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Hippocampal surface structure was assessed at twice 2 years apart in 26
nondemented subjects (CDR 0), in 18 subjects with early dementia of
Alzheimer type (DAT, CDR 0.5), and in 9 subjects who converted from
the nondemented (CDR 0) to the demented (CDR 0.5) state using
magnetic resonance (MR) imaging. We used parallel transport in
diffeomorphisms under the large deformation diffeomorphic metric
mapping framework to translate within-subject deformation of the
hippocampal surface as represented in the MR images between the two
time points in a global template coordinate system. We then performed
hypothesis testing on the longitudinal variation of hippocampal shape in
the global template. Both subjects with early DAT and converters
showed greater rates of hippocampal deformation across time than
nondemented controls within every subfield of the hippocampus. In a
random field analysis, inward surface deformation across time
occurred in a non-uniform manner across the hippocampal surface in
subjects with early DAT relative to the nondemented controls. Also,
compared to the controls, the lateral aspect of the left hippocampal tail
showed inward surface deformation in the converters. Using surface
deformation patterns as features in a linear discriminant analysis, we
were able to respectively distinguish converters and patients with early
DAT from healthy nondemented controls at classification rates of 0.77
and 0.87, which were obtained in the same training set using the leave-
one-out cross validation approach.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

MR-based volumetric assessment of the hippocampus has been
widely employed in normal aging and various neuropsychiatric
disorders, including DAT, mild cognitive impairment, schizophre-
nia, temporal lobe epilepsy, and major depression (Convit et al.,
1997; Shenton et al., 2001; Cardenas et al., 2003; Wang et al.,
2003; Csernansky et al., 2005; Frisoni et al., 2005; Apostolova et
al., 2006a,b; Frisoni et al., 2006; Wang et al., 2006; Frisoni et al.,
2007; Whitwell et al., 2007). In particular, progressive hippocam-
pal volume loss has been identified to be one of the hallmarks of
DAT. Using brain warping techniques, neuroimaging studies
previously found that increased rates of hippocampal volume loss
as well as different patterns of hippocampal shape change
distinguished early DAT from healthy aging (Fox et al., 1996;
Cardenas et al., 2003; Wang et al., 2003; Apostolova et al., 2006b;
Ridha et al., 2006). However, among the group of nondemented
subjects, there was considerable variation in the rate of hippo-
campal volume loss and shape change, possibly because of the
presence of subjects within this group with preclinical forms of
Alzheimer's disease (AD) (i.e., subjects are cognitively normal but
have histopathological AD). More sensitive methods for assess the
degree and pattern of structural change in the hippocampus are still
needed to optimally distinguish subjects with early forms of AD
(including preclinical AD) from subjects who are aging in the
absence of the AD process.

To precisely assess the location of volume loss within the
complex structure of the hippocampus requires studying within-
subject time-dependent deformation of the hippocampal surface,
as illustrated in the first level analysis of Fig. 1. However, the
absence of a common coordinate system across subjects can
undermine hypothesis testing related to time-dependent within-
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subject deformation. Previously, subjects' hippocampi at different
time points were mapped to a single hippocampal atlas via brain
warping techniques (Wang et al., 2003; Apostolova et al., 2006b).
The difficulty with this approach is that the transformations used
to assess longitudinal changes in the hippocampal surface
included both the variation of the transformation between different
time points within and across subjects. The weakness of this
approach for detecting within-subject changes is that the variation
across subjects is generally larger than the variation within
subjects.

In this paper, we demonstrate three-level analyses under the
large deformation diffeomorphic metric mapping framework
(LDDMM) for comparing longitudinal shape variation of the
hippocampus across clinical populations. As illustrated in Fig. 1,
the first two levels assess deformations within subjects and
between a global template and subjects, respectively, via LDDMM.
In the third-level analysis, we use a novel technique, parallel
transport in diffeomorphisms, which allows us to translate within-
subject deformation between time points in a global template
without incorporating across-subject deformation. We applied this
approach to a study of hippocampal shape change in 26 healthy
nondemented subjects (CDR 0), 18 patients with DAT (CDR 0.5),
and 9 subjects who converted from being nondemented to being
demented. Our aim was to distinguish subjects with very mild AD
and subjects with preclinical forms of AD from healthy comparison
subjects using time-dependent patterns of hippocampal surface
deformation.

