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April 15, 2009

1Division of Scientific Computing, Department of Information Technology

Uppsala University, P. O. Box 337, SE-75105 Uppsala, Sweden

emails: ferm, andreas.hellander, perl@it.uu.se

Abstract

We propose an adaptive hybrid method suitable for stochastic simula-
tion of diffusion dominated reaction-diffusion processes. For such systems,
simulation of the diffusion requires the predominant part of the computing
time. In order to reduce the computational work, the diffusion in parts
of the domain is treated macroscopically, in other parts with the tau-leap
method and in the remaining parts with Gillespie’s stochastic simulation al-
gorithm (SSA) as implemented in the next subvolume method (NSM). The
chemical reactions are handled by SSA everywhere in the computational
domain. A trajectory of the process is advanced in time by an operator
splitting technique and the time steps are chosen adaptively. The spatial
adaptation is based on estimates of the errors in the tau-leap method and
the macroscopic diffusion. The accuracy and efficiency of the method are
demonstrated in examples from molecular biology where the domain is
discretized by unstructured meshes.

Keywords: master equation, chemical reactions, diffusion, hybrid method,
adaptivity, URDME.

AMS subject classification: 65C40, 65C05, 60H35.
PACS subject classification: 02.50.Ga, 02.50.Ey, 02.70.Uu, 83.10.Rs,
87.10.Rt.�Financial support has been obtained from the Swedish Foundation for Strategic Research

and the Swedish National Graduate School in Mathematics and Computing. Corresponding
author: Per Lötstedt, address as above, telephone +46-18-4712972, fax +46-18-523049.

1



1 Introduction

The number of molecules of each species in a biological cell is often small and a
mesoscopic, stochastic model for the chemical reactions is necessary to explain
experimental data (4; 34). The macroscopic, deterministic equation for the con-
centrations of the chemical species is the reaction rate equation (RRE). This is
an accurate model when the copy numbers are large but this is often not the case
e.g. in the nucleus of a cell. Many computational methods have been developed
in the last decade for the well stirred mesoscopic, stochastic problem when the
distribution of the species in space is ignored. Recently, methods for the space
dependent case have appeared.

Continuous time discrete space Markov processes are well established as a
mathematical framework to analyze the behavior of biochemical reaction net-
works in systems biology. Most models assume that the system is well stirred and
that the model can be analyzed by solving the chemical master equation (CME)
for the probability density function (PDF) or, if the dimension of the model is too
high, by simulation of the process with e.g. the stochastic simulation algorithm
(SSA) (22). However, there are scenarios where diffusive transport needs to be
included in the model (14; 19; 35). If the spatial distribution of molecules is im-
portant, diffusion can be accounted for by discretizing the domain and allowing
species to jump between adjacent computational cells (or subvolumes, compart-
ments, voxels) (20; 30). Chemical reactions occur between the molecules in each
subvolume as in the well stirred case and in this setting the PDF is the solution
of the reaction-diffusion master equation (RDME). Also in this case the system
can be simulated by a stochastic method (6; 15; 16; 19; 27; 33; 42). Based on the
next reaction method (NRM) (21), the next subvolume method (NSM) (15) is an
efficient algorithm for simulation of reaction-diffusion processes and it has been
implemented for Cartesian meshes in (25) and for general, unstructured meshes
in (12). Methods for stochastic reaction-diffusion models are compared in (3; 13).

One challenging problem when simulating stochastic models in the well stirred
case is stiffness. If a few of the reactions are very fast this leads to very small
time steps in the algorithm and frequent sampling of the fast reaction channels.
Often, this is caused by some of the species being present in a much higher copy
number than the others for which the stochastic fluctuations are less important.
Due to this, it may be difficult to simulate the system on the time scale of the
slower, often more interesting dynamics. This has led to the development of many
approximate, hybrid and multiscale methods, for reviews see (7; 18). For systems
governed by the RDME, the situation can be even worse. High copy number
species, possibly diffusing faster than some of the less abundant species, may
render the system very stiff. Almost all events generated by the algorithm will be
diffusion events occurring on a short time scale. This problem will inevitably arise
if models become more detailed and explicitly include e.g. second messengers or
small metabolites. If high concentrations are localized to some region in space and
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time, which may be the case in models of e.g. transient release of intracellular
calcium pools or a step increase in second messenger concentration due to a
transient stimulus, any method dealing with the stiffness needs to be adaptive in
space and time.

The most popular approximate method in the well stirred case is the tau-leap
method (23) and it has also been used for diffusion (38). It approximates the
number of events taking place in a time interval by a Poissonian random variable,
and thus several events may be ”leaped over” in one time step. In this paper,
we develop an adaptive, multilevel algorithm to deal with the inefficiency caused
by the diffusion of species present in large numbers in the subvolumes. Our
algorithm adaptively chooses between the mesoscopic NSM, the explicit tau-leap
method, and a macroscopic treatment for the diffusion. This is done by using an
operator splitting scheme (41) so that we in each timestep can evolve the RDME
using a different method in different regions in space. Provided that the copy
number is high enough, the tau-leap method is more efficient than SSA and the
cost of integration of the macroscopic diffusion equation is negligible compared to
the two stochastic methods. The selection of the method to update the degrees
of freedom (dofs) in every timestep is based on error estimates for the expected
values when diffusion is advanced with tau-leaping (37) or macroscopically and
on the risk of a dof becoming negative in a time step. The same technique is
applicable to both structured Cartesian meshes and unstructured meshes. The
approach can reduce the simulation time considerably with full control of the
local errors in the approximations.

The contents of the paper are as follows. The modeling framework and the
RDME are presented in Section 2. The adaptive method is proposed and analyzed
in Section 3. The space operator is split according to Strang (41) in Section 3.1
and then the space and time adaptive algorithm is described in Sections 3.2 – 3.4.
The computational work is estimated in Section 3.5. The method is first applied
to diffusion of one species in two dimensions (2D) in Section 4.1 to illustrate
the behavior of the algorithm. Then in Section 4.2 a more realistic model with
a domain modeling a yeast cell in three dimensions (3D) is simulated on an
unstructured mesh in three scenarios using an extension of the URDME software
(12) resulting in considerable savings in computing time.

2 Reaction-Diffusion Master Equation

Let the computational domain Ω in space be covered by non-overlapping compu-
tational cells or subvolumes Cj; j = 1; : : : ; K: The chemical system has N active
species Xij; i = 1; : : : ; N , in the K cells, j = 1; : : : ; K. The non-negative integerxij is the copy number of species i in cell j. The state of the system is the array x

with N �K components xij. The jth column of x holds the number of molecules
of the species in cell j and is denoted by x�j. The copy numbers of species i in all
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cells are found in the ith row of x and is denoted by xi�. The state of the system
is changed instantaneously by a chemical reaction or by a molecule diffusing from
one cell to an adjacent cell. The probability of the system to be in state x at
time t is given by the PDF p(x; t).

