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Abstract

To keep pace with the trend towards increased circuit integration, printed circuit patterns are becoming denser and more complex. A
variety of automated visual inspection methods to detect circuit defects during manufacturing have been proposed. This paper describes a
method that is a synthesis of the reference-comparison and the generic property approaches that exploits their respective strengths and over-
comes their respective weaknesses. It is based on the observation that the local geometric and global topological correctness of a printed
circuit can be inferred from the correctness of simplified, skeletal versions of the circuit in a test image. These operations can be realized using
simple processing elements which are well suited for implementation in hardware.

1. Introduction

A variety of approaches for automated optical inspection of printed circuits have been reported over the last decade; see the tutorial
surveys of Chin and Kruger.1,2 These approaches typically use an analog subsystem for part handling and image acquisition and a digital
subsystem for image analysis and overall system control. Feature verification and defect detection is usually based on the analysis of discrete,
binary images generated by sampling analog images on a rectangular grid and thresholding the result to a zero or one. As illustrated in Fig.
1, these images are represented as n by m matrices whose elements (pixels) are zero or one.

Most proposed methods for the analysis of printed circuit images are variations of either the reference-comparison or the generic property
approaches. In general, reference-comparison uses complete knowledge of the circuit under test, whereas the generic property approach uses
knowledge of properties common to a circuit family but not knowledge of the specific circuit under test. There are two types of reference-
comparison: The simpler approaches involve some kind of direct image comparison. (e.g., boolean exclusive or) between pixels in a test
image and pixels in an idealized reference image. Somewhat more sophisticated approaches involve recognition of circuit features in the test
image (e.g., pads, corners, etc.) followed by comparison against a reference. The the generic property approach also takes two forms. One
is based on the notion that idealized circuit features are simple, regular geometric shapes, whereas defects typically are not. With this ap-
proach one looks for unexpected irregular features. The second approach directly verifies design rules, e.g., trace width, feature spacing, pad
location and size, etc. In both forms, defects are usually detected using strictly local neighborhood processing throughout the test image.

In Section 2 we describe a method that is a synthesis of the reference-comparison and the generic property approaches. It is a powerful
and flexible analysis technique to verify typical circuit features and detect typical circuit defects. It replaces both image comparison and de-
sign rule checkers, exploiting their strengths and overcoming their weaknesses. In Section 3 we describe algorithms based on the generic
method for verifying trace width, feature spacing, and pads. Implementation of the basic image processing operations in simple, low cost
digital hardware is briefly described in Section 4.

2. Overview of Analysis Method

Mathematical background

The concepts underlying our method are derived from recent work in discrete geometry on the geometric description and analysis of dis-
crete, binary images; for formal treatments of discrete geometry, see the work of Pavlidis, Rosenfeld, and Serra.3,4,5,6 The concept of neigh-
boring pixels, connectivity, and regions formalize the intuitive notion of what distinct objects are contained in an image. Two pixels are said
to neighbors if they are adjacent to one an other either to the right or left or above or below or on the diagonal (formally, two pixels with
indices (i,j) and (k,[) in image I are said to be neighbors if and only if max( | i-k |, |j-/|) <= 1.). Two nonzero pixels are said to be connected
if and only if there exists an unbroken sequence of nonzero neighbors between the two pixels. A region is a set of nonzero pixels each of
which is connected to all other pixels in the set.

In addition, the image to image transformations contraction, expansion, and thinning provide a formalism to infer the shape, size, and
topology of regions.”,3,° Expansion expands regions by setting zero elements to one if certain of its neighbors are equal to one. With an ap-
propriate sequence of expansion steps it is possible to achieve the discrete octagonal expansion as illustrated in Fig. 2 and Fig. 3(a) and (b).
Contraction shrinks regions by settings ones to zero if certain of its neighbors are zero (Fig.3(c)). As illustrated in Fig. 3(d), thinning reduces
regions to their skeleton, a simplified, skeletal form. The thinning we use preserves the homotopy of an image (preserving the homotopy means,
among other things, that the connectivity of regions and the holes contained in regions are preserved).
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Finally, we use the notion of joins to classify important pixel patterns (Fig. 4). An n-join is a nonzero element with n nonzero neighbors.
A T-join is a 3-join all of whose neighbors belong to a skeletonized region. A blob-join is a skeletal point that has a neighbor that is not a
skeletal point. Join order and type play a key role in the inspection algorithms.

