , n∗iT |Ω) = C(F ∗

i1(n
∗
i1|Ω), · · · , F ∗

iT (n
∗
iT |Ω)|Ω), (8)

where Σ denotes available information, such as the set of covariates. Taking derivatives of equation
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(8) leads to:

f∗i (n
∗
i1, · · · , n∗iT ) = c(F ∗

i1(n
∗
i1), · · · , F ∗

iT (n
∗
iT );θ)

T∏
t=1

f∗it(n
∗
it). (9)

Here, c(·) represents the corresponding copula density, and θ denotes the vector of association

parameters in the copula. Note that the joint density in equation (9) represents a hypothetical

case, since it is the discrete claim counts that one observes, rather than the jittered continuous

variables. Based on the joint density of (N∗
i1, · · · , N∗

iT ) in equation (9), one could derive the joint

probability mass function of (Ni1, · · · , NiT ) by averaging over the jitters Ui = (Ui1, · · · , UiT ):

fi(ni1, · · · , niT ) = EUi

(
c(F ∗

i1(ni1 − Ui1), · · · , F ∗
iT (niT − UiT );θ)

T∏
t=1

f∗it(nit − Uit)

)
. (10)

Furthermore, as shown in Denuit and Lambert (2005), the concordance-based association measures,

such as Kendall’s tau, of (N∗
i1, · · · , N∗

iT ) are identical as those of (Ni1, · · · , NiT ). This implies that

we could interpret the dependency associated with the copula as that of the insurance claim counts.

2.2.2 Model Specification

To account for the potential overdispersion that is often observed with insurance claim counts data,

we consider the negative binomial distribution for the marginal distribution of Nit:

fit(n) = Pr(Nit = n) =
Γ(n+ ψ)

Γ(ψ)Γ(n+ 1)

(
ψ

λit + ψ

)ψ ( λit
λit + ψ

)n
, (11)

with λit = ωit exp(x
′
itβ). Thus the distributions of the associated continuous variable N∗

it could be

easily derived according to equations (6) and (7).

In longitudinal applications, elliptical copulas are commonly used to accommodate the within-

subject serial correlation. Thus we consider members of this family for the jittered continuous

variables, see, for example, Sun et al. (2008), Shi and Frees (2010), and Shi (2011). Elliptical

copulas are extracted from multivariate elliptical distributions. A T -dimensional random vector

W = (W1, · · · ,WT ) follows a multivariate elliptical distribution, if for a T ×1 vector µ and a T ×T
positive-definite matrix ∆, its density is of form:

h(w) =
κT√
|∆|

gT

[
1

2
(w − µ)

′
∆−1(w − µ)

]
,

where κT is a normalizing constant and gT (·) is known as the density generator function. Using

this notation, an elliptical distribution is often denoted by W ∼ ET (µ,∆, gT ). Elliptical distribu-

tions are extensions of the multivariate normal distribution and thus share many of its tractable

properties. This class of distributions was introduced by Kelker (1970) and was widely discussed

in Fang et al. (1990). Some of their applications in actuarial science can be found in Landsman

and Valdez (2003).
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Let H be the cumulative distribution function of a T -dimensional multivariate elliptical ran-

dom vector, Ht and ht be the cumulative distribution function and density of the tth marginal,

respectively, for t = 1, · · · , T , then the corresponding elliptical copula is

C(ι1, . . . , ιT ) = H(H−1
1 (ι1), . . . , H

−1
T (ιT )), (12)

with its probability density function:

c(ι1, . . . , ιT ) = h(H−1
1 (ι1), . . . , H

−1
T (ιT ))

T∏
t=1

1

ht(H
−1
t (ιt))

.

The elliptical copula remains invariant under an increasing transformation of the components of

the vector W . Thus we restrict our considerations to the copula associated with ET (0,Σ, gT ),

where Σ is the dispersion matrix with diagonal entries equal to one.