A chemical reaction r in Cj is a transition from one state x�j before the reaction
to the state x�j+�r after the reaction. The probability per unit time or propensity
that reaction r will occur in Cj is ar and depends on x�j. Usually, ar is a low
order polynomial or a rational polynomial. The vector �r of a reaction is the
state-change vector. It consists of small integer numbers and is independent ofj. A chemical reaction in cell j can be written

x�j ar(x�j)����! x�j + �r: (2.1)

An example of a bimolecular reaction in Ck isXik + Xjk a1(x�k)����! Xlk: (2.2)

In this case, a1(x�k) = 
1kxikxjk according to the law of mass action and the
state-change vector is �1i = �1j = �1; �1k = 1. Split �r into two parts�r = �+r + ��r ; �+ri = max(�ri; 0); ��ri = min(�ri; 0);
and let y � 0 denote that yi � 0 for every i. The master equation for the PDFp in a system without diffusion and R reactions is�p(x; t)�t = Mp(x; t) �KXj=1

RXr=1
x�j��+r �0

ar(x�j � �r)p(x�1; : : : ;x�j � �r; : : : ;x�K; t)� KXj=1

RXr=1
x�j+��r �0

ar(x�j)p(x; t): (2.3)

With one cell in (2.3), K = 1, we have the chemical master equation (CME) for
a well stirred system, see (20, Ch. 7), (30, Ch. V).

Diffusion for a species is modeled as a special kind of reaction with first-order
kineticsXik bkj�! Xij: (2.4)

One molecule of species i in Ck moves to adjacent Cj with propensity bkj and
state-change vector �kj given bybkj = qkjxik; k 6= j; �kj;j = 1; �kj;k = �1; �kj;i = 0; i 6= j; k;bjj = 0; qjj = 0: (2.5)
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The constant qkj depends on the intensity of the diffusion 
 and the geometry
and the size of the cells Ck and Cj. In order to simplify notation we assume here
that the diffusion constant 
 is the same for all species, but this will not be the
case later in the numerical experiments.

In a system without chemical reactions and only diffusion, the master equation
can be written in the same manner as the CME in (2.3), see (20, Ch. 8), (30,
Ch. XIV),�p(x; t)�t = Dp(x; t) �NXi=1

KXk=1

KXj=1

bkj(xi� � �kj)p(x1�; : : : ;xi� � �kj; : : : ;xN �; t)�bkj(xi�)p(x; t): (2.6)

Summation over the cells is restricted by constraints on x in the same way as in
(2.3). Diffusion between Ck and Cj is possible only when they have a point (1D),
an edge (2D) or a facet (3D) in common. Hence, most qkj and terms in (2.6) are
zero.

The RDME for a chemical system with both reactions and diffusion is derived
from (2.3) and (2.6) by adding them together�p(x; t)�t = Mp(x; t) +Dp(x; t): (2.7)

For the mesocopic model to be valid, there is a lower bound on the size h of
the cells due to the reaction radius �R of the molecules. A discussion of these
matters is found in (5; 15; 17; 26).

The biochemical models in this paper are assumed to be such that the state
space is finite, i.e. there is a xmax > 0 such that if xij � xmax; i = 1; : : : ; N; j =
1; : : : ; K; then p(x; t) = 0. This restriction can be motivated for physical and
biological reasons.

Let jCjj be the length (1D), area (2D), or volume (3D) of cell j. The concen-
tration of species i in cell j is jCjj�1xij. The expected value of the concentration�ij(t) is defined by�ij = x̄ij(t)=jCjj =

X
x�0

jCjj�1xij(t)p(x; t): (2.8)

The macroscopic equation satisfied by �ij in a system without diffusion is the
RRE. The corresponding equation for a reactive and diffusive system derived in
(16) from (2.3), (2.6), and (2.7) is the reaction-diffusion equationd�Ti�dt = !i(�) + 
D�Ti� (2.9)
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for each i. Without diffusion, 
 = 0, we have the RRE. The off-diagonal elements
of the diffusion matrix are the same for each species 
Djk = qkjjCkj=jCjj � 0; j 6=k, and the diagonal elements are 
Djj = �Pk 6=j qjk < 0. The coefficients qkj are
inferred from a discretization of the Laplace operator ∆ with Neumann boundary
conditions. A finite difference approximation is the simplest choice on a Cartesian
mesh and a finite element (FE) approximation is the preferred method on an
unstructured mesh as in (16).

If the mesh is a Cartesian lattice with a constant mesh size h and ∆ is ap-
proximated by the standard 3-point, 5-point, or 7-point stencil in 1D, 2D, or 3D,
respectively, then for all cells jCjj = hd where d is the dimension and qkj = 
=h2.
With a FE discretization using standard piecewise linear test and basis functions
and mass lumping on a triangulated, unstructured mesh, D = A�1S, where S
is symmetric and negative semi-definite and A is a diagonal matrix with the di-
agonal elements Ajj = jCjj (16). Let Q be defined by Qjk = qkj for k 6= j andQjj = �Pk qjk. ThenQ = 
ADA�1 = 
SA�1 = 
DT ; (2.10)

and
Pj Qjk = 0.

k

j
j k

Figure 2.1: Vertices (o), edges (solid lines), and the subvolume boundaries (dashed
lines) in an unstructured mesh (left) and a Cartesian structured mesh (right).

The vertices or nodes (or subvolume centers) are connected by the edges in
a graph in Figure 2.1. The diffusion takes place along the edges in both the
unstructured and the structured mesh.

Let the number of particles in a subvolume be scaled by Ω. If the system is
well-stirred, then K = 1 and an interpretation is that the volume of the system
grows as Ω grows. It is proved in (31) that under certain usually satisfied as-
sumptions on the propensities ar, the random vector XΩ representing the state
of the well stirred system converges to the solution of the RRE in probability in
an interval [0; t] as Ω increases i.e.

lim
Ω!1P �sups�t kΩ�1XΩ(s)� ��1(s)k > Æ� = 0 (2.11)

for any Æ > 0. The linear propensities of the diffusion satisfy the conditions
in (31). The state vector of a diffusive system is always finite (but large) since
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there is a lower bound on the mesh size h. Let the copy number xij be scaled
by an increasing number Ω in every cell. The random state array XΩ now hasNK components. It follows from (31) that Ω�1XΩ with PDF solving the RDME
(2.7) converges to the concentrations � solving (2.9) as Ω ! 1 in the same
way as in (2.11). The convergence rate is as expected of O �Ω�1=2

�
in numerical

experiments in (16) and in Section 4.1.

