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Abstract

Recently a number of computational approaches have been developed for the prediction
of protein-protein interactions. Complete genome sequencing projects have provided the
vast amount of information needed for these analyses. These methods utilize the
structural, genomic and biological context of proteins and genes in complete genomes to
predict protein interaction networks and functional linkages between proteins. Given that
experimental techniques remain expensive, time-consuming and labor-intensive, these
methods represent an important advance in proteomics. Some of these approaches utilize
sequence data alone to predict interactions, while others combine multiple computational
and experimental datasets to accurately build protein interaction maps for complete
genomes. These methods represent a complementary approach to current high-throughput
projects whose aim is to delineate protein interaction maps in complete genomes. In this
chapter, we will describe a number of computational protocols for protein interaction
prediction based on the structural, genomic and biological context of proteins in complete
genomes, and detail methods for protein interaction network visualization and analysis.

Keywords: Genome context, gene fusion, phylogenetic profiles, gene
neighborhood, protein interaction networks, visualization.
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1. Introduction

One of the current goals of proteomics is to map the protein interaction networks of a
large number of model organisms (7). Protein-protein interaction information allows the
function of a protein to be defined by its position in a complex web of interacting
proteins. Access to such information will greatly aid biological research and potentially
make the discovery of novel drug targets much easier. Previously the detection of
protein-protein interactions was limited to labor-intensive experimental techniques such
as co-immunoprecipitation or affinity chromatography. High-throughput experimental
techniques such as yeast two-hybrid and mass spectrometry have now also become
available for large-scale detection of protein interactions. These methods however, may
not be generally applicable to all proteins in all organisms, and may also be prone to
systematic error. Recently, a number of complementary computational approaches have
been developed for the large-scale prediction of protein-protein interactions based on
protein sequence, structure and evolutionary relationships in complete genomes.

Initially computational prediction of protein-protein interactions was strictly limited to
proteins whose three-dimensional structures had been determined. These methods
predicted protein-protein interaction based on the structural context of proteins. Recent
advances in complete genome sequencing have however provided a wealth of genomic
information. It is now possible to establish the genomic context of a given gene in a
complete genome (2,3). A gene is no longer thought of as a single protein-coding entity
but as part of a coordinated network of interacting proteins. The potential for two proteins
to interact is not only specified by the physical and structural properties of their
structures, but is also encoded at a genomic level. For example, interacting genes are
generally co-expressed (4-6) (both temporally and spatially). In other words, the fact that
two proteins have the physical potential to interact is meaningless unless they are present
in the same part of the cell at the same time. Other examples of genomic context include
the co-localization of genes on chromosomes, the complete fusion of pairs of genes,
correlated mutations between interacting protein families, and phylogenetic gene profiles.
Even in the absence of structural or sequence information, one can detect the
evolutionary fingerprints of pairs of interacting proteins from their genomic context. A
number of these computational approaches also take advantage of high-throughput
experimental information such as gene-expression data, cellular locality and molecular
complex information (7,8). These hybrid computational approaches exploit both the
genomic and biological context of genes and proteins in complete genomes in order to
predict interactions.

In this chapter, we will describe computational methods and resources available
for protein-protein interaction prediction that exploit the structural, genomic and
biological contexts of proteins in complete genomes. In addition to algorithms and
methods for interaction prediction, a number of useful databases pertaining to protein-
protein interaction will be described. These databases combine a large amount of data
from both computational and experimental techniques. Finally, a number of tools for
protein interaction network visualization and analysis will be described. Methods are
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presented in historical order together with online access information. Where available,
detailed computational protocols will also be provided for each method.

1.1 Structural Context Approaches

Computational prediction of protein-protein interactions consists of two main areas (i) the
mapping of protein-protein interactions i.e., determining whether two proteins are likely
to interact, and (ii) the understanding of the mechanism of protein-protein interactions
and the identification of residues in proteins which are involved in those interactions. The
first successful computational analyses of protein-protein interactions, used the structural
context of proteins in order analyze known protein interaction interfaces in order to
determine physical rules determining protein-protein interaction specificity. Unlike other
computational methods that use an evolutionary or genomic context to predict interaction,
structural approaches tend to be more limited in terms of scale, as only a small proportion
of protein sequences have accurate three-dimensional structures deposited in the Protein
Databank (PDB) (9). However, structural approaches allow for a much more detailed
analysis of protein interactions than the genome-context based approaches. Structural
approaches can determine, not only whether two proteins interact, but also the physical
characteristics of the interaction, and residues (sites) at the protein interface which
mediate the interaction.

The identification of protein interaction sites is important for functional genomics,
analysis of metabolic and signal transduction networks and also rational drug design. The
first attempt to describe the characteristics of protein interaction sites was undertaken in
1975 by Chothia and Janin. With data from only three complexes, they suggested that the
residues which form the interface are closely packed, tend to be hydrophobic and that
complementarity may be an important factor in predicting which proteins can interact

(10).