We consider three commonly used dependence structure ofΣ: autoregressive of order 1 (AR(1)),

exchangeable, banded Toeplitz with order 2. The AR(1) structure is a widely used specification

for time series data, indicating that the correlation generally diminishes over time. In contrast, the

exchangeable structure, also known as compound symmetry or uniform correlation in longitudinal

data analysis, assumes a constant correlation over time. In a Toeplitz structure, the correlation

between two observations depends only on their time difference, and the correlation becomes zero

for far distant times. For demonstration purposes, the three dispersion matrix are as follows in the

case where T = 5:

ΣAR =


1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1

 ΣEX =


1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1

 ΣTOEP =


1 ρ1 ρ2 0 0

ρ1 1 ρ1 ρ2 0

ρ2 ρ1 1 ρ1 ρ2

0 ρ2 ρ1 1 ρ1

0 0 ρ2 ρ1 1

 .

2.2.3 Model Estimation

The parameters could be estimated using a likelihood-based estimation method. In the longitudinal

application, we first consider the case of balanced data. Suppose all policyholders are observed for

T periods, the discrete claim counts observations are denoted by ni = (ni1, · · · , niT ) for i =

1, · · · , I. Following the specification in Section 2.2.2, our goal is to estimate the vector of regression

coefficients β, the dispersion parameter ψ in the marginal distribution of Nit, as well as the vector

of dependence parameters θ in the elliptical copula.
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Using an elliptical copula, the likelihood for the policyholder i could be shown as:

Li(β, ψ,θ)

= EUi

κT |Σ|−1/2gT

(
1

2
V∗′
i Σ

−1V∗
i

)( T∏
t=1

κ1g1

(
1

2
V ∗2
it

))−1 T∏
t=1

Pr(Nit = nit)

 , (13)

where V ∗
it = H−1

t (F ∗
it(nit − Uit)) and V∗

i = (V ∗
i1, · · · , V ∗

iT )
′
. This likelihood could be approximated

by averaging over a large number of jitters:

L̃i(β, ψ,θ)

=
1

S

S∑
s=1

κT |Σ|−1/2gT

(
1

2
v∗′
i,sΣ

−1v∗
i,s

)( T∏
t=1

κ1g1

(
1

2
v∗2it,s

))−1 T∏
t=1

Pr(Nit = nit)

 , (14)

where v∗
is = (v∗i1,s, · · · , v∗iT,s)

′
=
(
H−1

1 (F ∗
i1(ni1 − ui1,s), · · · ,H−1

T (F ∗
iT (niT − uiT,s)

)′
for s = 1, · · · , S,

and the uit,s for t = 1, · · · , T and s = 1, · · · , S are generated independently from uniform on (0,1).

The total log likelihood function could be derived by summing up the logarithm of (14) over all

policyholders. Note that though the above process assumes a balanced data set, the approach

could be easily adapted for an unbalanced data where all policyholders are not observed during

the complete sampling period. Assume policyholder i is observed for only Ti periods, a subset

of the T periods. To account for the lack of balance, one could replace the copula in (12) with

one of its subcopula, where each argument corresponds to each observation period. This can

be naturally done in the case of elliptical copulas, where all subcopulas also belong to the same

family. Specifically, one simply substitutes for the dispersion matrix Σ with Σi, the corresponding

submatrix of Σ.

2.2.4 Copula Validation

The validation of copula specification has been widely discussed in the literature and many pro-

cedures have been proposed for general copulas, for example, see Fermanian (2005), Genest et al.

(2006) and Scaillet (2007). A comprehensive review of goodness-of-fit test procedures for copu-

las can be found in Genest et al. (2009). To verify whether an elliptical copula is well specified,

we adopt the t-plot method proposed by Sun et al. (2008). The t-plot exploits the properties of

the elliptical distribution and is designed to evaluate the goodness-of-fit for the family of elliptical

copulas. Shi (2011) modified the t-plot method for the case of unbalanced data and adapted the

framework for both in-sample and out-of-sample validation purposes.

The null hypothesis of a t-plot is that a sample is from an elliptical multivariate distribution.

In modeling the longitudinal insurance claim counts, we are interested in whether the copula in

expression (10) is from the elliptical family. Suppose that policyholder i is observed for Ti (≤ T )

periods. Following Shi (2011), such hypothesis could be tested according to the procedure below:
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(i) Transform the claim counts to variables on (0, 1) by ι̂it = F ∗
it(nit−uit; β̂, ψ̂) for t = 1, · · · , Ti,

where F ∗
it is defined by equation (6) according to the negative binomial distribution in (11), and

β̂ and ψ̂ are maximum likelihood estimates of β and ψ, respectively. Under the null hypothesis,

ιi = (ιi1, · · · , ιiTi) is a realization of the hypothesized elliptical copula.

