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ABSTRACT

Two fundamental questions in steganography are addressed in this paper, namely, (a) definition of steganography
security and (b) definition of steganographic capacity. Since the main goal of steganography is covert communi-
cations, we argue that these definitions must be dependent on the type of steganalysis detector employed to break
the embedding algorithm. We propose new definitions for security and capacity in the presence of a steganalyst.
The intuition and mathematical notions supporting these definitions are described. Some numerical examples
are also presented to illustrate the need for this investigation.
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1. INTRODUCTION

Steganography deals with hiding messages in a cover signal so that they can be extracted at the receiving side
with the help of a secret key. Applications of steganography include covert communications, watermarking and
fingerprinting that seem to hold promise for copyright protection, tracing source of illegal copies, etc. There are
several issues to be considered when studying steganographic systems. One among the key performance measures
used to compare different message embedding algorithms is steganography capacity. In a general sense, it is the
maximum message size that can be embedded subject to certain constraints. A number of ways to compute
the steganography/watermarking capacity using information theory, perceptually based methods, and detection
theory have been proposed previously.1–5 This work extends the recent steganography capacity results in the
presence of steganalysis first reported in Chandramouli et. al.3

Steganalysis is a relatively new branch of research. While steganography deals with techniques for hiding
information, the goal of steganalysis is to detect and/or estimate potentially hidden information from observed
data with little or no knowledge about the steganography algorithm and/or its parameters. It is fair to say that
steganalysis is both an art and a science. The art of steganalysis plays a major role in the selection of features or
characteristics to test for hidden messages while the science helps in designing the tests themselves. While it is
possible to design a reasonably good steganalysis technique for a specific steganography algorithm, the long term
goal must be to develop a steganalysis framework that can work effectively at least for a class of steganography
methods, if not for all. Clearly, this poses a number of mathematical challenges and questions.

One important question in steganography is: what is the trade-off involved in embedding larger message
sizes? This question can be answered in several different ways. In Chandramouli et. al.,3 it is shown that, when
the embedding message sizes are larger than a threshold then it becomes easier for a steganalysis algorithm to
detect the presence/absence of a hidden message. This defeats the purpose of steganography where the idea is
to hide messages in a cover signal such that its very presence can be concealed. We classify steganalysis into two
categories:

• Passive steganalysis: Detect the presence or absence of a secret message in an observed message or
identify the type of embedding algorithm.

• Active steganalysis: Estimate/extract some properties of the message or the embedding algorithm. For
example, extract a (possibly approximate) version of the secret message from a stego message.

For further information send correspondence to, Email: mouli@stevens-tech.edu



In this paper, we discuss a steganography capacity measure in the presence of passive steganalysis. In order
to do this, we have to first define a notion of steganography security. Clearly, this notion has to be statistical and
not perceptual. We propose such a definition for this measure and show how to compute the stego capacity based
on this. An intuition behind our mathematical formulation is that, stego security and capacity are functions
of the steganalysis detector. That is, a good steganalysis detector will be able to detect the presence/absence
of an embedded message with high accuracy thus implying that the embedding method is less secure and the
maximum embeddable message length is small. Therefore, a decision theoretic formulation is followed in this
work.

The paper is organized as follows. Section 2 contains the details of the proposed definition of steganogra-
phy security and Section 3 deals with the corresponding capacity definition. Concluding remarks are given in
Section 4.

2. STEGANALYSIS DETECTOR DEPENDENT STEGANOGRAPHY SECURITY

Notable works in defining steganography security is that of Cachin5 and Zollner et. al.6 Cachin defines a
steganographyic method to be ε-secure (ε ≥ 0) if the relative entropy between the cover and the stego probability
distributions (Pc and Ps, respectively) is at most ε, i.e.,

D(Pc||Ps) =
∫

Pclog
Pc

Ps
≤ ε (1)

A stego technique is said to be perfectly secure if ε = 0. Existence of perfectly secure algorithms (although
impractical) are shown to exist. We observe that there are several shortcomings to this definition. Some of these
are listed below.