Methods

General approach

Template-based morphometric methods have been successful
for describing anatomical variations between a collection of shapes
and a reference. Among these, the large deformation diffeomorphic
metric matching (LDDMM) algorithms provide a range of diffeo-
morphic matching methods (landmarks, images, curves, surfaces),
each of which can produce a metric evaluation of the size of the
variation. Moreover, LDDMM provides a mechanism that allows
for the reconstitution of the variations by encoding precise varia-
tions of anatomies relative to the template. The resultant template-
based representation can be interpreted as a change of coordinates
and can be used to represent anatomies in a local chart centered at
the template.

In the present study, we were primarily interested in quantifying
anatomical variation within each subject between two time points.
This variation is naturally represented by the deformation needed to
pass from the anatomy at the first time point to one at the second
time point within a subject. When comparing two or more subjects,
one then needs to decide how change in the anatomy of one subject
can be translated into the similar deformation that occurs in another
subject.

The metric structure on anatomies provided by LDDMM offers
a consistent approach for the translation of this information. This
operation, parallel translation taken from Riemannian geometry,
displaces vectors along a curve without changing properties such as
the norms of the vectors or their dot products. In Euclidean space,
this operation is the standard translation of vectors; i.e., the infini-
tesimal displacement of subject 1 is applied to subject 2 without
change. In curved spaces, however, parallel translation is nonlinear
and can be computed by solving a differential equation. The special
form of this equation on the LDDMM setting will be described in
the parallel transport in diffeomophisms section, after having
introduced the notation and formalism related to LDDMM in Large
deformation diffeomorphic metric matching section.

We thus present three levels of analysis for studying time-
dependent deformation of anatomies as schematized in Fig. 1. The
first level of analysis was to characterize within-subject variations
between the baseline and follow-up. The second level of analysis
constructed a curve connecting the baseline anatomies and the
global template and characterized cross-subjects variations between
them. In the third level, the parallel transport operation moved
within-subject time-dependent variations to the global template
along this curve: from the baseline to the global template. The first
two levels involve spatial normalization of anatomies implemented
by the LDDMM algorithm in the Large deformation diffeomorphic
metric matching section. The technique of parallel transport was
applied in the third level of the analysis as described in the Parallel
transport in diffeomorphisms section.

Large deformation diffeomorphic metric matching

LDDMM background
The first- and second-level analyses in Fig. 1 involve the

registration between two anatomical structures. In our case, the
surface of the hippocampus was represented by a triangulated mesh
with a finite number of points. In the LDDMM setting, we deve-
loped mapping algorithms for registering two point sets that
represent three types of different anatomical manifolds: landmarks,

Fig. 1. Schematics of transport in diffeomorphisms for studying longitudinal
shape variation. There are three levels of analysis. In the first level, the
initial momentum α0

(j) encoding the deformation of the hippocampus
between the baseline and follow-up within subject j is computed via
LDDMM surface mapping. The geodesic xt

(j) connecting subject j at the
baseline to the global template is also computed via LDDMM surface
mapping in the second level of the analysis. Finally, α0

(j) is parallel
transported to the global template along xt

(j) via the technique described in
Methods.
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curves, and surfaces (Joshi et al., 1999; Glaunes et al., 2004;
Vaillant and Glaunes, 2005). All of these mapping algorithms
provide diffeomorphic maps — one-to-one, reversible smooth
transformations that preserve topology. The use of LDDMM for
studying the shapes of objects implies the placement of shapes in a
metric space, provides a diffeomorphic transformation, and defines
a metric distance that can be used to quantify the similarity between
two shapes. We particularly chose the LDDMM surface mapping
algorithm for transforming one hippocampal surface to the other
because it incorporates intrinsic geometry of the surface (normal
vector) to quantify the similarity of surface shapes. The surface-
matching algorithm minimizes the energy