3 Method of solution

The algorithm for realization of one trajectory of the diffusive chemical system
governed by the RDME (2.7) is a hybrid method blending SSA, tau-leaping and a
macroscopic approximation with an automatic choice between the different levels
of modeling for systems with many more diffusion events than reaction events.
The advantage is reduced computing time and control of the errors introduced
in the simulation of the diffusion by the tau-leap method and the macro level
approximation.

3.1 Operator splitting

Consider the RDME (2.7) and split the right hand side into three parts�p(x; t)�t = Ap(x; t) + Bp(x; t) + Cp(x; t): (3.1)

In Strang splitting (41), the solution of (3.1) without C is approximated in an
interval [t; t + ∆t] by first integrating �tp = Ap between t and t + ∆t=2, then�tp = Bp in [t; t + ∆t], and finally �tp = Ap in [t; t + ∆t=2] with the previous
output p as input to the next step. The local error in each step is of O (∆t3) with
the bounded operators in (2.7) making the approximation second order accurate
globally. With this technique applied recursively to (3.1), the approximation isp(x; t + ∆t) = e∆t(A+B+C)p(x; t)

= e 1

2
∆tAe 1

2
∆tBe∆tCe 1

2
∆tBe 1

2
∆tAp(x; t) +O (∆t3) : (3.2)

Let X(t) be a realization with SSA of the process with the PDF in (3.1) and
let XS(t) be the realization with the PDF given by the approximation (3.2) in
[t; t + ∆t]. The split process can be considered as one where each one of A;B;
and C is active in one third of the time interval and silent in the remaining two
thirds. The stages to generate one trajectory XS using SSA are

Algorithm 3.1 1. Advance XS1 ∆t=2 in time with the process defined by A
starting with XS(t).

2. Advance XS2 ∆t=2 in time with the process defined by B starting with
XS1(t + ∆t=2).
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3. Advance XS3 ∆t in time with the process defined by C starting with XS2(t+
∆t=2).

4. Advance XS4 ∆t=2 in time with the process defined by B starting with
XS3(t + ∆t).

5. Advance XS5 ∆t=2 in time with the process defined by A starting with
XS4(t + ∆t=2).

6. Let XS(t + ∆t) = XS5(t + ∆t=2)

The PDF corresponding to XS(t) is pS(x; t) satisfyingpS(x; t + ∆t) = e 1

2
∆tAe 1

2
∆tBe∆tCe 1

2
∆tBe 1

2
∆tApS(x; t): (3.3)

Compared to a direct splittingp(x; t + ∆t) = e∆tAe∆tBe∆tCp(x; t) +O (∆t2) ; (3.4)

higher accuracy is achieved with (3.2) requiring little extra work.
The following weak convergence result, valid e.g. for the moments, is easily

proved:

Proposition 3.2 Let g be a bounded function, let X(t) be the realization of the
process defined by the stable integration of p(x; t) in (3.1), and let XS(t) be defined
by pS(x; t) in (3.3) with X(0) = XS(0) and p(x; 0) = pS(x; 0). ThenE[g(XS(tn))� g(X(tn))] = O �∆t2� ; tn = n∆t:
Proof. The difference between the PDFs is p(x; tn) � pS(x; tn) = O (∆t2) by
standard theory for numerical solution of ordinary differential equations (24).
Hence, by definitionE[g(X(tn))� g(XS(tn))] =

X
x

g(x)(p(x; tn)� pS(x; tn)) = O �∆t2� ;
since the state space is finite by the assumption in Section 2. �

In our adaptive algorithm, the master operator in (2.7) is split into three partsA = Dm; B = D� ; C = M+DSSA; (3.5)

where D = Dm + D� + DSSA: In a trajectory XS, the diffusion in steps 1 and
5 of Algorithm 3.1 is approximated macroscopically (corresponding to Dm). In
Section 4.1 the diffusion in steps 2 and 4 is approximated by the tau-leap method
(D� ), and the diffusion and the chemical reactions in step 3 are simulated by
SSA. In Section 4.2 we use the splitting A = Dm;B = M + DSSA; C = D� and
NSM is used for step 2 and 4 for higher efficiency. The error in the moments
of XS due to the time splitting is of O (∆t2) according to the proposition but
additional errors are introduced by the macro level and tau-leap diffusion. We
will show below that those errors are of O (∆t) and consequently we can ignore
the splitting error for small ∆t.
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3.2 Space adaptivity

The reactions and the diffusion of the species are treated in three different ways:

1. SSA for the reactions and diffusion for a small copy number of the species
in each subvolume

2. tau-leaping for intermediate copy numbers

3. deterministic, macroscopic diffusion for large copy numbers

The method of diffusing the molecules is different in different parts of the do-
main and for different species and varies in time. The method is determined by
estimates of the errors in tau-leaping and macroscopic diffusion.

3.2.1 SSA

The direct method by Gillespie (22) is applied to all reactions and to diffusion
between certain vertices. Let E iSSA be the set of pairs of vertices (or subvolumes)
(j; k) between which diffusion of species i is treated with SSA and let t0 = tn and` = 0. Sum all reaction propensities ar and the propensities bjk; (j; k) 2 E iSSA,
at t` to obtain�` =

KXj=1

RXr=1

ar(x�̀j) +
NXi=1

X
(j;k)2EiSSA bjk(xì�): (3.6)

The next event will occur after time Æt` which is exponentially distributed with
parameter 1=�`. Update the time t`+1 = t` + Æt`. If t`+1 < tn+1, then choose
either a reaction event r with probability ar(x�j)=�` or a diffusion event with
probablity bjk=�`, update the state vector at t`+1, ` := ` + 1, and continue with
a new SSA step. If t`+1 � tn+1 = tn + ∆tn, then interrupt the SSA iteration and
let the present state vector be the state vector at tn+1. SSA is used for the exact
stochastic step in Section 4.1. The NSM algorithm in (15) is an efficient imple-
mentation of SSA for reactions-diffusion processes and is used as implemented in
URDME (12) in the experiments in Section 4.2.