(ii) Compute the quantiles of ι̂it by ζ̂it = H−1
t (ι̂it) for t = 1, · · · , Ti, where Ht denotes the

marginal distribution associated with the elliptical copula. Thus, if the copula is well-specified,

ζ̂i = (ζ̂i1, · · · , ζ̂iTi)
′
follows the multivariate elliptical distribution of ETi(0,Σ, gTi).

(iii) Calculate vector ζ̂∗i = (ζ̂∗i1, · · · , ζ̂∗iTi)
′
= Σ̂−1/2ζ̂i, and construct the t statistic for policy-

holder i:

ti(ζ̂
∗
i ) =

√
Ti
¯̂
ζ∗i√

(Ti − 1)−1
∑Ti

t=1(ζ̂
∗
it −

¯̂
ζ∗i )

2

,

with Σ̂ the maximum likelihood estimator of Σ and
¯̂
ζ∗i = T−1

i

∑Ti
t=1 ζ̂

∗
it. Thus ti(ζ̂

∗
i ) should be from

a standard t distribution with Ti − 1 degrees of freedom.

(iv) Repeat steps (i) - (iii) for i = 1, · · · , I, and calculate the t statistics ti(ζ̂
∗
i ) for all policy-

holders in the sample. Define the transformed variable ςi = GTi−1(ti(ζ̂
∗
i )), where GTi−1 denotes the

cumulative distribution function of a t distribution with Ti − 1 degrees of freedom. If the copula

captures the dependence structure properly, ς = (ς1, · · · , ςn)
′
should be a random sample from a

uniform random variable on (0,1). This can be easily verified using standard graphical tools or

goodness-of-fit tests.

3 Data

In this paper, the longitudinal count regression models are calibrated using the number of claims

in a portfolio of auto insurance from a general insurer in Singapore. Claim experience data for the

insurance portfolio are collected over a period of nine years 1993-2001. Our data are obtained from

the General Insurance Association of Singapore, a trade association representing general insurance

companies in Singapore. Other studies that have examined Singapore auto insurance data include

Frees and Valdez (2008), Frees et al. (2009), and Shi and Valdez (2011).

We restrict the analysis to “non-fleet” policies that provide coverage for a single policy only.

Similar to several jurisdictions worldwide, Singapore requires drivers to have, at the minimum,

a third party liability coverage to be able to drive a vehicle on the road, and at the same time,

drivers have the liberty to choose beyond this minimum level of coverage. To construct a more

homogeneous sample, we focus on policyholders with comprehensive coverage that account for the

choice of most policyholders. Table 1 presents the claim frequency distribution over time. In each

year, the claim counts distribution has a significant fraction of zeros. This is consistent with the

insurance practice, where insures mange the risk pool through diversification effect. The number of

policyholders changes over years, indicating the unbalanced nature of the data. The lack of balance

could arise from many scenarios, for example, a customer might switch among different insurers,

meaning an existing customer could leave the insurance or a new customer could join the insurer.
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For this company, we note that the probability of accidents varies over time. Such observation could

be related the insurer’s underwriting standard. In practice, an insurance company could relax or

restrict the underwriting benchmark in order to expand or shrink current business. Typically, a

higher underwriting standard leads to more rejection of bad risks and thus a more favorable overall

claim experience.

Table 1: Number and Percentage of Claims by Count and Year

Percentage by Year Overall

Count 1993 1994 1995 1996 1997 1998 1999 2000 2001 Number Percent

0 88.10 85.86 85.21 83.88 90.41 85.62 86.89 87.18 89.71 3480 86.9

1 10.07 12.15 13.13 14.29 8.22 13.73 11.59 11.54 9.71 468 11.7

2 1.47 2.00 1.25 1.83 0.00 0.65 1.37 0.92 0.57 50 1.25

3 0.37 0.00 0.21 0.00 1.37 0.00 0.15 0.18 0.00 6 0.15

4 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.18 0.00 2 0.05

Number 546 601 480 273 73 306 656 546 525 4006 100

A set of variables related to vehicle and policyholder characteristics comes along with the claim

experience in the dataset, which helps explain and predict automobile accident frequency. These

characteristics include the vehicle’s age and brand, the driver’s age, gender, and marital status,

as well as an index of no claims discount (NCD). It is well-known that insurance company use

experience rating to incorporate the policyholder’s driving record into the ratemaking process,

i.e., the occurrence of accident affect the policyholder’s future premium. This design works as a

mechanism to mitigate the moral hazard in a multi-period contract. A popular experience rating

scheme is the bonus-malus system widely employed in Europe. Similar to the bonus-malus system,