Jðat;xtÞ ¼
XN
k;l¼1

Z 1

0
KðxtðkÞ;xtðlÞÞatðkÞd atðlÞdt þ Dðx1;xtargÞ; ð1Þ

where N represents the number of vertices on the template surface.
xt= (xt(1), …, xt(N)) denotes transformed vertex locations at time t
and αt=(αt(1), …, αt(N)) is a collection of 3D vectors associated
with xt. The first term provides a metric that quantifies the length of
the trajectory connecting x0 and xtarg in a shape space. The kernel K
is a smoothing kernel that is positive definite and penalizes the
smoothness of the deformation so that the trajectory, xt, is diffeo-
morphic (see more details in Dupuis et al., 1998). D(x1, xtarg) quan-
tifies the closeness between the surfaces at the end of the evolution,
x1, and the target xtarg, which is measured by the correlation of
normal vectors at one surface with smoothed normal vectors at the
other surface (Vaillant and Glaunes, 2005; Vaillant et al., 2007).
Note that the time in this equation is a dummy time only used for
algorithmic purposes and should not be confused with the time at
which the data is collected. The variables xt and αt are related by the
dynamic equations

dxtðkÞ
dt

¼
XN
l¼1

K xt kð Þ;xt lð Þð Þat lð Þ; k ¼ 1; N N ð2Þ

with initial condition x0=xtemp. This “optimal control” problem
(because parameters, α, control the evolution of the state variable x),
with a specific choice of the distance D adapted to the case when x
contains the vertices of a triangulated surface was formulated and
solved in Vaillant and Glaunes (2005). The Euler-Lagrange
optimality conditions for the variational problem in Eq. (1) imply

datðkÞ
dt

¼ �
XN
l¼1

at kð Þd at lð Þj1K xt kð Þ;xt lð Þð Þ; ð3Þ

where ∇1 denotes taking derivative of K(x, y) with respect to its
first variable. Eqs. (2) and (3) indicate that the evolution from one
object to the other is uniquely determined givenα0. From Eq. (2), we
see that α0 carries the same information as dxt/dt at t=0, and
therefore corresponds to an infinitesimal variation of x0. We shall
term it as “deformation signature” that will be used to encode the
shape variation between the baseline and follow-up in the subject
baseline coordinates. Doing so yields α0

(j) = (α0
(j)(k), k=1, …, Nj), in

subject j. This signature is, as already pointed out, aligned with the
reference surface for subject j, S(j, 0), with vertices x0

(j) = (x0
(j)(k),

k=1, …, Nj). It needs to be translated to a global reference frame in
order to make between-subject comparisons possible. In the
subsequent section, we describe how the deformation signature
obtained in this first level analysis is transported to the global
template along the geodesic obtained in the second level analysis in
Fig. 1.

Parallel transport in diffeomorphisms

We describe how the signatures α0
(j) are translated from subject

x0
(j) to the global template xtemp with parallel transport. This
operation is taken from Riemannian geometry, which displaces
vectors along a curve without changing properties such as the norms
of the vectors (as the first term in Eq (1)) or their angles (or dot
products). In Euclidean space, this operation is the standard
translation of vectors; i.e., the infinitesimal displacement of subject
1 is applied to subject 2 without change. In curved spaces, this
operation is implemented along a curve so this starts with the
computation of the best time evolution from subject j, x0

(j), to the
global template, xtemp. This requires using again the LDDMM
surface algorithm, minimizing

J ðbt;ytÞ ¼
XN
k;l¼1

Z 1

0
KðytðkÞ;ytðlÞÞbtðkÞd btðlÞdt þ Dðy1;xtempÞ: ð4Þ

with y0=x0
(j). The last operation is to translate α0 along the trajectory

yt. The theoretical derivation was described in Younes (2007). We
implemented it with the following algorithm. Assume that ηt is the
translation of from time 0 to time t with initial condition η0=α0

(j).
Then η1 is the representation of α0

(j) at the global template.

1. Start with the optimal trajectory (yt, βt) minimizing (4), and set
η0=α0

(j) as the deformation signature that needs to be transported.
2. At time t, we study the variation of yt, denoted by Js, in Eqs. (2)

and (3) when perturbing β0 by εη0 and solve the following
differential system over a small interval δt, with J0 ¼ 0;g̃o ¼ gt:

dJsðkÞ
ds

¼
X
l

K ytþs kð Þ;ytþs lð Þð Þg̃s lð Þ þj1K ytþs kð Þ;ytþs lð Þð ÞÞ
d Js kð Þbtþs lð Þ þj2K ytþs kð Þ;ytþs lð Þð Þd Js lð Þbtþs lð Þ

dg̃sðkÞ
ds

¼ �
X
l

j1 j1K ytþs kð Þ;ytþs lð Þð Þ½ �Js kð Þbtþs kð Þd btþs lð Þ
�j2 j1K ytþs kð Þ;ytþs lð Þð Þ½ �Js lð Þbtþs kð Þd btþs lð Þ
�j1K ytþs kð Þ;ytþs lð Þð Þd g̃s kð Þbtþs lð Þ
�j1K ytþs kð Þ;ytþs lð Þð Þd btþs kð Þg̃s lð Þ ð5Þ

3. Solve ηt+δt from
P

l KðytþdtðkÞ;ytþdtðlÞÞgtþdtðlÞ ¼ JsðkÞ=dt and
ηt+δt is an approximation of α0 at point yt+δt.