3.2.2 �-leaping

The diffusion of species i from subvolume k to subvolume j in the interval [tn; tn+1]
of length ∆tn is approximated by the tau-leap method (23) in the following way.
Let E i� be the set of pairs of vertices (k; j) with tau-leap approximation of the
diffusion between them for species i. The number of molecules unkj of species i
moving from k to j at tn with (k; j) 2 E i� is Poisson distributed with parameterqkjxnik∆tn and PDF P(qkjxnik∆tn). The total number of molecules moving from
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adjacent cells to j is vn+j =
Pk unkj and the number of molecules moving away

from j is vn�j =
Pk unjk in the interval. Thus, the total change in cell j is

∆vnj = vn+j � vn�j: (3.7)

Since each unkj is P(qkjxnik∆tn), the sums vn+j and vn�j are Poisson distributed with
parameters �+j and ��j , respectively, where�+j =

Xk;k 6=j qkjxnik∆tn = ∆tn Xk;k 6=jQjkxnik;��j =
Xk;k 6=j qjkxnij∆tn = �∆tnQjjxnij; (3.8)

with the definition of Q from (2.10). The summation is over k such that (k; j) 2E i� . The difference ∆vnj between two Poisson distributed random numbers is
Skellam distributed (39). The probability for ∆vnj = � isP (∆vnj = �) = pS� = exp(�(�+j + ��j ))

 �+j��j !�=2 I� �2
q�+j ��j � (3.9)

using the modified Bessel function I�. The Skellam distribution of ∆vnj is well
approximated by the normal distribution N (�j; �2j ) in particular for large �+j and��j , see (28; 40), with�j = �+j � ��j = ∆tnXk Qjkxnik;�2j = �+j + ��j = ∆tn(

Xk;k 6=jQjkxnik �Qjjxnij) = ∆tnXk jQjjkxnik; (3.10)

where jQjjk = Qjk when j 6= k and jQjjj = �Qjj and consequently jQjjk � 0.
The variance �2j in (3.10) is positive if xnik 6= 0 at least for some k and it is a local
weighted summation of xnik with the largest weight on xnij.

The new number of molecules in cell j at tn+1 isxn+1ij = xnij + ∆vnj (3.11)

after updating by ∆vnj in (3.7). There is a risk that xn+1ij < 0 which is unaccept-
able for physical reasons. A number of remedies have been suggested to avoid this
predicament in the tau-leap method (2; 8; 11; 36; 43). Approximation of ∆vnj by
a binomial distribution also guarantees non-negativity in (11; 43). The numbersunjk are reduced successively in (37) to avoid negative states and in (8) the reac-
tions are simulated by SSA if the propensity times the timestep is larger than a
given parameter. Our solution to this problem is as follows for the diffusion. The
probability of obtaining a negative number of molecules is from (3.9)P (xn+1ij � �1) = P (∆vnj � �1 � xnij) =

�1�xnijX�=�1 pS�: (3.12)
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There is no known simple closed form of the cumulative distribution function of
the Skellam distribution and the probability P in (3.12) is expensive to evaluate
as a sum of the PDFs. However, the approximation with the normal distribution
with mean �j and variation �2j from (3.10) yieldsP (xn+1ij � �1) � 1p

2��j Z �1�xnij�1 exp(�(x� �j)2=(2�2j )) dx: (3.13)

By taking a smaller timestep, the risk in (3.12) decreases but with the same
∆tn for all diffusion events the generation of the trajectory becomes less efficient.

In our algorithm, we will accept the tau-leaping in a vertex if the estimated
probability P for failure in (3.12) is sufficiently small P < �1 for some �1 > 0.
Otherwise, diffusion in the subvolume is simulated by SSA in the time interval.
If there still is a negative xn+1ij after these precautions, then the non-negativity is
enforced in the same way as in (37).

3.2.3 Macroscopic diffusion

It is shown in (16) that the mean values x̄i� of the copy numbers of species i in
the subvolumes exactly satisfy the equationdx̄Ti�dt = Qx̄Ti� (3.14)

in a system with only diffusion. By the properties of Q in (2.10), x̄Ti� is bounded
for all time. Furthermore, the variance is bounded by Ckx̄i�k and the random
variation about the mean value is � pkx̄i�k (16). Thus, the quotient between

the standard deviations and the mean values is � 1=pkx̄i�k and for large copy
numbers, the effect of diffusion is well approximated by (3.14). We will derive
the same approximation from the tau-leaping in the previous section but now
including a local error estimate.

When the parameter �nkj = qkjxnik∆tn is large in the Poisson distribution for
the number of molecules unkj diffusing from k to j, the distribution of unkj is close
to the normal distribution N (�nkj; �nkj) (see e.g. (23; 32)). Then we can writeunkj = �nkj + �nkj;
where �nkj is N (0; �nkj). Therefore, the total outflow and inflow of molecules to
cell j is

∆xnij =
Xk;k 6=j unkj � Xk;k 6=j unjk = ∆tn(

Xk;k 6=j qkjxnik � Xk;k 6=j qjkxnij) + Ξnj
= ∆tn(Q(xni�)T )j + Ξnj ;

Ξnj � Xk;k 6=j �nkj � Xk;k 6=j �njk:
11



The mean value of Ξnj is 0 and we inferx̄n+1ij � E[xn+1ij ] = E[xnij + ∆xnij ]
= x̄nij + ∆tnE[(Q(xni�)T )j] + E[Ξnj ] = x̄nij + ∆tn(Q(x̄ni�)T )j: (3.15)

This is the time discretization of (3.14) with the Euler forward method (24). The
variance of Ξnj is �2j in (3.10). Since ∆xìj; ` = 0; : : : ; n� 1; are independent andx0ij is given, the variance of xnij is

Var[xnij] = Var[

n�1X̀
=0

∆xìj] =

n�1X̀
=0

Var[∆xìj] =

n�1X̀
=0

Var[Ξj̀] =

n�1X̀
=0

∆t`(jQj(xì�)T )j :
(3.16)

The random error in the macroscopic approximation of the diffusion in (3.14)
and (3.15) is estimated in the next proposition.