Later studies with larger datasets extended and developed their work to try to
identify other characteristics of the interaction site that are sufficiently different from the
rest of the protein to be identifiable, and thus be predictive. Further analysis of the
hydrophobicity distribution of amino acids can be used to predict interaction sites since
interacting regions tend to be the most hydrophobic clusters on the surface of the protein
(11-14). This type of analysis yields a 60% success rate at predicting interacting sites. In
general, hydrophobic residues such as Leu, Ile, Val, Phe, Tyr and Met are over-
represented at interaction sites, whereas polar residues such as Lys, Asp and Glu (but not
Arg) are under-represented (15,16). Other parameters which have been analyzed for their
importance in identifying those residues in a protein which form the interaction site
include the accessible surface area and residue composition (17,18). It has also become
apparent that a distinction must be made between different types of complexes.
Interaction sites on stable and transient complexes have different properties (18). A
recent study (79) indicates that the the residue composition can be used to identify six
different types of protein-protein interfaces, from domain-domain interfaces in the same
protein to inter-protein contact surfaces.
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Further studies, (18,20) using a six-parameter analysis (solvation potential,
residue interface potential, hydrophobicity, planarity, protrusion and accessible surface
area), have indicated that none of these parameters individually could be definitively used
as a prediction method. Using a combined score from all six parameters yielded accurate
predictions for 66% of 59 structures (21). All interfaces tend to be planar and be surface
accessible, the other parameters differed between complex types. Computational
resources for the prediction and analysis of protein-protein interactions in this way are
described below (see Methods 2.1. and Table 1).

Shape complementarity is primarily used in docking studies which focus on
finding the best fit of the two interacting proteins using rigid- and soft-body searches (22-
24). Electrostatic complementarity between interfaces (Fig. 1) plays an important role in
determining the best fit of two interacting proteins (23). Interfaces between antibody-
antigen complexes and transient heterodimers tend to have the least shape
complementarity, while homodimers, enzyme-inhibitor complexes and permanent
heterodimers are the most complementary (18).

However, other research (25) has indicated that the chemico-physical properties
of interacting surfaces are difficult to distinguish from those of the whole protein surface.
Recently, it has been suggested that instead of using patch analysis, it may be better to
use interface contacts (19), i.c., residues whose closest atoms are annotated in PDB as
being less than 6A apart. They argue that the analysis of surface patches may miss
slightly buried residues with long side-chains, while other residues identified as being
part of a patch may in fact not be important, or may not form contacts at all.

Other methods of predicting protein interaction sites include multiple sequence
alignment and analysis of amino acid characteristics of neighboring residues using neural
networks. Multiple sequence alignments can help identify specific family structures
which are conserved within a subfamily but differ between subfamilies. These regions are
interpreted as being interaction sites which may endow specificity of ligand interaction
(26-28). Two groups (29,30) have trained neural networks with sequence profiles of
spatial neighbors of a target residue with solvent exposure to predict whether a residue
will be part of an interaction site. Both of their methods gave approximately a 70%
accurate prediction rate. The validity of using sequence profiles has been verified by
results which demonstrate that the majority of interacting residues are clustered in
sequence segments of several contacting residues (31).

Recently, methods have been developed to validate predicted protein-protein
interactions against experimentally determined 3D structures (32,33). Given a known
three-dimensional structure, they map homologs of the interacting proteins onto the
structure and using empirical potentials, test whether the homologous proteins preserve
the interactions from the known structure. However, the number of experimentally
determined structures for complexes is small, and of the 2,590 interactions predicted by
large-scale methods, only 59 could be mapped onto their set of interacting complexes. Of
these, 59% had domains that appeared to be in direct contact, thus increasing the
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probability that these predicted protein-protein interactions are biologically correct.
Computational methods (34) for the prediction of protein-protein interactions based on
this (and other structural approaches) are described below (see Methods 2.1.).

1.2. Genomic Context Approaches
1.2.1. Co-localization

One of the first methods for predicting protein-protein interactions from the genomic
context of genes utilizes the idea of co-localization, or gene neighborhood (Fig. 2A).
Such methods exploit the notion that genes which physically interact (or are functionally
associated) will be kept in close physical proximity to each other on the genome (35-37).
The most apparent case of this phenomenon involves bacterial and archaeal operons,
where genes that work together are generally transcribed on the same polycistronic
mRNA. In these cases, proteins involved in the same process or pathway are frequently
encoded on the same polycistronic messenger.

Operons are rare in eukaryotic species (38,39). However, genes involved in the
same biological process or pathway are frequently situated in close genomic proximity
(36). 1t is hence possible to predict functional or physical interaction between genes that
are repeatedly observed in close proximity (e.g. within 500 bp) across many genomes.
This method has been successfully used to identify new members of metabolic pathways
(36). Like many of the genome-context approaches, this method becomes more powerful
with larger numbers of genomes. This approach and a number of online resources that
implement it will be described in detail below (see Methods 2.2.).

1.2.2. Phylogenetic Profiles

A relatively simple, yet powerful, form of genomic context is the co-occurence of pairs of
genes across multiple genomes. Two of the main driving forces in genome evolution are
gene genesis and gene loss (40,41). The fact that a pair of genes remains together across
many disparate species represents a concerted evolutionary effort that suggests that these
genes are functionally associated (i.e. same biological process or pathway) or physically
interacting. This criterion is less stringent than that of gene co-localization, where gene
pairs must not only be present, but also situated close to each other on the genome.
Homologous genes can be termed either orthologs or paralogs. In general the term
ortholog is used to describe genes that are related by a speciation event, i.e. perform
analogous functions in different organisms and are related to a single common ancestor
gene in an ancestor species. The term paralog is used to describe homologous genes that
have arisen following a gene duplication event, i.e., perform similar functions in the same
organism. Classifying homologous genes as either paralogs or orthologs is difficult in the
absence of accurate phylogenetic or speciation information (42). Classification of genes
in this way allows the inference of a phylogenetic context for a given gene.