4. Loop until t=1.

In these formulae, ∇lK(x, y) represents the derivative of K(x, y)
with respect to its lth variable. K(x, y) was chosen as the form of

e�
tx�yt2

2r2 with td t denoting the Euclidean distance between x and y.
Fig. 2 intuitively illustrates one example using parallel transport

to represent within subject deformation in the global template
coordinates. Panel A shows the hippocampal surface of a subject at
the baseline while panel B shows the hippocampal surface of the
same subject at the follow-up (green) superimposed with one at the
baseline (gray). Panel C depicts the global hippocampal template.
Panel D shows the hippocampal surface of this subject at the
follow-up (green) represented in the global template coordinates
(gray). The deformation of the hippocampal surface between
baseline and follow-up represented by interlacing green and gray in
panel B has a similar pattern as in panel D. This indicates that the
technique of parallel transport in diffeomorphism is a reasonable
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approach allowing us to study longitudinal shape variation within
subjects in a global template coordinate system.

Subjects, data acquisition

The MR scans used in this study were collected for an ongoing
longitudinal study of subjects with very mild DAT (Wang et al.,
2003) and included 18 subject with very mild DAT (CDR 0.5), 26
age-matched nondemented subjects (CDR 0), and 9 subjects who
converted from being nondemented (CDR 0) at baseline to having
very mild DAT (CDR 0.5) at follow-up. The CDR 0 group included
12 males and 14 females with mean age of 73 (SD: 7.0) years; the
CDR 0.5 included 11 males and 7 females with mean age of 74 (SD:
4.4) years; and the converter group included 2 males and 7 females
with mean age 79 (SD: 8.7) years. The Clinical Dementia Rating
(CDR) (Morris, 1993) was used to rate the presence or absence of
dementia and, when present, its severity; i.e., with the CDR 0
indicated no dementia and CDR 0.5, 1, 2, and 3 indicated very mild,
mild, moderate, and severe dementia, respectively.

All subjects had MR scans approximately 2 years apart — the
mean scan interval for the CDR 0 group was 2.2 years (range 1.4–
4.1 years), for the CDR 0.5 group, 2.0 years (range 1.0–2.6 years),
and 2.8 years (range 1.8–4.3 years) for the converter group. All
scans were obtained using the same Siemens Magnetom SP-4000
1.5-T imaging system, a standard head coil, and a magnetization
prepared rapid gradient echo (MPRAGE) sequence. A MPRAGE
sequence (TR/TE — 10/4, ACQ — 1, matrix — 256×256, 180
slices, scanning time— 11.0 min) was used to produce 3D data with
a 1×1-mm in-plane resolution and 1-mm slice thickness across the
entire cranium.

Data processing

The global template was produced using an MR image from an
elder control subject, which was not otherwise included in the
statistical analysis. The subject selected to produce this template
was from the same source as the other subjects in the study. The left
and right hippocampal surfaces in this template scan were manually
delineated using methods previously described (Haller et al., 1997).
The anatomical description of the guidelines used for this
delineation is detailed elsewhere (Wang et al., 2001). As illustrated
in Fig. 3, the gray matter of the left and right template hippocampal

surfaces were also manually divided into three main subfields
(subiculum, cornu ammonis 1 (CA1), and the rest including CA2, 3,
4, and gyrus dentatus), as previously described (Wang et al., 2003).

Hippocampal surfaces were generated for each subject at
baseline and follow-up using a template-driven approach (Wang et
al., 2003), and the accuracy of this delineation was evaluated
against manual hippocampal segmentation in ten scans. For the
study of hippocampal shape variation across time, we applied three
levels of analysis as shown in Fig. 1. In the first level of analysis,
the baseline hippocampal surfaces were deformed to the follow-up
surfaces within each subject via LDDMM surface mapping. In the
second level of analysis, the baseline hippocampal surfaces were
deformed to the global template via LDDMM surface mapping.
Finally, in the third level of analysis, the deformations between the
baseline and follow-up surfaces were transported to the global
template coordinates using the approach described in the previous
section.