• While Cachin’s definition may work for random bit streams (with no inherent statistical structure), for real-
life cover messages such as audio, image, and video, it seems to fail. This is because, real-life cover messages
have a rich statistical structure in terms of correlation, higher-order dependence, etc. By exploiting this
structure, it is possible to design good steganalysis detectors even if the original probability distribution
is preserved (i.e., ε = 0) during stego embedding. If we approximate the probability distribution functions
using histograms, then, examples such as Jessica et. al.7 show that it is possible to design good steganalysis
detectors even if the histograms of cover and stego are the same!

Cachin assumes that the cover and stego messages are vectors of independent, identically distributed (i.i.d.)
random variables—not true for many real-life cover signals. Perhaps, herein lies the problem. One approach
to rectify this is to put the constraint that the the relative entropy computed using the nth order joint
probability distributions must be less than, say, εn. We can then force an embedding technique to preserve
the nth order distribution. But, it may then be possible to use (n + 1)st order statistics for steganalysis.
This line of thought clearly poses several interesting questions such as: (a) practicality of preserving nth
order joint probability distribution during embedding for medium to large values of n, (b) behaviour of
the sequence {εn}, etc. We do not address these issues in this paper. Of course, even if these nth order
distributions are preserved, there is no guarantee that embedding induced perceptual distortion will be
acceptable. If this distortion is significant, then it is not even necessary to use a statistical detector for
steganalysis!

• Consider the following embedding example. Let P (X = 0) = P (Y = 0) = 1/2 and the embedding function
is the following:

Z = X + Y mod 2 (2)

We observe that D(PZ ||PX) = 0 but E(X − Z)2 = 1. The non-zero mean squared error value may give
away enough information to the steganalysis detector even though D(.) = 0 in this case.
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Figure 1. Detector ROC plane.

Given the above arguments, our goal is to investigate an alternative measure for stego security that is
perhaps more fundamental to steganalysis. In this regard, we note that the false alarm probability (α=P(detect
message present|message absent)) and detection probability (β=P(detect message present| message present)
play significant roles. Employing a steganalysis detector optimized for one specific stego algorithm (say, least
significant bit embedding), it will be possible to attain low values for α and high values of β for that embedding
technique. On the other hand, employing this steganalysis detector to detect some other algorithm will result in
higher α and lower β. Therefore, we observe that α and β can possibly assume several different values depending
on the problem situation.

The steganalysis detector’s receiver operating characteristic (ROC) is a plot of α versus β. Points on the ROC
curve represent the achievable performance of the steganalysis detector. The average probability of stegnalysis
error is given by,

Pe = (1− β)P (message embedded) + αP (message not embedded). (3)

If we assume P (message embedded) = P (message not embedded) then, from Eq. (3),

Pe =
1
2
[(1− β) + α] (4)

Note that, α and β are detector dependent values. For example, for a chosen value of α, β can be maximized
by using a Neyman-Pearson hypothesis test3 or both α and β can be chosen and traded-off with the number
of observations by using Wald’s sequential probability ratio test. Note that, perceptually based steganalysis
techniques also fit into this detector formulation. Observe from Eq. (4) that if α = β then Pe = 1/2 as shown
in Fig. 1. That is, the detector makes purely random guesses when it operates or forced to operate on the 45
degree line in the ROC plane. This means that the detector does not have sufficient information to make an
intelligent decision. Therefore, if the embedder forces the detector to operate on the 45 degree ROC curve by
choosing proper algorithms or parameters, then we say that the stego message is secure and obtain the following
definitions.

Definition 1. A stego embedding algorithm is said to be γD-secure w.r.t. a steganalysis detector D if |βD−αD| ≤
γD, where 0 ≤ γD ≤ 1.
Definition 2. A stego embedding algorithm is said to be perfectly secure w.r.t. a steganalysis detector D if
γD = 0.