The analysis of phylogenetic context in this fashion has been termed phylogenetic
profiling (43). These profiles can be as simple as a binary representation of the presence
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or absence of a gene across multiple genomes (43-45) (Fig. 2B). A library of these
profiles may then be scanned to find genes that exhibit identical (or highly similar)
phylogenetic patterns to each other. Pairs of genes detected in this fashion are hence
candidates for physical interaction or functional association. This method has been used
not only to infer physical interaction (43), but also to predict the cellular localization of
gene products (46).

This system is not however without flaw. Firstly, the strength of any inference
made using such profiles is heavily dependent on the number and distribution of genomes
used to build the profile. A pair of genes with similar profiles across many of bacterial,
archaeal and eukaryotic genomes are much more likely to interact than genes found to co-
occur in a small number of closely related species. Secondly, evolutionary processes such
as lineage-specific gene loss, horizontal gene transfer, non-orthologous gene-
displacement (47) and the extensive expansion of many eukaryotic gene families can
make orthology assignment across genomes very difficult. However, given the increasing
number of completely sequenced genomes, the accuracy of these predictions is expected
to improve over time. The details of this approach and online-resources for phylogenetic
profile-based prediction of protein interaction are described below (see Methods 2.3.).

1.2.3. Gene Fusion

Genome context approaches to the prediction of protein-protein interaction also include
the analysis of gene fusion across complete genomes. This method is complementary to
both co-localization of genes and phylogenetic profiles and uses both gene location and
phylogenetic analysis to infer function or interaction. A gene fusion event represents the
physical fusion of two separate parent genes into a single multi-functional gene. This is
the ultimate form of gene co-localization, i.e., interacting genes are not just kept in close
proximity on the genome, but are physically joined into a single entity (Fig. 2A). It has
been suggested that the driving force behind these events is to lower the regulational load
of multiple interacting gene products (48). Gene fusion events hence provide an elegant
way to computationally detect functional and physical interactions between proteins
(48,49).

Gene fusion events are detected by cross-species sequence comparison. Fused
(composite) proteins in a given reference genome are detected by searching for un-fused
component protein sequences, that are homologous to the reference protein, but not to
each other. These un-fused query sequences align to different regions of the reference
protein, indicating that it is a composite protein resulting from a gene fusion event (48).
Once again, predictions of this type are complicated by a number of issues. The largest
hindrance is the presence of so called promiscuous domains. These domains (such as
helix-turn-helix (HTH) and Dnal) are highly abundant in eukaryotic organisms. The
domain complexity of eukaryotic proteins coupled with the presence of promiscuous
domains and large degrees of paralogy can hamper the accurate detection of gene fusion
events (50).
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Although the method is not generally applicable to all genes, i.e., it requires that
an observable fusion event can be detected between gene pairs, it has been successfully
applied to a large number of genomes (including eukaryotes) (51). The basic gene fusion
detection method and online resources such as the AIFUSE database (51), will be
described in detail below (see Methods 2.4.).

1.2.4. In-silico two-hybrid

The in-silico two-hybrid (i2h) approach has much in common with the other genome-
context approaches, but also indirectly assesses structural properties of proteins that
potentially interact. It has previously been shown that a mutation in the sequence of one
protein in a pair of interacting proteins is frequently mirrored by a compensatory
mutation in its interacting partner (Fig. 2C). The detection of such correlated mutations
can not only be used to predict protein-protein interactions, but also has the potential to
identify specific residues involved at the interaction sites (52).

Previous analyses (53) involved searching for correlation of residue mutations
between sequences in the same protein family alignment (intra-family). The in-silico two-
hybrid method extends this approach by searching for such mutations across different
protein families (interfamily). Prediction of protein-protein interactions using this
approach is achieved by taking pairs of protein family alignments and concatenating
these alignments into a single cross-family alignment. A position-specific matrix is then
built from this alignment, and a correlation function is then applied to detect residues
which are correlated both within and across families. Correlated sites that potentially
indicate protein interaction are returned with a score. The method suffers due to the
computational complexity of constructing the large numbers of alignments needed, and
poor quality alignments can dramatically increase noise in the procedure (52). However
the method is similar to the gene fusion approach, as a single accurate prediction between
two proteins can infer interaction between all members of both families used. This
approach is not discussed in the Methods section, as currently the method is not freely
available (see Note 1).