Results

We computed Jacobian determinant of within-subject deforma-
tion between two time points on the global template to indicate
hippocampal atrophy (b1) or expansion (N1) in the follow-up
relative to one in the baseline. The Jacobian determinant indexed
over the template coordinates measures the ratio of the hippocampal
volume at the follow-up to the one at the baseline in the local region.
Fig. 4 illustrates Jacobian determinant maps averaged over each

Fig. 2. Panel A shows the hippocampus of a subject at the baseline. The hippocampus surface of this subject at the follow-up (green) is superimposed with one at
the baseline in panel B. Panel C shows the global hippocampus template. Panel D shows the hippocampus of this subject at the follow-up (green) represented in
the global template coordinates (gray).

Fig. 3. The global left and right hippocampal templates were manually
divided into three subfields, subiculum in green, cornu ammonis 1 (CA1) in
red, and the rest (CA2, 3, 4, and gyrus dentatus) in blue.
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clinical population in the global template coordinates. The
hippocampus is displaced in the same orientation as shown in
Fig. 3. The visualization of the Jacobian determinant maps in Figs.
4A, B indicates atrophy non-uniformly distributed over both left
and right hippocampi due to healthy aging. As shown in Figs. 4C,
D, the left and right hippocampal atrophy in the converter group
seems stronger in the lateral aspect of the hippocampal tail than
elsewhere. In Figs. 4E, F, the atrophy is observed throughout the
entire left and right hippocampi in the CDR 0.5 group and stronger
than that in the groups of CDR 0 and converter. To confirm these,
we made statistical inferences on the Jacobian determinant using
both a region of interest (ROI)-based approach and a localized
approach in the global template below.

Statistical analysis in subfields of the global hippocampal template

In the ROI-based analysis, we integrated the Jacobian deter-
minant within each subfield of the global hippocampal template
surface and divided it by the surface area of the subfield. Figs. 5A, B
show this measurement from each subject in every subfield of the
left and right hippocampal surfaces, respectively. The visualization
in this figure suggests systematic decreases in the Jacobian deter-
minant from the CDR 0 group and the converter group as compared
to the CDR 0.5 group within every subfield. This suggests that
hippocampal deformations of every hippocampal surface subfield
were progressively larger as onemoves from the healthy aging group

to the converter group and on to the group with very mild DAT. For
instance, in the subiculum of the left hippocampus, an average
Jacobian determinant was 0.924 for the CDR 0 subjects, 0.917 for
the converter subjects, and 0.867 for the CDR 0.5 subjects (see Table
1). Similar trends were observed in the CA1 subfield. As listed in
Table 1, the average Jacobian determinants were less than one in
every subfield, which suggests that atrophy is occurring throughout
the hippocampus in both healthy aging and DAT. However, the rates
of atrophy within subfields were increased in both converter and
CDR 0.5 groups relative to those in the CDR 0 group.

We performed the statistical testing to examine the above
observations. A generalized linear regression model was applied
where Jacobian determinant averaged over each subfield was
included as dependent variable. Diagnostic group (condition),
subfield, and hemisphere were included as categorical predictor
variables. For each subject, the Jacobian determinant from each
subfield in both left and right hippocampi were considered as re-
peated measures, and the error term in the linear regression model
was split into errors between and within subjects. Interactions
between condition and subfield were also examined. The statistical
results from this linear regression model showed a significant effect
of condition (F=8.35, P=0.007), a significant subfield effect (F=
26.06, Pb0.0001), a significant hemisphere difference (F=12.69,
P=0.0004), and a significant condition by subfield interaction (F=
3.66, P=0.0064). The post hoc analysis indicates that the atrophy
in every subfield is significantly smaller in the CDR 0 group than

Fig. 4. Panel shows Jacobian determinant of the deformation between the baseline and its follow-up surfaces averaged over each clinical population in the global
template coordinates. Panels A, C and E illustrate those for the left hippocampus, while panels B, D, F show those for the right hippocampus. The bottom and top
views of the hippocampus are respectively shown in the left and right sides of each panel (see the reference of subfield divisions in Fig. 3).
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in the CDR 0.5 group (Pb0.0001 in the subiculum, the rest
subfield (CA2, 3, 4, gyrus dentatus) of left and right hippocampi,
P=0.0071 and P=0.046 respectively for the left and right subfield
of CA1). The atrophy in the subiculum and the rest subfield is
significantly larger in the group CDR 0.5 than in the group of the
converters but not in the CA1. No significant group difference in
the Jacobian determinant within every subfield is found between
the groups of CDR 0 and converters. These results from the post
hoc analysis may suggest that the hippocampus shrunk in the
subiculum, CA2, 3, 4, and gyrus dentatus at the similar atrophy
rate in the groups of CDR 0 and converters. The CA1 may be the
key region that would show significant group difference in the
atrophy between the controls and converters if more samples were
studied or a localized statistical analysis was applied. Thus, we
discuss the localized analysis in the subsequent section.