Singapore insurance industry adopts a NCD approach. The no claims discount scheme is introduced

to encourage safe driving. An NCD increases 10% after a year without claims, and the maximum

NCD level is 50%. If the NCD is at 50% or 40%, a claim during one year will reduce it to 30% or

20%, respectively. Two or more claims in one year can cause a complete lost of the policyholders

current level of NCD. If the NCD is at 30% or lower levels, the entire discount is forfeited in case

of accidents. Because clearly the NCD reveals the policyholders past driving records, we use it as

a proxy to measure accident history.

Table 2 displays the effects of person level characteristics, age, gender, and NCD, on the claim

frequency, suggesting the significant effects of these three variables. Though accounting for a small

percentage in the insurance portfolio, young drivers has the higest accident rate, as shown in most

automobile studies. In the meanwhile, older policyholders are found to be safer drivers. Table 2 also

demonstrates the strong gender effects, with female drivers having lower accident rate, presumably

due to their higher degree of risk aversion that is usually associated with defensive driving behavior.

As expected, the drivers with lower NCD have more accidents, as predicted by the poor previous

driving records reflected in NCD. Although not reported here, we also investigated the interaction

effects among policyholder’s characteristics.
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Table 2: Number and Percentage of Claims by Age, Gender and NCD

Percentage by Count Overall

0 1 2 3 4 Number Percent

Person Age (in years)

25 and younger 73.33 23.33 3.33 0.00 0.00 30 0.75

26-35 87.49 11.12 1.19 0.10 0.10 1007 25.14

36-45 86.63 11.80 1.35 0.17 0.06 1780 44.43

46-60 86.85 11.92 1.05 0.18 0.00 1141 28.48

60 and over 91.67 6.25 2.08 0.00 0.00 48 1.2

Gender

Female 91.49 7.98 0.53 0.00 0.00 188 4.69

Male 86.64 11.86 1.28 0.16 0.05 3818 95.31

No Claims Discount (NCD)

0 84.83 13.17 1.61 0.26 0.13 1549 38.67

10 86.21 12.58 1.20 0.00 0.00 747 18.65

20 89.21 9.25 1.54 0.00 0.00 584 14.58

30 89.16 9.49 1.08 0.27 0.00 369 9.21

40 88.60 11.40 0.00 0.00 0.00 193 4.82

50 88.83 10.46 0.53 0.18 0.00 564 14.08

Number by Count 3480 468 50 6 2 4006 100

4 Inference

This section presents the results on model estimation and inference. The observations of years

1993-2000 are used to calibrate the model, and the observations in year 2001 are reserved for model

validation purposes. We show that the copula model with jitters outperforms standard longitudinal

count regression models.

4.1 Estimation Results

Both the random effects models and the proposed copula model are fitted with the longitudinal

claim counts described in Section 3, and the parameter estimates are exhibited in Table 3 and

Table 4, respectively. The preliminary analysis, in which the effects of both vehicle and driver

characteristics as well as their interactions are examined, suggests a set of important covariates for

the regression analysis: young is a binary variable indicating whether a driver is below 25 or not.

The interaction term midfemale refers to mid-aged (in age range 30-50) female drivers. The NCD

level is also reflected via a binary variable zeroncd, which equals one if the policyholder does not

enjoy any discount in premium and zero otherwise. For simplicity, vehicle age vage is included as

a continuous variable. In addition, we classify the brand of vehicles into various categories, and

indicator variables vbrand1 and vbrand2 correspond to two of them.