1.3. Biological Context Approaches

High throughput experimental techniques now provide access to a more detailed view of
biological processes at a genomic level. Gene expression analysis allows one to not only
determine which genes are active in a given state, but also sets of genes which are co-
regulated in many different states. It has been shown that many interacting proteins are
co-expressed according to microarray analyses (4-6). Current gene-expression methods
now allow for every coding gene of a genome to be placed on a single microarray,
allowing the activity of every gene to be monitored across different states or time-points.
Although these methods cannot directly be used to determine whether or not two proteins
interact or not, a number of computational approaches have been developed that use this
information towards the prediction of protein-protein interaction and gene regulatory
networks (4-6). Other high-throughput experimental techniques such as yeast two-hybrid
specifically test a bait protein for interactions against a set of prey proteins. The bait and
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prey consist of fusion constructs that activate a reporter gene if they interact with each
other. While this method is not as accurate as other techniques such as co-
immunoprecipitation, affinity chromatography or gel-overlay assays, it can be applied
rapidly to genome-scale studies of protein-protein interactions.

Many of these high-throughput methods for investigating the biological context of
genes and proteins are inherently noisy. For example, some proteins in yeast two-hybrid
assays appear to detect a large number of spurious interactions (false-positives). Gene
expression techniques suffer from a number of problems also, such as cross hybridization
and poor signal-to-noise ratios. Recently however, research has shown that multiple
datasets pertaining to the biological context of genes and proteins can be combined using
machine learning techniques (8). Using Bayesian network analysis it is hence possible to
computationally combine multiple noisy datasets in such a way that protein-protein
interactions can be more reliably predicted. In this method each source of interaction
evidence is compared against samples of known positive (proteins in the same complex)
and negative (proteins in different cellular locations) interactions, allowing a statistical
reliability index to be built for each data source. When this information is applied
genome-wide, a prediction can be made for every protein pair in a genome by combining
different sets of independent evidence according to their calculated reliability. Protein
interactions predicted in this way have been shown to be as reliable as pure experimental
techniques, while simultaneously covering a larger proportion of genes than most
experimental methods (8).

A number of available resources for protein-protein interaction data, gene
expression data and Bayesian network analysis of multiple interaction datasets will be
described below (see Methods 2.5.).

1.4. Data-sources and Visualization techniques

Computational biology is a data-rich research field. The advent of complete genome
sequencing and high-throughput experimental techniques has created an enormous
amount of data. In order for these data to be both informative and useful, they must be
stored in a sensible and accessible way, and tools must be made available to visualize and
exchange this information. A number of initiatives are tackling these problems by
creating freely accessible databases storing a wide variety of biological information
including protein-protein interactions. Recently, a number of research groups have
created visualization tools for biological networks. These tools provide a new way to
analyze protein-protein interaction networks, provide a multitude of different ways to
represent interactions and can overlay other biological information onto these networks.
A number of databases that store protein-protein interactions, molecular complexes and
pathways will be described later (see Methods 2.6. and Table 1). Finally, we will detail
methods for the visualization and analysis of protein-protein interaction networks. (see
Methods 2.7.).
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2. Methods

In this section we will describe computational resources and methods for the prediction
of protein-protein interactions. These methods will be detailed in chronological order.
Within each section a number of on-line computational resources are described that allow
one to perform this type of analysis interactively. Where possible (mostly for genomic
context based approaches), detailed computational protocols will also be provided.
Resources mentioned in this section are further summarized below (see Table 1).

2.1. Structure based prediction of interactions

The Protein-Protein Interaction Server at University College London (UCL) provides a
simple web-based interface for exploring protein-protein interaction interfaces, given
three-dimensional structures (18). This server takes into account the following
information for interaction analysis: accessible surface area, planarity, length & breadth,
secondary structure, hydrogen bonds, salt bridges, gap volume, gap volume index,
bridging water molecules and interface residues. This resource (Table 1) is very useful
for exploring the protein-protein interaction potential of two protein structures identified
through docking or shape-complementarity.

The structural bioinformatics group at EMBL Heidelberg provides the
InterPreTS server for protein-protein interaction prediction (33). Using this resource
(Table 1) one can submit pairs of sequences that are then compared to the three-
dimensional structures of known protein-protein interactions. This resource utilizes a pre-
built Database of Interacting Domains (DBID) and an empirical scoring system to test
whether a sequence pair fits a known three-dimensional structure of an interacting pair of
proteins.

2.2. Gene-neighborhood based interaction prediction

Co-localization of genes across multiple genomes provides a fingerprint that they may
physically interact (36). Analysis of conserved gene locations across multiple genomes
(Fig. 2A) can hence be used to predict protein interaction networks and metabolic
pathways (54). A number of excellent resources exist that allow one to determine whether
two proteins may interact using this approach. The most notable of these are STRING
(Search Tool for Recurring Instances of the Neighborhood of Genes) (55) and WIT
(What is There?) (56). The STRING database (Fig. 3) provides a web interface giving
comprehensive access to gene neighborhood information (57) for 356,775 genes in 110
complete genomes (Fig. 3). Similarly, the Predictome database at Boston University (58)
provides a comprehensive web interface to predictions of this type. The WIT database
provides access to protein family information, metabolic pathway reconstruction and
gene co-localization information. Using these resources allows detailed pre-computed
gene neighborhood information to be analyzed for evidence of protein-protein interaction
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(Table 1). The actual protocols used for these analyses can vary considerably, a general
protocol adapted from WIT (56) is described below:

1. In order to assess whether pairs of orthologous genes share a common gene
neighborhood across multiple genomes one needs a) protein sequences / genomic
locations and b) orthology mappings between proteins from multiple genomes.