Random field analysis in global template coordinates

To characterize the pattern of surface deformation over time
between two diagnostic groups at each location of the global
template, we assumed that the anatomical deformation between the
baseline and follow-up within subject arose from random processes.
This was represented by the Jacobian determinant map (deformation
map) F indexed over the global template Matlas. In the global tem-
plate coordinates, F was modeled as a random field and charac-
terized by an infinite number of random variables Fi in the form of

FðxÞ ¼
Xm
i¼1

FiwiðxÞ; where Fi ¼
Z
M atlas

FðxÞwiðxÞdmðxÞ: ð6Þ

v(x) is the area measured at location x∈Matlas and ψi(x) is a basis
function indexed over Matlas. We chose ψi(x) to be the ith

eigenfunction of the Laplace–Beltrami (LB) operator on Matlas, the
extension of the Laplacian from the regular grid to an arbitrary
surface (Qiu et al., 2006). The LB eigenfunctions in Eq. (6) only
depend on the geometry of the extrinsic atlas and not on F(x). The
number of eigenfunctions (m) used in Eq. (6) was determined by
goodness of fit, the sum square residual between observed values
and the values expected under the model divided the sum square of

observed values (

PN
j¼1 jFðjÞðxÞ �Pm

i¼1 F
ðjÞ
i wiðxÞj2PN

j¼1 jFðjÞðxÞj2 , where j indexes

subjects). At the discrepancy level of 0.05, the first twenty
eigenfunctions (m=20) were selected for both left and right sides
of the hippocampus.

To identify the LB eigenfunctions that significantly contributed
to longitudinal deformation difference between two diagnostic
groups, we first examined the Wilcoxon rank-sum test on each
random variable, Fi, i=1, 2, … m in Eq. (6). Then two sets
containing Fi with corresponding P-value less than 0.05 were
associated with the left or right hippocampi, Sm

L , Sm
R , respectively,

where the subscript denotes the number of eigenfunctions
examined using the rank-sum test and the superscript represents
left or right hippocampus. Finally, the subset of Sm

L and Sm
R was then

chosen by optimizing the linear discriminant analysis (LDA)
performance.

Assuming samples (X1, L1), …, (XN, LN) with Xi being feature
vectors and Li being the class label of subject i are independently
and identically Gaussian distributed, LDA seeks best hyperplanes to
separate the feature space into discriminant regions. The feature
vectors, Xi, of the shape are selected from the joint set of Sm

L and Sm
R

for fixed m and Li take values of {1,…, L}. The linear discriminant
analysis involves the estimation of prior probability πl, the class-
conditional mean vectors μl and covariance matrices Σ. Observation
X is classified as belonging to class l is then obtained by maximizing
the posterior probability: i.e.,

L
wðX jðXi;LiÞ;i ¼ 1; N ;NÞ ¼ arg max

l¼f1; N ;Lg
plPðX jL ¼ lÞ;

where P(X|L=l) is Gaussian with mean μl and covariance matrix
Σ.

To select features from the joint set of Sm
L and Sm

R that best
discriminated the two groups, the performance of the classifier was
maximized with respect to m via leave-one-out cross validation. In
every trial, one subject out of N subjects was selected as test data

Table 1
Average Jacobian determinant over each clinical group within subfields of
the hippocampus (mean±standard deviation)

Subiculum CA1 Rest

Left CDR 0 0.924±0.051 0.917±0.063 0.894±0.055
converter 0.917±0.070 0.899±0.071 0.874±0.083
CDR 0.5 0.867±0.036 0.874±0.039 0.817±0.061

Right CDR 0 0.919±0.047 0.936±0.062 0.912±0.048
converter 0.931±0.061 0.912±0.065 0.900±0.061
CDR 0.5 0.869±0.046 0.904±0.055 0.843±0.057