Four random effects count regression models are considered in Table 3. As discussed above,

many possible distributions for the random effect could be chosen. Here we use a gamma random

effect for the Poisson model and a beta random effect for the negative binomial model, because these
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formulations lead to a closed form solution for the joint distribution of insurance claim counts. In

fact, we also estimated both models with a normal random effect and found no substantial difference

in the estimated regression coefficients. A normal distributed random effect is employed in the zero-

inflated (Poisson and negative binomial) models. The estimates in Table 3 shows the significant

effects of covariates. As anticipated, young drivers are bad risks and have on average higher claim

frequency. In contrast, mid-aged female category drives more safely and have a lower probability

of accident. The policyholders with zero NCD, most possibly because of the poor driving history,

have a higher accident rate. The effect of vehicle age is statistically significant, though small. The

negative sign is consistent with the moral hazard interpretation that the driver of an older car

has higher moral hazard risk than whom of a newer vehicle. The small size could be attributed

to the potential nonlinear effect and the possible correlation between the vehicle age and driving

experience. Note that the intercept in the negative binomial model is not comparable to other

models. For comparison purposes, the intercepted must be adjusted to reflect the factor b/(a− 1).

In fact, after this modification, the intercept is -1.7138, which is close to other random effects

models.

Table 3: Estimates of standard longitudinal count regression models

RE-Poisson RE-NegBin RE-ZIP RE-ZINB

Parameter Estimate p-value Estimate p-value Estimate p-value Estimate p-value

intercept -1.7173 <.0001 1.6404 0.1030 -1.6780 <.0001 -1.7906 <.0001

young 0.6408 0.0790 0.6543 0.0690 0.6232 0.0902 0.6371 0.0853

midfemale -0.7868 0.0310 -0.7692 0.0340 -0.7866 0.0316 -0.7844 0.0319

zeroncd 0.2573 0.0050 0.2547 0.0060 0.2617 0.0051 0.2630 0.0050

vage -0.0438 0.0210 -0.0442 0.0210 -0.0436 0.0227 -0.0438 0.0224

vbrand1 0.5493 <.0001 0.5473 <.0001 0.5481 <.0001 0.5478 <.0001

vbrand2 0.1831 0.0740 0.1854 0.0710 0.1813 0.0777 0.1827 0.0755

LogLik -1498.40 -1497.78 -1498.00 -1497.50

AIC 3012.81 3013.57 3016.00 3017.00

BIC 3056.41 3062.62 3070.50 3077.00

To compare the performance of random effects models, we present the goodness-of-fit measures

at the bottom of Table 3, including the log likelihood function evaluated at the estimated parame-

ters, two commonly used model selection criteria, Akaike information criterion (AIC) and Bayesian

information criterion (BIC). The goodness-of-fit statistics suggest negligible difference among these

models. In particular, zero-inflated count data models do not demonstrate any advantage in mod-

eling the claim counts for this particular insurer, implying that the excess zeros are fairly captured

by the standard count distributions. The individual heterogeneity and overdispersion are accom-

modated by the random effect, which explains the comparable performance of the Poisson and

negative binomial models.

Table 4 summarizes the results for the copula model with jitters. We report the parameter

estimates and goodness-of-fit statistics for the Gaussian copula with three different dependence

structures, AR(1), exchangeable, and banded Toeplitz. Both model selection criteria (a smaller
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value) support the copula formulation compared with random effects models. Within the copula

models, it seems that the model fit does not gain much from the extra parameter in the Toeplitz

dependence. The best fit of the exchangeable dependence demonstrates the strong individual

heterogeneity. The estimates of regression coefficients are consistent with economic hypothesis and

comparable with Table 3.

It is worth stressing that the association parameter in the copula is about 0.12 and statistically

significant. First, we cannot interpret this parameter directly because the copula is essentially

used for the joint distribution of the jittered continuous variables. One solution is to translate it

to concordance-based measures, for example, the corresponding Kendall’s tau is 0.07. According

to Denuit and Lambert (2005), the concordance-based association measures are reserved for the

discrete variables. Thus one could interpret the Kendall’s tau as the association measure among

the discrete claim counts. Second, the significance of the association parameter implies strong

unobserved individual effects. Such unobservable factors could be either the policyholder’s inherent

riskiness or the policyholder’s driving attitude. On one hand, the serial association could arise from

residual risk factors, though insurers use risk classification to identify the risk level of policyholder.

On the other hand, the moral hazard effects could also cause serial dependence among claims, i.e.,

the coverage of insurance provides policyholders incentives for reckless driving behavior. Third,

the small association agrees with our expectation, although one expects to observe correlation

among claim counts mainly due to unobservable factors, be it selection or moral hazard effects.