2. Orthology mappings are generated by searching for pairs of close bi-directional
best hits (PCBBH). These are a specific form of bi-directional best hit (see
Methods 2.3.), a commonly used method for orthology assignment. For a given
pair of proteins . and 8 in genome X, a bi-directional best hit to genes o’ and 3’
in genome Y is defined as follows:

The best BLAST hit for protein o in genome X is protein o’ in genome Y.
The best BLAST hit for protein 3 in genome X is protein 3’ in genome Y.
The genes of proteins o and f are situated within 300bp in genome X.
The genes of proteins o’ and (3 are situated within 300bp in genome Y.

ac oe

3. Genes that satisfy the above criteria can be considered as having a conserved gene
neighborhood across two genomes. When this procedure is repeated across
multiple genomes it becomes possible to identify genes which are significantly
co-localized across many genomes, and are hence likely to either physically
interact or be functionally associated.

4. The PCBBH criteria are quite strict, and it is also possible to perform the
procedure using Pairs of Close Homologs (PCHs) (see Note 2).

5. Sets of PCBBHs or PCHs in multiple genomes are typically scored for
significance based on the number and phylogenetic distribution of genomes in
which they are co-localized. Phylogenetic distance can be estimated by examining
a 16S rRNA phylogenetic tree.

6. A common score (coupling score) for the likelihood that two genes interact based
on summing individual scores from multiple genomes is then calculated.

7. Finally, candidate genes that have significant coupling scores are candidates for
either physical interaction, or functional association.
2.3. Phylogenetic profile based prediction of interaction
Phylogentic profile based prediction of protein interactions (Fig. 2B) has been shown to
be an accurate and widely applicable method. Perhaps the easiest way to utilize this

information for prediction of protein interaction is to use precomputed phylogenetic
profiles for proteins of interest. The Clusters of Orthologous Groups (COGs) resource at
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the National Center for Biotechnology Information (NCBI) contains large numbers of
profiles for a variety of bacterial and archaeal organisms and also S. cerevisiae (59,60).
Other excellent resources for combined computational predictions of protein interactions
using phylogenetic profiles are available from the STRING (55) resource at EMBL
Heidelberg and from Predictome (58) (Table 1). Using the web interfaces to these
resources, it is relatively straightforward to find groups of proteins with similar or
identical phylogenetic profiles, indicating proteins that physically interact or are
functionally associated (Fig. 3). For a more detailed analysis of specific proteins of
interest a general protocol is described below:

1. For each genome to be analyzed, a FASTA sequence file containing all protein
sequences is assembled.

2. All protein sequences in each genome are compared against all other sequences
using a sequence similarity search algorithm such as BLASTp (61). A variety of
other sequence similarity seach tools could also be used at this step (see Note 3).

3. Orthology between proteins in different genomes is assigned as follows:

* Two proteins (from different genomes) are orthologous if they were each
other’s highest scoring BLAST hit when searched against the other genome.
This is frequently referred to as a bidirectional best hit (BBH).

* This process is repeated to assign (if possible) an ortholog for each protein in
a given genome, to a protein in all other genomes.

4. All orthology assignments made in this way are stored for post-processing.

5. A phylogenetic profile for a protein can then be constructed by representing the
presence or absence of an ortholog for that protein across all genomes analyzed.
Frequently, this is represented by a simple binary vector with ‘1’ indicating
presence and ‘0’ representing absence of a gene in each genome (Fig. 2B) (see
Note 4).

6. All profiles are compared to all other profiles using a clustering procedure. A
distance measure (such as Pearson correlation of Euclidean distance) between
each profile and all other profiles is used to group profiles according to how
similar they are (see Note 5).

Finally, protein profiles that are highly similar or identical to each other represent
candidate proteins that physically or functionally interact.

2.4. Gene fusion prediction of protein interactions
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Gene fusion is a relatively common evolutionary phenomenon (51). A detected gene
fusion between two genes indicates that their protein products may physically interact or
be involved in the same biological process or pathway (48,49). One extreme example of
this is the aromatic amino acid biosynthesis pathway in S. cerevisiae. In yeast a single
fused gene encodes the entire pathway of these five normally separate genes (48).
Prediction of protein interactions using gene fusion has been successful in a number of
areas, including the prediction of novel protein interactions involved in important
biological processes in Drosophila melanogaster (62).

A comprehensive set of fused genes and inferred protein-protein interactions is
available from the AIIFUSE database (51) at the European Bioinformatics Institute
(EBI), the STRING database at EMBL Heidelberg (55) (Fig. 3) and the Predictome
database at Boston University (58) (Table 1). Using the AIIFUSE resource one can
search for potential interactions for a given protein sequence from a database of 24
complete genomes. A general protocol for gene fusion based prediction of protein-protein
interactions can be described as follows (48):

1. This analysis requires two genomes, a query and a reference. One searches for
gene fusion (composite) proteins in the reference genome using protein sequences
from the query genome. Sequences from both genomes need to be assembled into
FASTA format for this analysis.

2. Each protein in the query genome is then interactively searched against each
protein from the reference genome using a sequence similarity search tool such as
BLASTp (61) using an expectation-value (E-value) threshold to eliminate
similarities which may have arisen by chance.