Generic method for analysis of printed circuit images

Application of the above concepts to the analysis of printed circuit images led to the following observation: the local geometric and global
topological correctness of typical circuit features can be inferred from the correctness of skeletal versions of the circuit features in a test im-
age. This insight in turn led to the following generic method for the analysis of printed circuit images:

Generic method for the analysis of printed circuit images

Step 1: Transform and thin the test image in such a way that defects and good circuit features induce skeletal features that can be
easily and reliably detected and classified.

Step 2: Compile a detected feature list that records the position and type of all detected features.

Step 3: Compare the detected feature list with a design feature list generated from circuit design data.

Results: Features in the two lists that cannot be brought into correspondence imply faults.

The inspection algorithms described in this paper are instances of the generic method. Each algorithm uses a different thinning process
designed so that a particular defect class induces a known corresponding class of skeletal features that can be easily and reliably detected.
It turns out that the presence of 0-, 1-, T-, and blob-joins is sufficient to infer the existence of typical defects (as well as desired circuit fea-
tures, such as pad-to-trace or trace-to-trace connections, trace ends, etc.).

The feature comparison method is quite flexible and powerful for two reasons. First, it is possible to define arbitrary correspondence
criteria between arbitrary sets of detected and predicted features. In many cases, however, the following simple criterion probably will suf-
fice: Detected and predicted features correspond if they are the same type and within a given distance of each other. Features that cannot
be brought into correspondence imply the existence of defects; the type of defect can be inferred from the type of feature. Second, it is
possible to derive measures of global circuit correctness by combining the results of all isolated feature correspondences, e.g., spatial dis-
tortion throughout the entire circuit layer.

For some circuit types and design rules it is not necessary to use reference data; the existence of certain skeletal features unambiguously
implies defects. For example, if a circuit consists only of single width traces that must end in pads, 1-joins imply the presence of defects when
using the algorithm for verifying trace width described in the Section 3. However, for other classes of circuits a comparison step is needed
in order to distinguish between true defects and good circuit features that induce the same type of skeletal features.

Because our method does not compare a reference image and the test image pixel by pixel, it eliminates the need for the storage, gener-
ation, registration, and comparison of a reference image with the test image. Instead, a relatively small list of predicted feature types and
locations is compared with a list of detected features in a straightforward way. Unlike direct image comparison, it is straightforward to in-
corporate context dependent tolerances and attributes for features, e.g., pad location, type, and size. It is also easier to compensate for global
distortion in the test image (e.g., scale and skew) because the inverse of the distortion function is applied to a relatively small set of feature
variables, e.g., location, instead of the entire reference image. Finally, this method is relatively insensitive to local distortion and vagaries that
can cause false alarms with direct image comparison. For example, irrelevant differences on the edges of traces or displacement of traces by
a few pixels will not be flagged as errors (unless the minimum spacing rule is violated).

This method is a major improvement over design rule approaches because it can detect missing features and extraneous circuitization that
looks like good features. In addition, unlike most design rule approaches, this method is not limited to verifying just minimum trace width
and spacing; it can also verify pads, maximum trace width, and various trace connections, as well as detect isolated blobs, voids, etc. The new
method is also capable of handling complex circuit features and circuit vagaries that can cause false alarms with design rule checkers. Finally,
it can readily accommodate changes in circuit features and design rules that often require modification of inspection algorithms in design rule
checkers.

3. Inspection Algorithms

In general, the generic method can be applied to detecting and verifying the shape and size of a large class of feature types, including
spacings, holes, lines, angles, corners, triangles, rectangles, octagons, and composites of these basic shapes. Using this approach we have
developed algorithms for verifying trace width, minimum spacing, the position, size, and shape of pads (or holes), trace and feature inter-
connections, etc. We make this concrete by describing algorithms for verifying minimum trace width, minimum spacing, and pad integrity:

Algorithm for verifying minimum trace width

This algorithm can: detect all instances of local trace width less than a programmable minimum; detect missing traces and a variety of
spurious connections between traces, pads, and isolated blobs; detect voids in traces. It is based on two observations: First, the skeleton of
connected traces contains only 2-joins while broken traces, i.e., open circuits, typically generate 1-joins. Second, contraction can be used to
break regions corresponding to traces into two or more disconnected regions if the width of the trace is less than a specified number of pixels
(implied by the design rule for minimum trace width).
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Algorithm for Minimum Trace Width Verification

Step 1: Contract image just enough to break traces whose width is less than minimum allowed.