Proposition 3.3 Assume thatq
(jQj(xì�)T )j=x̄ìj � �2; ` = 0; : : : ; n� 1; (3.17)

for some small �2 > 0. Then the deviation Ænij of xnij from x̄nij satisfies with
probability 0.95Ænijx̄nij 2 ��1:96

�2�nijx̄nij ; 1:96
�2�nijx̄nij �;

where�nij =

vuutn�1X̀
=0

∆t`(x̄ìj)2:
Proof. Replace (jQj(xni�)T )j in (3.16) by the upper bound in the assumption and
the proposition follows from the properties of the normal distribution. �

An approximation of �nij is�nij �sZ tn
0

(x̄ij(t))2 dt =
ptnq(x̄ij)2; (x̄ij)2 � (tn)�1

Z tn
0

(x̄ij(t))2 dt:
Consequently, (�2�nij)=x̄nij � �2

ptn. The quotient in the assumption in the propo-
sition is small when x̄nij is large since the nominator is � px̄nij. As an example
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consider a uniform Cartesian mesh in 2D with step size h with the standrad
5-point stencil approximating the Laplacian in Section 2. Then

(jQj(xni�)T )j = h�2
(xni;j�1 + xni;j+1 + xni�1;j + xni+1;j + 4xnij);
and with a smooth behavior of xnij in the neighborhood of j, the condition (3.17)
is 2

p
2
=(hpxnij) . �2

A simple macroscopic diffusion is sufficient for good accuracy if the conditions
in Proposition 3.3 are satisfied. The pairs of vertices (k; j) where the deterministic
diffusion is satisfactory for species i are collected in the set E im. The great advan-
tage is that the computational cost of diffusion at the macro level is negligible
compared to updating the copy numbers with the tau-leap method or SSA.

3.3 Time step selection

The timesteps are selected such that a tolerance �3 is satisfied by the relative
local discretization error in every step. The expected error in the tau-leap stage
of the Strang splitting in Algorithm 3.1 is derived from the expression for general
reactions in (37). Another way of determining the timesteps for tau-leaping is
proposed in (9). The local error in the macroscopic approximation in the Dm
stage in Algorithm 3.1 depends on the method to integrate (3.14) and follows
from standard error estimates in (24). Advancing the chemical reactions and
some diffusion events in time with SSA introduces no additional errors.

The local error of tau leaping for a system with a master equation (2.3) andR reactions is derived in (37). Let X� (t) denote the tau leap trajectory and
compare it with the SSA trajectory X(t). If X� (t) = X(t) = x thenE[X� (t + ∆t)�X(t + ∆t)] =�0:5∆t2 RXr1=1

RXr2=1

�r1
ar2

(x) (ar1
(x + �r2

)� ar1
(x)) +O �∆t3�: (3.18)

With r1 ! (jk); r2 ! (lm); ar1
(x) = qjkxij; ar2

(x) = qlmxil;�r1
= �jk; �r2

= �lm; �lm;m = 1; �lm;l = �1; �lm;i = 0; i 6= l or m;
from the definition of mesoscopic diffusion in (2.5), the sum on the right hand
side in (3.18) isXjk Xlm �jkqlmxilqjk�lm;j =

Xjk �jkqjkXlm qlmxil�lm;j =Xjk �jkqjk Xl qljxil�lj;j �Xm qjmxij�jm;j! =
Xjk �jkqjk Xl qljxil � xijXm qjm!:

13



(3.19)

Introduce the diffusion in cell jdj =
Xl qljxil � xijXm qjm = (QxTi� )j :

Then the expected local error for diffusion tau-leaping in cell k is obtained from
(3.18), (3.19), and the above definitionE[X� (t + ∆t)�X(t + ∆t)]l = �0:5∆t2Xjk �jk;lqjkdj +O �∆t3�

= �0:5∆t2(Qd)l +O �∆t3� = �0:5∆t2(Q2xTi� )l +O �∆t3�: (3.20)

The conclusion from our derivations is

Proposition 3.4 The expected value of the difference after one timestep ∆t be-
tween the tau-leap trajectory X� and the SSA trajectory X starting at X� (t) =
X(t) isE[X� (t + ∆t)�X(t + ∆t)] = �0:5∆t2Q2xTi� +O �∆t3� :

Assume that the integration is numerically stable with ∆t. Then it is proved
for linear propensities in (37) that globally at tn, the difference will be of O (∆t),
one order lower than the error due to the operator splitting in Section 3.1.

The system of differential equations for the mean values (3.14) is solved either
by the Euler forward or the Euler backward method. The new x at tn+1 is
compared to the analytical solution x(tn+1) with the same initial data xn = x(tn).
In the Euler methods, we have

(xn+1i� )T = (xni�)T + ∆tQ(x�i�)T ;
(xn+1i� )T � xi�(tn+1)T = s0:5∆t2Q2(xi�(tn))T +O (∆t3) ; (3.21)

with � = n and s = �1 for the forward method (cf. (3.15)) and � = n + 1 ands = 1 for the backward method. The backward method has no restrictions on
∆t for stability for our Q and it is proved in (16) that the non-negativity x is
preserved for any positive timestep. For a sufficiently small timestep, x remains
non-negative also with the forward method. Globally, both Euler methods are
first order accurate.

The modulus of the leading term in the local errors is the same for the tau leap
method and the two Euler twins in Proposition 3.4 and (3.21). The timestep ∆tn
is chosen here such that the estimated relative local error is less than a prescribed
relative tolerance �3 at every vertex where the diffusion is simulated with tau-
leaping or at the macro level. Then

∆tn � �mini 2�3

max` j(Q2(xni�)T )`=xni`j�1=2: (3.22)
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3.4 Algorithm

A realization of the process governed by (2.7) is initialized by generating Q in
(2.10) including all vertices in the mesh. Determine the error tolerances �2 and�3 in (3.17) and (3.22).

The timestep ∆tn in the Strang splitting, tau-leaping and macroscopic dif-
fusion is chosen to satisfy (3.22) based on the solution xn. Then a vertex j is
classified for species i as either being a macro vertex, j 2 V im, a tau vertex, j 2 V i� ,
or a SSA vertex, j 2 V iSSA, with V im [V i� [V iSSA = V. A macro vertex fulfills the
inequality in (3.17) at tn. If the probability to obtain a negative copy number at
a vertex in V n V im exceeds �1 in (3.13), i.e. ifxnij + �j � �(�1)�j < �1; (3.23)

then j is a SSA vertex for species i. With �1 = 0:01, � = 2:33, and with �1 = 0:025,� = 1:96. The remaining vertices are classified as tau vertices in V i� .
The diffusion between a pair of vertices (j; k) is performed with the macro-

scopic approximation, tau-leaping or SSA depending on the classification of j andk. If both j and k belong to V im then the diffusion is macroscopic in both direc-
tions on the edge, (j; k); (k; j) 2 E im. The diffusion matrix Qm is the submatrix
of Q where rows and columns corresponding to vertices in V im are included. The
diagonal element in Qm is adjusted so that

Pj Qm;jk = 0 for all k. The submatrixQm has the same properties as the full matrix Q in (2.10) and the condition at
the boundary of the subgraph consisting of vertices in V im is a discretization of
a Neumann condition. If V im = V and the diffusion is deterministic everywhere,
then Qm = Q and the solution is given by a discretization of the Laplace operator
on the whole mesh, see Section 2.