3. All significant similarities detected in this way are then stored in a binary matrix
which for each protein pair stores ‘1’ for significant similarity or ‘0’ for no
detectable similarity. The matrix may be symmetrified by post-processing with a
more sensitive sequence search tool such as Smith-Waterman (63) to clear up
ambiguities.

4. Finding evidence of a gene fusion event in the reference species extends of the
previous symmetrification problem to one of transitivity (48). In this case one
searches for instances where query proteins A and B match a reference protein C,
but do not match each other (i.e. A[] C; B[] C but A=B). These triangular
inequalities are resolved once again by using the more accurate Smith-Waterman
algorithm to double check that no detectable significant similarity exists between
A and B. Further analysis using alignment geometry can then verify that proteins
A and B are orthologous to different regions of a composite fusion protein but not
to each other (64).

5. Candidate fusion proteins detected in this way provide evidence that proteins A
and B may physically interact.
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Although this method is not generally applicable to all genes, and suffers from the high
levels of paralogy usually present in eukaryotic genomes (65). This approach has been
shown to have an accuracy as high as 90% and readily detects well known interacting
proteins (e.g. tryptophan synthase o and (3 subunits) and many proteins previously shown
to form complexes. As such this method represents a useful way to build interaction
networks for proteins of interest within and across genomes.

2.5. Prediction of protein interactions from high-throughput biological datasets

Gene expression analysis allows for all genes from a given genome to be placed on a
single microarray, allowing many gene-expression experiments to be carried out rapidly
and in parallel. Recently, efforts have been made to standardize data formats for reporting
the results of gene expression experiments. The Minimum Information About a
Microarray Experiment (MIAME) (66) standard allows different laboratories to
effectively and accurately exchange microarray expression information. Using such
standards, it has become easier for a number of publicly accessible resources to distribute
microarray data (Table 1).

The Stanford Microarray Database (SMD) (67) provides access to raw data from
public microarray experiments, as well as a number of software tools for utilizing this
data. Currently, 140 experiments are indexed in the SMD web resource. The MicroArray
group at the European Bioinformatics Institute provides ArrayExpress (68), a publicly
available gene expression data in MIAME format for over 66 publicly available
experiments and also integrated tools for expression profile analysis. Finally, the Gene
Expression Omnibus (GEO) (69) database at the NCBI contains data from over 300
large-scale publicly available microarray and SAGE experiments, for which all data is
linked into the NCBI protein, nucleotide and genomic databases.

Using these resources, it is hence possible select a number of datasets for an
organism of interest, and extract gene expression profiles for some or all genes. Proteins
whose genes exhibit very similar patterns of expression across multiple states or
experiments (70) may then be considered candidates for functional association and
possibly direct physical interaction (4-6). Gene expression analysis becomes much more
reliable with more expression data. For example, genes that have high correlation across
10 experiments are much more likely to be related functionally than genes correlating
across two experiments. Gene expression data is relatively susceptible to noise, and great
care must be taken to minimize and filter this from any analysis. This data can, however,
be very powerful when combined with analyses involving regulatory network
reconstruction, and with other methods of detection of functional association and
interaction of proteins (§).

The Bayesian networks approach (see Introduction 1.3.), which combines data
from multiple biological datasets is a useful way to minimize this noise and perform
reliable protein-protein interaction prediction in S. cerevisiae (8). Validation of the
method indicates that it can successfully recover large numbers of previously known

Page 13



Computational Prediction of Protein-Protein Interactions Enright A.J., Skrabanek L. and Bader G.D.

protein-protein interactions (Fig. 4) and many novel interaction predictions. The results
of this analysis are available from the GeneCensus web site at Yale University (Table
1). These predictions are remarkable as they illustrate that combining multiple
independent and noisy datasets in an intelligent way does not necessarily increase noise
in the combined protein interaction predictions (assuming orthogonal error between
datasets). This is also an excellent example of a combined computational and
experimental approach, as interactions predicted using this approach appear to be more
reliable than many pure experimental approaches (8).

2.6. Tools for Protein-Protein Interaction Visualization

Network and pathway visualization tools are computer programs that can automatically
generate a diagram of a network or pathway. Perhaps the simplest such representation of
a protein-protein interaction network is a graph composed of nodes (proteins) connected
by edges (interactions). Some of the first visualization tools were developed for browsing
metabolic pathways. For example, a pathway drawing tool is present in the ACeDB
database (71) and in EcoCyc (34). In many cases these representations are clickable so
that one can select a member of a pathway or a small molecule and get further
information about that entity. Many of these initial visualization tools are static, and
generated semi-automatically. The Kyoto Encyclopedia of Genes and Genomes (KEGG)
(72), BioCarta and SigPath (73) websites (Table 1), are examples of this type of
visualization. Other more advanced methods can dynamically generate pathway diagrams
from raw information in a biological database, such as the EcoCyc and WIT databases
(see Table 1).