This is because when experience rating (i.e., the NCD scheme in Singapore) is used, the individual

heterogeneity is significantly mitigated in a multi-period contract. Thus, it is not surprising to

observe a weak association in the claim counts from an insurer with experience rating.

Table 4: Estimates of copula model with various dependence structures

AR(1) Exchangeable Toeplitz(2)

Parameter Estimate StdErr Estimate StdErr Estimate StdErr

intercept -1.8028 0.0307 -1.8422 0.0353 -1.7630 0.0284

young 0.6529 0.0557 0.7130 0.0667 0.6526 0.0631

midfemale -0.6956 0.0588 -0.6786 0.0670 -0.7132 0.0596

zeroncd 0.2584 0.0198 0.2214 0.0172 0.2358 0.0176

vage -0.0411 0.0051 -0.0422 0.0056 -0.0453 0.0042

vbrand1 0.5286 0.0239 0.5407 0.0275 0.4962 0.0250

vbrand2 0.1603 0.0166 0.1752 0.0229 0.1318 0.0198

ϕ 2.9465 0.1024 2.9395 0.1130 2.9097 0.1346

ρ1 0.1216 0.0028 0.1152 0.0027 0.1175 0.0025

ρ2 0.0914 0.0052

LogLik -1473.25 -1454.04 -1468.74

AIC 2964.49 2926.08 2957.49

BIC 3013.55 2975.13 3011.99
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4.2 Model Validation

As part of the model validation process, we evaluate the goodness-of-fit of the Gaussian copula.

The modified t-plot method discussed in Section 2.2.4 is implemented and the uniform qq-plot is

displayed in Figure 1. The linear trend along the 45 degree line provides evidence that the Gaussian

copula is a suitable model for the dependency. A statistical test is performed for sample correlation.

The correlation coefficient between the sample and theoretical quantiles is 0.937. Based on 5,000

simulation, the p-value for the correlation is 0.453, indicating the nonsignificant difference between

the empirical and theoretical distributions.
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Figure 1: t-plot for the Gaussian copula with exchangeable dependence.

Finally, we compare different count regression models using hold-out observations in year 2001.

Let NiT+1 denote the number of insurance claims in the testing period for the ith policyholder,

i = 1, . . . , J , with J representing the size of the hold-out sample. Given the realizations of NiT+1,

denoted by niT+1, three performance measures, log likelihood function (LogLik), mean squared error

of prediction (MSPE), and mean absolute error of prediction (MSPE), are calculated according to:

• LogLik =
∑J

i=1 log (fiT+1(niT+1|ni1, · · · , niTi))
• MSPE =

∑J
i=1 [niT+1 − E(NiT+1|Ni1 = ni1, · · · , NiTi = niTi)]

2

• MAPE =
∑J

i=1 |niT+1 − E(NiT+1|Ni1 = ni1, · · · , NiTi = niTi)|
Here, fiT+1(niT+1|ni1, · · · , niTi) represents the predictive distribution of claim counts given the

past claim experiences. We calculate this quantity for the copula count model using the following

relationship:

fiT+1(niT+1|ni1, · · · , niTi)

=Pr(NiT+1 = niT+1|Ni1 = ni1, · · · , NiT = niTi)

=
EUi

(
c(F ∗

i1, · · · , F ∗
iTi
, F ∗

iT+1;θ)f
∗
iT+1

∏Ti
t=1 f

∗
it

)
EUi

(
c(F ∗

i1, · · · , F ∗
iTi

;θ)
∏Ti
t=1 f

∗
it

) . (15)
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where F ∗
it = F ∗

it(nit − Uit) and f
∗
it = f∗it(nit − Uit). Again, the evaluation of equation (15) involves

averaging over the jitters. In the calculation of the performance measures, a large number of Monte

Carlo simulations are used to ensure the convergence of the predictive distribution.

Table 5 displays the three performance measures for the copula models with different dependence

structures. For comparison purposes, we also report the results for the random effects Poisson

and negative binomial models. Consistent with the goodness-of-fit statistics presented in Section

4.1, the difference is insubstantial within each model category. However, noticeable difference is

observed between the two model categories: the MSPE of copula models is comparable to that

of random effects models, while the MAPE of copula models is less than random effect models.

Further more, the copula models have larger likelihood for the hold-out observations than standard

count regression models. The favorable results of copula models could be attributed to the more

information, especially the dynamic associations, captured by a copula function.