Step 2: Thin contracted image to skeletonize traces whose width is less than or equal to maximum allowed.

Step 3: Detect 1- and blob-joins in image: result is list of detected joins and their locations.

Step 4: Compare detected join list with design list

Result: 1-joins not in design list imply width violations; 1- and blob-joins in design list not in detected list imply missing features

The behavior of this algorithm is illustrated in Fig. 5 for the special case described there. In the contraction step, entities U, V, and W
are contracted just enough to generate breaks in traces where the trace width is less than the minimum allowed. Note that region W in Fig.
5(b) has broken into the two regions W’ and X’, while U and V have contracted to the two regions U’ and V’, respectively. In the thinning
step, the contracted traces are thinned just enough to produce their skeletons. This thinning does not cause the contracted regions to break
up or disappear. It does, however, generate the two important feature types indicated in Fig. 5(d). (1) 1-joins wherever there exist minimum
width violations; (2) blob-joins, the join points between trace skeletons and contracted pads. This does not imply, however, that there exists
a one-to-one correspondence between 1-joins and width violations or between blob-joins and connections from actual traces to pads. As
one might expect, all features that look something like traces, i.e., elongated features whose width is less than the minimum allowable trace
width, can generate 1-joins. For example, spurious blobs or large cracks in pads can generate 1- or blob-joins. The key point is that all bad
input features that "look" like traces with minimum width violations will generate 1-joins; therefore, all such features can be detected.

The feature recognition step generates the detected feature list of all the 1-joins and blob-joins in the image. If the circuit type is such that
1-joins would not be generated for a good circuit, the comparison step is not needed: 1-joins imply the existence of minimum width violations.
Here, we assume that a trace is never completely missing. If a trace can be entirely missing, its absence can be inférred using a comparison
step because blob-joins will be missing in the detected feature list. Circuit types for which this is true are those consisting of single width
traces, all of which must end in pads or features that are roughly circular (square) and whose diameter (width) is somewhat larger than the
maximum allowable trace width. If 1-joins can occur, a comparison step is necessary.

Algorithm for verifying minimum spacing

This algorithm can: detect all instances of local spacing between distinct entities less than a programmable minimum; detect hard shorts
between features, e.g., traces, pads, etc. It is based on two observations: First, that typical shorts occur as bridges between traces, pads, or
traces and pads. When skeletonized, these brigdes generate extraneous T- and blob-joins. Second, by expanding regions, it is possible to
connect two disconnected regions if the minimum distance between them is less than a specified number of pixels (implied by design rule for
minimum spacing).*

Algorithm for Verifying Minimum Spacing

Step 1: Expand image just enough to connect distinct regions whose distance apart is less than minimum allowed
Step 2: Thin expanded image to skeletonized traces whose width is equal to the maximum allowed

Step 3: Detect T- and blob-joins in skeletonized image: result is list of detected joins and their locations

Step 4: Compare list of T- and blob-joins with design list

Result: T- and blob-joins not in design list imply shorts; joins in design list not in detected list imply missing features

The behavior of this algorithm is illustrated in Fig. 6 for the special case described there. The first step in detecting spacing violations is to
expand all regions just enough so that regions touch (connect) at all locations where the spacing between them is less than the minimum al-
lowed. The result of expanding the defect image twice is shown in Fig. 6(b). Note that the bridge at c enlarges and a new bridge is formed
at b; however, a bridge is not formed at a. The thinning step then skeletonizes the traces as well as all bridges with width less than or equal
to fifteen pixels. The key point to observe is that spacing violations like those in Fig. 6(a) generate extraneous T-joins (or blob-joins) in the
expanded and thinned image. The defect features, along with good features, can be readily detected in the feature recognition step.