Fig. 5. Panels A and B show average Jacobian determinant within each subfield of the hippocampus. Each data point represents one measurement from one
subfield of the left or right hippocampus of 53 subjects.
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while the rest were used as training data. The probability of mis-
classification was estimated by

̂e SLm;S
R
m

� � ¼ 1
N

XN
i¼1

I ̂Li p Lij Xj;Lj
� �

;XjaSLm [ SRm;j ¼ 1; N ;N ;j p i
� �

:

m was determined by minimizing

m̂ ¼ arg min
m¼1; N ;20

̂eðSLm;SRmÞ:

While the 26 subjects with CDR 0 and 18 subjects with CDR
0.5 were used in this analysis, it yielded the best class-
ification performance at m=19 with the minimal probability of
̂eðSL19;SR19Þ ¼ 6=44c0:13. The P-value associated to this obtained
classification rate under the hypothesis of no group difference is
P=0.0003, as estimated by permutation sampling. The same
scheme was applied to distinguish converters from subjects with
CDR 0, which yielded the best classification performance at m=19
with the minimal probability of misclassification ̂eðSL19; SR19Þ ¼
8=35c0:23 (P=0.0517).

To illustrate these results, we constructed statistically significant
group difference in longitudinal shape deformation using the LB
eigenfunctions in the form of

̂F
1vs2ðxÞ ¼

X
iaSk19

ðF̄1
i �F̄2

i ÞwiðxÞ;

where ̂F
1vs2ðxÞ denotes the group difference between groups 1 and

2. F̄1
i and F̄2

i respectively denote average Fi over group 1 and
group 2: i was chosen from the set of S19

k containing eigenfunctions
associated with P-value less than 0.05 in the rank-sum test. k
corresponds to left or right side of the hippocampus. Fig. 6
illustrates the time-dependent deformation difference between any
two groups. In this figure, panels A and B show the Jacobian
difference in terms of longitudinal deformation between the CDR 0
and 0.5 groups in the left and right hippocampi, respectively. The
map in panel A was constructed using {1, 15, 19}th LB eigen-
functions of the left global template while the map for the right
hippocampus was using {1, 4, 10, 16}th LB eigenfunctions of the
right global template. Red denotes the outward surface deformation
between the baseline and follow-up hippocampal shapes in the
CDR 0 group relative to that in the CDR 0.5 group, while blue
denotes the inward movement of the surface in the CDR 0. We
constructed the group difference in the same way for comparisons
between the CDR 0 and converter groups and between the converter
and CDR 0.5 groups, respectively showing in the second and third
rows of Fig. 6. Warmer colors denote an outward surface defor-
mation between the baseline and follow-up in the former group
relative to the later group, while cooler colors correspond to inward
surface deformation.

The visualization shown in Figs. 6A and B suggest that the CDR
0.5 group showed more inward time-dependent surface deformation

Fig. 6. Statistically significant shape difference between diagnostic groups is constructed using the eigenfunctions of the Laplace–Beltrami operator in the global
template coordinates. The left and right columns respectively correspond to left and right hippocampi. Color encodes the Jacobian difference between two
groups. The warm color denotes that the outward surface deformation in the former group relative to the later group, while the cool color corresponds to inward
surface deformation.
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everywhere except the lateral aspect of the hippocampal head in the
right side as compared to the CDR 0 group. The degree of inward
surface deformation between the baseline and follow-up in the CDR
0.5 group slightly varied across the hippocampus. Figs. 6C and D
also indicate that the lateral aspect of the hippocampal tail on both
the left and right sides had a larger inward deformation in the con-
verter group relative to the CDR 0 group. The head of the hippo-
campus had a lower rate of change in the converter group than in the
CDR 0 group. The right hippocampus showed relatively similar
effects of condition. In Figs. 6E and F, the medial aspect of the
hippocampus showed stronger inward surface deformation across
time in the CDR 0.5 group than in the converter group. However,
the lateral aspect of the hippocampal tail and head showed stronger
outward surface deformation due to time in the CDR 0.5 group than
in the converter group.