Recently, a number of purely automatic and general algorithms have been
developed for visualizing biological networks. These tools rely on a layout algorithm to
organize a graph of nodes and edges into an aesthetically pleasing layout. In graph terms
this usually means minimizing the number of edges that cross each other, and grouping
groups of nodes that are highly connected to each other. Typically, a well-organized
graph layout will allow the user to identify global features of their data that may not have
been previously apparent. An example layout algorithm is the Spring Embedder
algorithm. This method models the graph as a physical system where nodes are spheres
connected by springs (edges). Nodes are initially organized in a random state, and forces
between connected spheres (due to springs), push the system into a lower-energy more
stable state. Other methods such as the Weighted Fruchterman-Rheingold algorithm (64),
represent the graph as a system of nodes which exert an attractive force (similar to a
spring) between nodes connected by an edge and a distance-dependant repulsive force
between all nodes. Additionally the weighted algorithm allows the attractive forces
between node to be modulated using weights, and the energy of the entire system is
controlled using a temperature function. Other layout algorithms, can involve arranging
nodes hierarchically, in a circular fashion or in less structured formats. It is important to
choose the best layout algorithm for the type of graph being visualized. For example, a
highly connected interaction network will not assume a meaningful graph layout when a
hierarchical layout algorithm is used.
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Two of the most commonly used visualization tools for biological networks are
BioLayout (74) and Cytoscape (75) (Table 1). Both of these tools are written using the
JAVA (see Note 6) programming language and are hence portable across a wide variety
of computer environments. Both tools also allow the interactive editing of graphs,
through the movement of nodes, node labeling and the ability to change the appearance
of nodes and edges. Additionally both tools can export publication quality high-resolution
graph images (see Note 7). BioLayout utilizes the weighted Fruchterman-Rheingold
layout algorithm, and has a number of options for graph customization, data-overlay,
export and graph analysis (Fig. 5). Cytoscape provides a number of different layout
algorithms for producing useful visualizations and a number of plugins and import
options for representing data such as gene expression (Fig. 6). Specifically, circular,
hierarchical, organic, embedded and random layouts are available. Circular and
hierarchical algorithms try to lay out a network as their names suggest. Organic and
embedded are two versions of a force-directed layout algorithm. Types of plugins that are
currently available for Cytoscape include one that allows reading PSI files (see Methods
2.7.) and one called ActiveModules that finds regions of a molecular interaction network
that are correlated across multiple gene expression experiments. Both of these methods
are suitable for small to medium sized networks (less than 1000 nodes), although it may
not be long before both layout and visualization techniques become available for the
analysis of much larger graphs.

2.7. Data resources for protein-protein interactions

Current computational and experimental methods for protein-protein interaction
prediction have been generating large amounts of data. It is imperative that this data be
stored in a consistent and reliable way so that it may be useful for biological research. A
number of databases are now publicly available for making this information accessible.
Two of the largest and most comprehensive interaction databases now available are the
Biomolecular Interaction Network Database (BIND) (76) and the Database of
Interacting Proteins (DIP) (77). DIP is based at UCLA and currently contains over
18,000 experimentally determined protein-protein interactions (mostly from high-
throughput S. cerevisiae experiments) for over 7,000 proteins in 104 organisms.
Interactions in DIP are curated both manually (by expert curators) and automatically
(text-mining approaches). BIND, at the University of Toronto, not only stores and curates
pair-wise protein-protein interactions, but also molecular complex information and
biological pathways. Currently, BIND contains over 21,349 protein-protein and protein-
DNA interactions, 1,334 molecular complexes and 8 pathways encompassing 28
genomes and over 6,000 proteins.

A number of initiatives are currently underway to ensure that these data from
different interaction databases are stored in a consistent and exchangeable format. The
Proteomics Standards Initiative (PSI) (78) has created a standard format for the exchange
of protein-protein interaction data, while the BioPAX format aims to capture protein-
protein interactions, molecular complexes and pathway information in a single consistent
ontology and exchange format. Access information for DIP, BIND and a number of other
interaction databases are detailed further below (see Table 1).
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3. Notes

1.

Unfortunately, the online web-server for in-silico two-hybrid predictions at
http://www.pdg.cnb.uam.es/i2h/ is not presently available, although the
Plotcorr program for analysis of correlated mutations is available at:
http://www.pdg.cnb.uam.es/pazos/plotcorr.html

Pairs of close homologs (PCHs) can be defined as follows:

(a) A significant BLAST hit exists for protein o in genome X and protein o’ in
genome Y. (b) A significant BLAST hit exists for protein § in genome X and
protein B’ in genome Y. (c) The genes of proteins o and P are situated within
300bp in genome X. (d) The genes of proteins o’ and 8’ are situated within 300bp
in genome Y.

While BLAST is useful for many analyses of this type, it is also possible to use
more sensitive algorithms such as PSI-BLAST, HMMER or Smith-Waterman.
Although these methods tend to be far more computationally intensive, the may
produce more accurate predictions.

Phylogenetic profiles do not necessarily have to be binary representations. It
would also be possible to generate profiles that express a score or expectation
value that a homolog is present in a given genome instead of simply ‘1’ and ‘0’.
This type of analysis is very easy to perform using common mathematical
analysis tools or the PEARSON function from Microsoft Excel™.

The Java™ environment is commonly preinstalled on many computer systems. If
not already installed, it can be obtained at: http://java.sun.com/

Graph images of protein-protein interaction networks can be exported in a number
of ways. Capturing screenshots of either application will most likely result in a
poor quality low-resolution image. For publication quality images, it is generally
best to export images as a vector graphics format such as PDF.