Algorithm for verifying pads

Typically there are a variety of design rules for pads. For example, the design rules may constrain the size, shape, and position, as well
as limit the number and type of pad-to-trace connections. The thinning operation used in trace width verification can be used to partially
verify pads. In particular, the existence and position of all blob-to-trace connections can be verified. Additional thinning can also be used
to detect cracks, voids, and insufficient pad area. ' Fig. 7 illustrates how this can be accomplished; cracks, voids, and insufficient pad area
induce extraneous 0-, 1-, T-, and blob-joins. Since extraneous joins do not match the design list, the defects that induced the joins can be
detected.

* The definition of distance on the discrete grid depends on the type of expansion imployed. We use the distance measure implied by oc-
tagonal expansion.
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Algorithm for Pad Verification

Step 1: (using result of algorithm for verifying minimum trace width) In addition to 1- and blob-joins, detect 0- and T-joins

Result: Joins not in design list imply possibility of cracks, voids, or extraneous features

Step 2: Thin enough to skeletonize pad if it does not contain an octagonal area of specified diameter (implied by design rule for
minimum pad size)

Step 4: Detect 0-, 1-, T-, and blob-joins: result is list of joins and their locations

Result: 0- or 1-joins not in design list imply insufficient pad area, cracks, or extraneous features; T- and blob-joins not in design list
imply cracks, voids, or possibly hard shorts

4. Hardware Implementation of Basic Image Processing Operations

Contraction, expansion, thinning, and join detection are the basic image processing operations used in the inspection algorithms. These
operations can be realized using sequences of so called 3 by 3 neighborhood operations that map each pixel and its eight neighbors in a binary
matrix I to a zero or one. If execution time is not critical, e.g., algorithm development work or analysis of only a few images per printed circuit
layer, these operations can easily be implemented on a general purpose computer or a dedicated image processing system like a Vicom or De
Anza. Unfortunately, such an approach is far to slow to achieve full one hundred percent inspection of typical printed circuit layers in a few
minutes or less (which would require a throughput of several megapixels/sec). For example, to implement the three algorithms described in
this paper using the design rules given in the examples would require about one hundred neighborhood operations per image frame. Assuming
a ten by fifteen inch layer and a one mil square pixel, it would take about two hundred minutes to inspect one layer.*

Sternberg has shown how neighborhood operations can be implemented in hardware by streaming the elements of an image row by row
through a simple processing element (PE) like the one shown in Fig. 8.9 A sequence of p neighborhood operations, e.g., p contractions, can
be implemented by pipelining (cascading) p PE’s as also shown in Fig. 8.

Solid state imaging devices (especially linear arrays) are ideally suited as input image sources for the pipeline architecture. Image data
acquired from a linear array can be input continuously, row by row, into the pipeline. Except for a small overhead in time to fill and empty
the pipeline, the throughput of the pipeline is equal to the clock rate of the image source. It is well within the state of the art to run linear
arrays and this kind of pipeline architecture in the range of five to ten megapixels per second.

By using multiple, independently configured pipelines, all the inspection algorithms required for a particular application can be run in
parallel. The net throughput for such a system will be limited only by the clock rate of the image source and pipeline. For example, the three
algorithms described in this paper could be implemented with three independent pipelines containing a total of approximately one hundred
PE’s. Assuming a conservative clock rate of five megapixels per second, it would take only thirty seconds to do the bulk of the image proc-
essing! (Of course there are additional sources of overhead and time needed for the final list comparison step. However, we estimate that
this time is on the same order of magnitude as that required for the neighborhood operations.)

5. Concluding Remarks

This paper described a new method for the analysis of printed circuit images. As the algorithms presented here demonstrate, the new
method can detect a variety of common defect types in discrete, binary images of printed circuit features. However, the method is by no
means limited to these particular algorithms or defect types. The method is a flexible analysis technique that can be applied to detecting and
verifying the shape and size of a wide class of feature types, including lines, angles, corners, triangles, rectangles, octagons, and composites
of these basic shapes. However, there does not exist a "'magic formula'" for generating an inspection algorithm as a function of feature type;
this still requires ingenuity. For example, we have developed algorithms for verifying the existence and diameter of holes, checking clearance
between holes and other features, handling traces and pads of different sizes, verifying that a local feature is connected to other arbitrarily
distant features, etc.