Clearly, from these definitions, we can think of embedding and steganalysis as a zero sum game where the
embedder attempts to minimize |β − α| while the steganalyst attempts to maximize it.
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Figure 2. Simple stego channel.

3. γ-SECURITY AND STEGANOGRAPHIC CAPACITY

With the definition of γ-security in place, we are now ready to define steganographic capacity w.r.t. this
definition. Before we go into the details, we present a simple example to illustrate why it is useful to define a
steganalysis detector dependent steganographic capacity measure. This example also illustrates why Shannon
capacity may not be applicable to steganography (even though it is used for watermarking where robustness and
not covertness is the main issue). Consider the simple stego channel shown in Fig. 2. The inputs and outputs
of the stego channel are shown in this figure. These could be the least significant bits of an image, for example.
Let’s assume that the steganalysis detector knows that LSB embedding is used, but does not know if the LSB
bits are the original message bits or some form of pre-coding has been performed before embedding. Consider
the following two steganalysis detectors, D1 and D2:

“Believe what you see detector”,D1 : decode 0 as 0 and decode 1 as 1 (5)
“Detect always 1 detector”,D2 : decode 0 as 1 and decode 1 as 1 (6)

It is quite obvious that αD1 = P (0|0) = 0 and βD2 = P (1|1) = 1, and, αD2 = 1 and βD2 = 1. Therefore,
γD1 = 1, meaning it is totally insecure w.r.t. D1, and γD2 = 0 implying that it is perfectly secure w.r.t. D2.
Therefore, we can expect the stego capacity to be zero if D1 is employed since every embedded message bit
can be decoded perfectly by the steganalyst. However, we note that Shannon capacity of the stego channel
in Fig. 2 is 1 bit/symbol. This illustrates the fact that Shannon capacity may not be directly applicable to
steganography because, by definition, this capacity is the maximum rate for which arbitrary reliability can be
achieved. However, for steganography security is the main concern; reliability and security need not mean the
same thing.

Before giving a formal definition of stego capacity in the presence of steganalysis, we present another numerical
example. Consider an embedding algorithm that changes the mean value of a Gaussian(0,σ2) cover signal by
m > 0 to embed a message bit. Let the length of message symbols be N . Let the steganalysis detector employ
the minimum probability of error criterion. Then it is not difficult to show that,

α =
1
2
√
2

[
1− erf

(
−m

√
N

2σ

)]
(7)

β =
1
2
√
2

[
1− erf

(
m
√

N

2σ

)]
(8)

If we assume that m2 << σ2, i.e., the message-to-noise ratio is small (due to perceptual considerations, etc.)
and m

√
N

2σ << 1, then, in order to satisfy |β − α| ≤ γ, the embedder has to choose,

N ≤ 2πσ2γ2

m2
. (9)

We observe from this formula that the number of symbols that can be used for embedding and still satisfy the
γ-security constraint increases inversely as the message-to-noise-ratio. For other types of steganalysis detectors
this rate of increase may different. This means, the embedding capacity varies w.r.t. the steganalysis detector
and leads us to the following definition.



Definition 3. Let the number of message carrying symbols be N and let α
(N)
D and β

(N)
D be the corresponding

false alarm and detection probabilities for a steganalysis detector D. Then, define the stego capacity as,

N∗
γ = {maxN s.t. |β(N)

D − α
(N)
D | ≤ γD} symbols. (10)

4. CONCLUSIONS

We revisit the definitions of stego security and capacity. New definitions for both these quantities are presented
from a steganalysis perspective. Arguments are presented to illustrate why some of the current definitions found
in the literature may be inadequate. The proposed notions of security and capacity are explained using some
numerical examples. Clearly, several questions are now open in this direction of research that we hope to address
in the future.
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