Discussion

We applied three levels of analysis for studying longitudinal
shape variation of the hippocampus in subjects with early forms of
AD. Moreover, we briefly introduced a novel technique, parallel
transport in diffeomorphisms, under the LDDMM framework. For
comparison of patterns of hippocampal deformation across time
within and between groups, both ROI-based analysis and random
field analysis via the LB eigenfunctions were applied. Our findings
can be summarized as follows:

(1) Time-dependent deformations of the hippocampal surface in
each diagnostic group (CDR 0, converters, and CDR 0.5)
were distinct (see Fig. 4). In an ROI-based analysis, there
were statistically significant effects of condition, subfield,
and interaction between them. The CDR 0.5 groups showed
statistically significantly greater rates of inward deformation
in the subfields of subiculum and the rest, as compared to the
nondemented subjects and converters (see Fig. 5 and Table
1). The CDR 0.5 group also showed statistically significantly
greater rates of inward deformation in the subfield of CA1, as
compared to the nondemented subjects.

(2) Using the random field model, we discovered possible local
changes in the time-dependent deformations of the hippo-
campal surface between diagnostic groups as shown in Fig. 6.
Inward surface deformation across time in the subjects with
CDR 0.5 occurred non-uniformly across the hippocampus
relative to the CDR 0 group. Compared to the CDR 0 group,
the lateral aspect of the left hippocampal tail in the converters
also showed inward surface deformation.

(3) The surface deformation patterns were used as features in a
linear discriminant analysis (LDA) and were able to dis-
tinguish subjects with early DAT from healthy aging subjects;
the misclassification rate was impressively low (0.13). The
misclassification rate for distinguishing converters from
healthy aging subjects was larger (0.23). The misclassifica-
tion rates were quantified using the training sets.

In our previous study (Wang et al., 2003), we applied large-
deformation high-dimensional brain mapping to transform the
hippocampus of each subject at each time point to a common
template. The findings of the present study are consistent with the
findings of this previous study, in that there was a greater rate of
shape change (i.e., inward deformation), in the CDR 0.5 group than
in the CDR 0 group. Moreover, we observed similar patterns in the

head of hippocampus, the lateral aspect of the body of the hippo-
campus, and the most ventral surface of the hippocampus, which we
interpreted as localized volume loss in the CA1 subfield and
subiculum, in subjects with early DAT. However, the findings of the
present study showed greater sensitivity than those in the previous
study in the sense that inward progressive deformation of the
hippocampal surface was observed in both healthy aging and early
DAT, albeit with a different pattern. Moreover, for the first time, we
report progressive deformations of the hippocampal surface in a
group of subjects who converted from being nondemented to
demented during the course of the study. In this particular group, we
observed a greater inward deformation in the lateral aspect of the
hippocampus (i.e., the region most closely associated with the CA1
subfield) relative to the CDR 0 group, but the magnitude of the
deformation in the inferior-medial aspect of the hippocampus (i.e.,
the region most closely associated with the subiculum) was smaller
as compared to that observed in the CDR 0.5 group.

Except for the frameworks for the longitudinal shape analysis
proposed in this paper and in our previous study (Wang et al., 2003),
tensor-based morphometry has also been widely used to assess
changes in brain structure in subjects with early DAT (Kipps et al.,
2005; Brambati et al., 2007, in press). The general objective of
tensor-based morphometry (Ashburner et al., 1999; Ashburner and
Friston, 2000; Chung et al., 2001. 2003) is to localize regions of
shape difference among clinical population of brain images based
on the deformation fields that map a template to each individual
subject. Moreover, in the longitudinal studies (e.g., Kipps et al.,
2005), the deformation fields can be obtained by mapping the one at
baseline to the one at following. In order to perform statistical
testing across subjects, such deformation fields have to be repre-
sented in a global template, which were accomplished by
modulating them by the Jacobian determinants from the registration
between the global template and the subject at the baseline. It thus
becomes to the problem demonstrated in our previous study (Wang
et al., 2003); that is, across-subject deformations, which are in
general larger than within-subject deformation, can substantially the
results. In contrast, the parallel transport operation presented in this
paper translates within-subject deformation across time points to a
global template without incorporating across-subject deformation,
and thus offers increased power for detecting longitudinal shape
changes. This operation also preserves the metric distance defined
in LDDMM (Younes, 2007).

In summary we used a new method, parallel transport in diffeo-
morphisms under the LDDMM framework, to study longitudinal
variation of the surface shape of the hippocampus in subjects with
and without early forms of AD. This new method shows great
promise for improving our ability to identify and characterize
neuroanatomical changes in individuals with very early forms of
AD. In the future, these methods may also help us to improve our
ability to characterize neuroanatomical asymmetries and integrate
structural neuroimaging data from different sites.
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