The PyMOL molecular graphics package is freely available for a variety of
platforms at: http://pymol.sourceforge.net/
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Resource Type of Resource WWW Address (URL) Ref

Structural Context Interaction Prediction

Protein-Protein Structure based interaction http://www.biochem.ucl.ac.uk/bsm/PP/server/ | (18)

Interaction Server prediction

InterPreTS Structure based interaction http://www.russell.embl.de/interprets/ (33)
prediction

Genomic Context Interaction Prediction

AlIFUSE Gene fusions http://www.ebi.ac.uk/research/cgg/allfuse/ (51)

STRING Gene Co-Localization, gene- http://www.bork.embl-heidelberg.de/STRING/ (55)
fusion, phylogenetic profiles

WIT Orthology/phylogenetic profiles / http://wit.mcs.anl.gov/WIT2/ (56)
gene co-localization

Predictome Gene Co-Localization, gene- http:/predictome.bu.edu/ (58)
fusion, phylogenetic profiles

COGs Orthology/phylogenetic profiles http://www.ncbi.nlm.nih.gov/COG/ (59)

Biological Context Interaction Prediction

GeneCensus Combined predictions (bayesian http://genecensus.org/intint/ 8)
network)

Pathway Databases

EcoCyc Metabolic pathway analysis http://ecocyc.pangeasystems.com/ecocyc/ (34)

KEGG Metabolic / regulatory pathway http://www.genome.ad.jp/kegg/ (72)
analysis and reconstruction

SigPath Signalling pathways http://www.sigpath.org/ (73)

MIPS Pathways, complexes, cellular http://www.mips.biochem.mpg.de/proj/yeast/ (79)
locations pathways/index.html

Protein Interaction Databases

BIND Interactions, complexes, pathways | http:/www.bind.ca/ (76)

DIP Database of protein interactions http:/dip.doe-mbi.ucla.edu/ (77)

INTACT Database of protein interactions http://www.ebi.ac.uk/intact/index.html (80)

MINT Database of protein interactions http://160.80.34.4/mint/ (81)

Gene-Expression Databases

SMD Gene expression data http://genome-www5.stanford.edu/ (67)

Array Express Gene expression data http://www.ebi.ac.uk/arrayexpress/ (68)

GEO Gene expression data http://www.ncbi.nlm.nih.gov/geo/ (69)

Visualization Tools for Protein Interactions

BioLayout Interaction Network Visualization http://www.biolayout.org/ (74)

Cytoscape Interaction Network Visualization http://www.cytoscape.org/ (75)

Table 1: Methods and databases for computational prediction of protein-protein

interactions.
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Figure Legends

Figure 1: Three-dimensional structure of the T7 bacteriophage RNA polymerase
complexed with T7 lysozyme. The multi-colored structure on the left is RNA polymerase, shown
with a transparent blue molecular surface. The lysozyme is shown on the right in grey with its
associated transparent surface. The interaction interface is highlighted in yellow on both surfaces.
This figure was produced using PDB structure 1ARO and PyMol (see Note 8).

Figure 2: Overview of genome context approaches. A) Gene neighborhood plots for eight
complete genomes, showing a pair of genes (red and blue) which are in close physical proximity
in all eight genomes. A gene fusion event between two genes (yellow and light blue) in two
genomes is also shown. B) Example phylogenetic profiles of selected genes from the previous
panel. These three pairs of genes have the same patterns of co-occurrence in all eight genomes,
and may physically interact based on this evidence. C) Two protein family alignments are shown
with conserved regions highlighted (in red and blue). Correlated mutations (shown in green) are
present in two identical sub-trees for each family, which indicates that these sites may be
involved in mediating interactions between proteins from each family.

Figure 3: Screenshots from the STRING web resource. The left panel illustrates the STRING
representation of gene neighborhood and gene fusion. The right panel shows a typical
phylogenetic profile for multiple genes and genomes. Finally, the inset shows a predicted protein
interaction map generated from gene neighborhood, gene fusion and phylogenetic profile
methods combined.

Figure 4: Bayesian network predictions of protein-protein interactions. Experimentally
validated gold-standard protein-protein interactions (blue and green lines) between S. cerevisiae
proteins (green dots) are shown as an interaction network. Bayesian network analysis prediction
of protein-protein interaction successfully recovers a significant subset of these interactions
(green lines). The gold-standard interactions are derived from MIPS and well-known complexes
are annotated.

Figure 5: Example graph from BioLayout. This graph illustrates a genetic regulatory network of
E. coli genes. Genes are represented by circles (nodes) connected by regulatory interactions
represented by lines (edges). Nodes are colored according to biochemical pathway assignments.
Nodes in the center of the graph are not labeled for clarity.

Figure 6: Example graph from Cytoscape. A number of the important features of CytoScape
are represented in this graph layout. Nodes in this case represent genes and edges represent
either genetic (green, cyan) interactions, protein-protein interactions (blue) or protein-DNA
interactions (red). Nodes are colored according to the gene expression of that gene in a Gal4
knockout experiment, with blue representing highly significant fold-change of a gene, and red
indicating no significant fold-change. Node shapes are determined by the annotation of each
gene, diamonds for signal transduction genes, triangles for meiosis, Pol Ill transcription, mating
response and DNA repair. Circles represent genes that were not assigned to any of these
categories.
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