The total number of molecules in the macro vertices is preserved with the
Euler methods. Let e be the vector with all elements equal to 1 and let x̃ij
denote the components of xi� with j 2 V im. Then by (3.21) we have

eT (x̃n+1i� )T = eT (x̃ni�)T + ∆tneTQm(x̃�i�)T = eT (x̃ni�)T ; � = n or n + 1;
and the total number of molecules of species i, eT (x̃ni�)T , is constant.

The diffusion between two vertices j and k is updated by tau-leaping, if j 2 V i� ,
there is an edge between j and k, and k 2 V i� [ V im. After summation over all
permissible k, the new state at j is then given by (3.7) and (3.11). SSA is used
for simulation of the diffusion between the remaining pairs of vertices (j; k) withj 2 V iSSA and k 2 V. Both tau-leaping and SSA keep the total number of
molecules constant.

Real numbers are not permitted in the tau leap algorithm and SSA. There-
fore, the copy numbers updated by macroscopic diffusion are rounded to nearest
integers. Let bxnij
 and dxnije be the integers such that bxnij
 � xnij � dxnije andbxnij
 + 1 = dxnije. Then xnij is rounded with probability p = xnij � bxnij
 to dxnije
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and with probability 1�p to bxnij
. Tau-leaping, SSA, and the Euler forward and
backward integrations conserve the total number of molecules. Hence, the mean
value of the total number of molecules is conserved by introducing rounding as
above. Since xnij is non-negative, our algorithm for the diffusion is stable in the
mean.

In conclusion, the algorithm for simulation of the chemical system in the time
interval [0; T ] is

Algorithm 3.5 1. Assemble Q, specify �2 and �3, let t0 = 0 and n = 0 and
initialize x0

2. Compute the timestep ∆tn at tn
3. Classify the vertices for each species i separately

(a) Decide if a vertex j is a macro vertex, if yes then j ! V im
(b) Decide if a vertex j is a SSA vertex, if yes then j ! V iSSA
(c) The tau vertices are in V i� = V n V im n V iSSA

4. Determine the approximation of the diffusion for all the pairs (j; k) of ver-
tices with an edge between them for each species i separately

(a) If j; k 2 V im, then use macroscopic diffusion for (j; k) and (k; j),
(j; k); (k; j) ! E im

(b) Compute Qm
(c) If j 2 V i� and k 2 V i� [ V im, then use the tau leap method for the

diffusion from k to j and from j to k, (j; k); (k; j) ! E i�
(d) If j 2 V iSSA and k 2 V, then use SSA for the diffusion from k to j and

from j to k, (j; k); (k; j) ! E iSSA
5. First step in Algorithm 3.1 with macroscopic diffusion for all species i and

(j; k) 2 E im, A = Dm, conversion of real numbers to integers

6. Second step in Algorithm 3.1 with tau-leap diffusion for all species i and
(j; k) 2 E i� , B = D�

7. Third step in Algorithm 3.1 with SSA for diffusion for all species i and
(j; k) 2 E iSSA and reactions, C = M+DSSA

8. Fourth step in Algorithm 3.1 with tau leap diffusion

9. Fifth step in Algorithm 3.1 with macroscopic diffusion

10. The trajectory is advanced to tn+1. If tn+1 � T , then STOP. Otherwise, letn := n + 1 and go to 2.
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3.5 Computational work

The computational work for reactions and approximation of the diffusion in one
timestep of length ∆tn can be estimated for SSA, tau leap, and the macro level
as follows assuming that the reaction events are few.

The expected value of the sum of L timesteps Æ` in one cycle of SSA in step
7 of Algorithm 3.5 is according to (3.6)E[

LX̀
=1

Æt`] =

LX̀
=1

1=�` � L=�1; �1 =

KXj=1

RXr=1

ar(xn�j) +

NXi=1

X
(j;k)2EiSSAQkjxnij:

Hence, the expected number of steps to reach ∆tn is L � ∆tn�1. The major
part of the computational work in every SSA-step is spent on determining which
reaction or diffusion event that occurs. Let jE iSSAj denote the number of elements
in E iSSA. Then this search is proportional to the sum of jE iSSAj and the number
of reaction channels KR. The total work with straightforward SSA in [tn; tn+1]
is thenWSSA � ∆tn
SSA�1(KR + jESSAj); ESSA = [Ni=1E iSSA; (3.24)

for some constant 
SSA.
With tau-leaping in [0;∆tn], a Poisson number is generated for each pair (j; k)

in E i� . Using Knuth’s algorithm the computational work for one random number
is 
�∆tnQkjxnij (1) at tn where 
� is a small constant. Then the total work isW� � ∆tn
� NXi=1

X
(j;k)2Ei� Qkjxnij: (3.25)

Faster methods for generation of Poisson numbers are found in (29). The gain in
computing time when moving one pair (j; k) for species i from being simulated
by SSA to the tau leap method is derived from (3.24) and (3.25)

∆WSSA!� � ∆tnQkjxnij(
SSA(KR + jESSAj)� 
� ): (3.26)

Since 
SSA(KR + jESSAj) � 
� very likely is positive, the savings in CPU time
are substantial, especially when xnij is large. This comparison is less favorable for
tau-leaping when SSA is replaced by NSM as we do in Section 4.

The work in the macroscopic diffusion is independent of the size of the ele-
ments of xni�. The computing time is proportional to the dimension of Qm. With
the Euler forward method the cost of evaluating Qm;kjxnij in (3.21) is denoted by
m which is a small constant. Then the work in the time interval isWm � NXi=1

X
(j;k)2Eim 
m = 
mjEmj; Em = [Ni=1E im: (3.27)
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The Euler backward method is implicit in (3.21) and a system of linear equations
has to be solved. The most efficient way of solving this system is a multigrid
method with a work proportional to jVmj log jVmj where jVmj is the number of
macroscopic vertices for all species. Essentially it has the form of (3.27) but with
a larger 
m. The marginal gain in transfering a pair of vertices (j; k) from E i� toE im is then

∆W�!m � ∆tn
�Qkjxnij � 
m: (3.28)

Clearly, ∆W�!m > 0 for a sufficiently large xnij.
4 Numerical results

In this section we test the adaptive diffusion approximation in a few different
cases. In the first example in Section 4.1, we illustrate the principles of the
method in a 2D model problem with a single diffusing species and the convergence
of the method is confirmed in a Matlab implementation. In Section 4.2 we apply
the algorithm to a more biologically relevant geometry in 3D: a model of a yeast
cell. The potential of our approach is shown in physiologically relevant scenarios.