In addition to flexibility this method is well suited for high speed implementation using pipelines of simple processing elements. The speed
of processing is roughly proportional to the number of independent pipelines used and the number of PE’s per pipe. Independent pipelines
can be configured to process different image areas in parallel, to implement different algorithms in parallel on the same image area, or any
combination of the two.

Finally, we note that a reliable, flexible, efficient, and cost effective system is more than just a set of inspection algorithms -- no matter
how elegant the algorithms may be. On the research side, each inspection problem has to be thoroughly analyzed and experiments conducted
to determine the limits and capabilities of this method. On the engineering side, reliability, throughput, and cost considerations will dictate
the specifics of a given implementation.
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Figure 1. Discrete, binary image: (a) matrix representation and (b) picture representation
(black and white square pixels correspond to ones and zeros, respectively, in matrix).
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Fig 2a Fig 2b
Figure 2. Discrete octagons: (a) octagon of diameter 2n+1 is set of elements < n,
n=1,2,...,5; (b) octagon of diameter 2n is set of elements < n, n=1,2,....5.
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Fig 3a

Fig 3b

Fig 3¢

Fig 3d

Figure 3. (a) ideal image of trace starting and ending in pads; (b) image expanded by octagon
of diameter five; (c) image contracted by octagon of diameter five; d) skeleton of image.
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Forx = 1:

000 000 000 000 000
0X0 0X1 1X1 1X1 1X1 etc.
000 000 000 010 011
x:  0-join 1-join 2-join 3-join 4-join
Fig 4a
Forx = 1:
00010 00010 01010
00010 00010 01100
11X00 01X00 0X000 etc.
00011 00100 01000
00000 00100 00100
x: all T-joins
Fig 4b

Forx=s=b=1

00000000
0000bbb0
sssxssb0
0000bbb0
00000000

Fig 4c

Figure 4. Join types: (a) n-joins; (b) T-joins; (c) example of blob-join.

x: blob-join; s: skeletal element; b: boundary element
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Given: nominal trace width = 9
minimum trace width = 5

g

Defects: a: trace width = 5 =>nonfatal
b: trace width = 4 =>fatal
c: break fatal

Defect Image:

Fig 5a

Step 1: Contract

Step 2: Thin

Step 3: Detect 1- & blOb']OlnS.
b #
E

0: 1-joins =faults
O: blob-joins =>good/bad trace-to-blob connections

Fig 5d

Figure 5. Illustration of algorithm for minimum trace width verification: (a) defect image and
specifications; (b) result of contracting defect image to break traces whose width is less than five

pixels; (c) result of thinning contracted image to skeletonize traces; d) detected 1- and
blob-joins.
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Given: nominal spacing = 10
minimum spacing = 5

Defect Image:

Defects: a: spacing = 5 =>nonfatal
b: spacing = 4 =>fatal
c: short fatal

Fig 6a

Step 1: Expand

Fig 6b

Step 2: Thin

e -
¥

o
n

Fig 6¢

Step 3: Detect T- & blob-joins:

%

0: T-joins >faults
O: blob-joins =>good/bad trace-to-blob connections

(B8l

Fig 6d

Figure 6. Illustration of algorithm for verification of minimum spacing: (a) defect image and
specifications; (b) result of expanding defect irnage to merge regions whose minimum distance

is less than five pixels; (c) result of thinning expanded image to skeletonize traces; (d) detected
T- and blob-joins.
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Given: nominal trace width = 9
minimum pad diameter = 25

Defect Image b

. .
L

Defects: a: void
b: large crack
c: reduced pad area & spurious blob

Fig 7a

Thinned defect image

Fig 7b

Detect T- & blob-joins

a -
(T IS

0: T-joins s>cracks & voids
O: blob-joins =>good/bad trace-to-blob connections

Fig Tc

Detect 0- & 1-joins

en) =
O “y

0: 0-joins =>spurious blobs
0: 1-joins =>cracks

Fig 7d
Figure 7. Detecting cracks, voids, and insufficient pad area: (a) defect image and specifications;

(b) result of thinning defect image to completely skeletonize pads whose diameter is less
twenty-five pixels; (c) detected T- and blob-joins; (d) detected O- and 1-joins.
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Figure 8. Hardware implementation of basic image processing operations.
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