Table 5: Model validation based on hold-out sample

Standard Model Copula Model

RE-Poisson RE-NegBin AR(1) Exchangeable Toeplitz(2)

LogLik -177.786 -177.782 -168.037 -162.717 -165.932

MSPE 0.107 0.107 0.108 0.105 0.110

MAPE 0.213 0.213 0.197 0.186 0.192

5 Concluding Remarks

Modeling claim counts is a very important component in property and casualty insurance ratemak-

ing. As claims are observed over a period of time, the insurer may be able to better evaluate the

inherent risk characteristics of a policyholder and to adjust premiums as necessary. The type of

data observed is longitudinal and with it comes the relevance of being able to frame a model that

will help capture the intertemporal dependence in the pattern of claims. In this article, we investi-

gated the usefulness of a different class of joint regression models for longitudinal count data that

might provide better insight in understanding the possible association of insurance claim counts

observed over time.

The most popular approach for modeling longitudinal count data is the class of random effects

regression models. Within this class, the idea is to specify the class of distribution models for the

count data and simultaneously, introduce random effects to capture the intertemporal dependence

of the observations. The distribution of the random effects is typically pre-specified. Effectively,

for insurance claims data, this has the natural interpretation of captivating the unobservable het-

erogeneity inherent for an individual policyholder. For comparison purposes, we examined random

effects Poisson, negative binomial, and zero-inflated models.

Another approach for longitudinal count data, which has recently increased in popularity, in-

volves the use of copula regression models. Copulas link the marginals in the observable longitudinal

counts to its joint distribution function. This class of models provides for a rather flexible approach
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to explicitly measure the possible presence of dependence in the count data observed over time.

As we cited in the introduction, this approach has been used in disciplines such as economics,

biostatistics, and actuarial science. Our approach falls within this framework.

Direct specification of a copula to a multivariate count data has been debatable because of

non-uniqueness of the copula and the ambiguity of the implications of the dependence. The main

difference of our approach is the indirect specification of copula regression models to the longi-

tudinal insurance claim counts. Specifically, the proposed approach considers the application of

copula regression models to the jittered multivariate claim count. The concept of jittering involves

integration of a continuous random variable to each component in the multivariate claim count,

thereby converting the discrete to continuous form. This technique avoids the debatable issue of

calibrating copula models directly to multivariate discrete data. It has the additional advantage

that with the continuous extension with jitters, the dependence structure of the original discrete

data is preserved. This approach has been suggested by Denuit and Lambert (2005) and has been

empirically explored in Madsen and Fang (2010).

To empirically demonstrate the usefulness of this jittered approach, we used a dataset with a

grand total of 4,006 observations from a portfolio of automobile insurance obtained from a general

insurer in Singapore. To account for the observable heterogeneity of the policyholder, we injected

covariates through the marginal count distributions. Because of its flexibility to accommodate

various form of dependence structure, we examined the class of elliptical copulas and in particular,

we emphasized the usefulness of the Gaussian copula and investigated three different dependence

structures: AR(1), exchangeable, and banded Toeplitz. Model parameters were estimated using

the method of maximum likelihood. The model with exchangeable dependence structure appears

to provide the best quality fit, although the results indicate only weak association. However, this

is not atypical for insurance claim count data. In addition to, when it comes to prediction with

hold-out samples, the continuous extension with jitters approach outperforms traditional random

effects models. This indicates that the copula regression models with jitters proposed in this paper

is not any less superior than conventional methods.

Finally, we would like to remark that there is a vast alternative models that may be suitable

for longitudinal insurance claim counts data. One possible approach is to use a class of models

for time series data. This class of models, although less popular for insurance claim counts, has

been discussed in Cameron and Trivedi (1998) and it includes models with analogy to continuous

time series data. Models widely discussed include for example, integer-valued ARMA models,

autoregressive models, as well as serially correlated error models. The main appeal with time

series models is its ability to capture trends and seasonality which otherwise would not be captured

by models we discussed here. On the other hand, the primary disadvantage is the use of more

complex methods to achieve efficient estimates of parameters. Several other classes of models are

also explored in Molenberghs and Verbeke (2005). It will be interesting to examine these other

classes of models and compare them with the continuous extension with jitters proposed in this

paper. This is most notably suitable for further work.
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