4.1 Diffusion

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 4.1: The primal mesh (left) and the dual mesh (right).

The adaptive method in Algorithm 3.5 is applied to diffusion of one species
with the diffusion constant 
 = 0:001 on the unit square 0 � x; y � 1 in 2D.
The mesh is generated with the PDE toolbox in Matlab and has 103 vertices.
The vertices and the edges in the primal mesh and the subvolumes in the dual
mesh are displayed in Figure 4.1. With the parameter 
, the initial state for the
concentration � in the vertices is�(x; y) =

�
0:5
(1 + cos(�r)) if r =

px2 + y2 � 1;
0 otherwise: (4.1)
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The corresponding number of molecules xj in the subvolumes Cj; j = 1; : : : ; K, is
rounded to an integer as in Algorithm 3.5. The macroscopic diffusion is advanced
in time by the backward Euler method.
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t=0
t=50

Figure 4.2: The initial and final FE solution along the main diagonal.

The solution is simulated in the time interval 0 � t � 50. A FE solution is
computed with ∆t = 0:05 for comparison and it is denoted by �FE. The initial
and final FE solutions when 
 = 3000 are plotted in Figure 4.2 along the main
diagonal from the origin. The relative difference Æ between our solution � and
the FE solution is measured asÆ =

1

maxj �FEj sXj (�j � �FEj )2jCjj: (4.2)

The diffusion is partitioned individually in every trajectory into SSA, tau leap or
macroscopic simulation with the tolerances �1 = 0:01 and �2 = �3 = 0:03 defined
in Sections 3.2.2, 3.2.3, and 3.3.

log10 m Æ k� f�
1 10.5 39 0.00033
2 3.5 228 0.00020
3 0.90 2567 0.00022
4 0.27 24970 0.00022

Table 4.1: Simulations with m trajectories. Comparison with the FE solution (Æ defined
in (4.2)) and the number of sign errors in tau-leap (k� ) and the quotient between failures
and the total number of tau leap steps (f� ).

The average solution obtained after adaptive simulations of m trajectories is
compared to the FE solution in Table 4.1 at t = 50 with 
 = 3000 in the initial
state (4.1). When the number of trajectories is increased by a factor 10, the
difference is reduced by about 1=p10 as expected by the central limit theorem.
The total number of failures with negative copy numbers in the tau leap method
is k� and the fraction of failures at all timesteps at all tau leap vertices is f�
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in the table. The number of necessary corrections is low with �1 = 0:01. The
variation of the timestep in one trajectory is found to the left in Figure 4.3. The
percentage of tau-leap vertices and SSA vertices is shown in the right panel of
the same figure. The number of tau-leap vertices increases as the number of cells
with few molecules decreases, cf. Figure 4.2. There is no macroscopic diffusion
in this case.
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Figure 4.3: The variation of the timestep ∆t (left) and the percentage of SSA and tau
leap (TL) (right) for a single trajectory.
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Figure 4.4: Percentage of vertices in the time interval [0; 50] classified as SSA, tau leap
(TL) and macroscopic versus concentration (left). The difference Æ to the FE solution
at t = 50 with the same timestep (o) and adaptive timesteps (*) (right). The theoretical
convergence rate 1=p10 per decade in 
 is included for comparison (dashed).

When 
 in (4.1) is increased, we expect the concentrations in the trajectory
to approach the macroscopic solution; see the end of Section 2. We take 
 = 3 �
10m; m = 0; 1; : : : ; 9, and record the outcome for one trajectory. The percentage
of SSA, tau leaping, and macroscopic diffusion for the whole time interval for ten
-values is displayed to the left in Figure 4.4. As 
 increases, different methods
are predominant in the simulation. The convergence of � to �FE at t = 50 is
demonstrated to the right in the same figure in agreement with the discussion in
the end of Section 2 and (2.11). In one comparison, the same timestep sequence
is used for both our solution and the FE solution and the convergence is as
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expected. The reduction for increasing m is even faster than 1=p10 for large
 where the macroscopic approximation, which equivalent to FE, prevails. A
trajectory determined with the automatic timestep selection is also compared to
the FE solution with ∆t = 0:01. Then there is a remaining error due the time
discretization for m > 4. The computing time is almost independent of 
 withm between 1 and 7 but increases linearly when the number of molecules is high
(m = 8; 9). There are no failures in the tau leap method except for m = 2 when
there are 8 and m = 3 when there are 3.

The performance in the left panel of Figure 4.4 is explained by a simple 1D
model as follows. Let � 2 [0; 1] be the space coordinate and x(�) the number of
molecules in the interval with x(�) = 0:5
(1 + cos(��)) as in (4.1). Then � and� in (3.10) are� � ∆t
x00 = �0:5
∆t
�2 cos(��); � � h�1

p
4∆t
x = 2h�1

p
∆t

 cos(0:5��):

A somewhat stricter criterion for SSA simulation at � than in (3.23) is thatx+���(�1)� � 0:5
(1+(1�∆t
�2) cos(��))�2h�1�p∆t

 cos(0:5��) < 0: (4.3)

In our case, ∆t
�2 is small and can be ignored. Thus, (4.3) is satisfied when� > 2��1 arccos(2�p∆t
=(hp
)), i.e. the larger 
 is, the closer to 1 � is and the
fewer vertices are updated by SSA but there is always a � < 1 no matter how
large 
 is (cf. Figure 4.4 where SSA is active for all 
). On the other hand, if
 is sufficiently small, then (4.3) is fulfilled by any � in [0; 1] and SSA is applied
everywhere. The test for macroscopic diffusion in (3.17) in the j:th vertex at �j
is p

(jQjx)jxj � 2
p

 cos(0:5��j)h
 cos(0:5��j)2

=
2
p
hp
 cos(0:5��j) � �2: (4.4)

If 
 is so large that 
 � 4
=(h�2)2, then the condition in (4.4) is satisfied by� 2 [0; �max] with �max = 2��1 arccos(2
p
=(h�2

p
)) which grows with increasing
. Indeed, there is no macroscopic diffusion for 
 below about 3 �104 in Figure 4.4.

4.2 Reaction–diffusion systems in 3D

We will apply the adaptive algorithm to a biochemical reaction system in a 3D
geometry in this section. The benefits of our new scheme will be evident in
different modeling scenarios. There is one situation where the present algorithm
will be more expensive than a pure stochastic simulation of the full system. The
purpose with the following test cases is not to draw any biological conclusions,
but rather to show in which cases our approach will be useful and when it is
not. However, we will stay within the range of physiologically relevant values for
the geometry, the copy numbers of the species and the diffusion constants. The
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test cases we will consider could be parts of a larger, more detailed model of a
complicated biochemical pathway.

In this section we have used the URDME software (12), an efficient imple-
mentation of NSM (15) on unstructured meshes, and extended it with the hybrid
functionality. The macroscopic diffusion operator is integrated by the explicit Eu-
ler forward scheme. The order between NSM and tau-leaping is here interchanged
in Algorithm 3.5. The geometry, the mesh and the assembly of the stiffness and
mass matrices as well as postprocessing is handled by COMSOL Multiphysics

4.3. All computations in this section have been performed on a 2.0 GHz Mac-
Book Core Duo with 2GB RAM.

4.2.1 Model

The geometry is depicted to the left in Figure 4.5. It is a simple model made
up of three subdomains: a cube with side length 8 �m, a sphere with volume
62 � 10�15 l (fl) modeling a Saccharomyces cerevisiae cell placed in the center of
the cube and a second sphere with volume 4:1fl modeling the nucleus.

Figure 4.5: The geometry of the yeast cell model with the nucleus, the cell, and the
surrounding box (left). The variation of the subvolume size in the domain (right).

The mesh has a different maximal element size in the different subdomains.
It is denser inside the nucleus and in the cytoplasm than in the cell exterior with
the largest elements farthest away from the cell. The total number of vertices is
6889 giving a total of 82:6 �104 to 96:4 �104 degrees of freedoms (dofs) or variables
depending on the scenario below. The size of the subvolumes is shown in color
at an intersection through the center of the domain to the right in Figure 4.5.

To introduce a clear space dependence in the model, the reaction network
in our test case will consist of one cytosolic and one nuclear module. The two
modules are coupled by allowing two of the species of the cytosolic module to
enter the nucleus, where they can interact with the nuclear module.
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EA k1�! EA + A EB k1�! EB + B EA + B ka
kd EAB EB + A ka
kd EBAEAB + B ka
kd EAB2 EBA + A ka
kd EBA2 A k4�! ; B k4�! ;
Table 4.2: The chemical reactions of the bistable model. The constants take the valuesk1 = 150 s�1, ka = 1:2 � 108 s�1M�1, kd = 10 s�1 and k4 = 6 s�1.

The cytosolic module is a bistable system taken from (15), see Table 4.2. It
was used in (16) to demonstrate that we can recover the properties of the model
using unstructured meshes and in (12) as a benchmark problem. All species
except A and B are confined to the cytosol region between the two spheres.

The proteins diffuse with 
 = 1 �m2=s (large proteins), and the entry of A
and B into the nucleus is modeled as a diffusion event (equivalent to a first order
reaction) with 
 = 0:01 m2=s.A + X ka�! A + X� X� k5�! X A kdn��! ;B + Y ka�! B + Y � Y � k5�! Y B kdn��! ;
Table 4.3: The chemical reactions of the nuclear module. The parameter ka takes the
same value as in Table 4.2, k5 = 1 s�1 and kdn = 1 s�1.

The reactions of the nuclear module are found in Table 4.3. This is a simple
model composed of species X and Y which are activated by the proteins A andB, respectively.

The model described above is simulated in Scenario 1. In order to illustrate
the potential issue of stiffness in spatial models, two additional model scenarios
are considered where we include smaller, abundant molecules in the model. In
Scenario 2, they will both be confined to the cytoplasm in concentrations relevant
for e.g. GTP and cAMP, and in Scenario 3 one of them will initially be present
only outside the cell in a macroscopic concentration relevant to e.g. a metabolite
in the medium. In the first case, we will see that a pure stochastic simulation
is the most efficient, in the second case the hybrid method combines NSM and
tau-leap to make the simulation more efficient, and in the third case all three
methods will be used by the adaptive hybrid method giving a speed-up of more
than 3000 compared to NSM alone.

4.2.2 Scenario 1: Simulation of the cytosolic and nuclear module.

For reference, we simulate only the cytosolic and nuclear module to a final timet = 100 s using URDME and a pure stochastic simulation. Initially, 300 molecules
each of the enzymes EA and EB are spread randomly in the cytoplasm and 300
molecules of X and Y in the nucleus, all other species are zero.
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Figure 4.6: The distribution of A in the cytosol (left) and that of X� inside the nucleus
after 100 s (right). Blue corresponds to a low number and red to a high number.

The distribution of A molecules in the cytosol is depicted to the left in Fig-
ure 4.6 and to the right there is a close-up view of the nucleus and the distribu-
tion of X�. The CPU-time of this simulation was 81 s and the number of events
53:8 � 106 (of which 87 % were diffusion events), the total number of X� was 31
molecules and a stochastic description is obviously desirable.

We simulated the same system with the adaptive hybrid algorithm. In this
case, the system is not sufficiently stiff for the method to be competitive. Even
though tau-leap is selected in some subvolumes, the computational savings are
not enough to compensate for the overhead. The simulation took 1500 s, more
than ten times slower than the pure NSM simulation.

4.2.3 Scenario 2: Two small species inside the cell.

Often, small abundant species are not explicitly treated in the models. One
recent example with small molecules is a well stirred stochastic model of the
Ras/cAMP/PKA pathway with explicit modeling of ATP, GTP, GDP and cAMP
(10). These smaller molecules are, at least in some time intervals, present in many
copies and they are diffusing rapidly compared to less abundant, larger proteins.

In this scenario, two smaller species will both be confined to the cytoplasm,
and can be thought of as e.g. cAMP and GTP. At t = 0, we simulate a step
increase in the cytoplasm of the concentration of one of the species to 0:14 mM
(4:2 � 106 molecules) while the other has a concentration of 10 �M (3 � 105

molecules). These numbers correspond roughly to the copy numbers of GTP
and cAMP used in the model from (10). In this test scenario, neither of the
small species interact with the proteins in the cytosolic and nuclear module but
they diffuse with 
 = 250 m2=s making the model stiff. We could easily let them
react with e.g. A and B in a more detailed model but this is not necessary in
order to illustrate the computational difficulties their inclusion introduce.

Using a pure NSM simulation to reach t = 0:001 s, we need 181 s of CPU time
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and NSM has generated 83:2 �106 diffusion events and only 97 chemical reactions.
Next we simulate the system with our algorithm with a relative error tolerance�1 = �2 = �3 = 0:05 for the diffusion. The method automatically detects that the

small molecules are sufficiently many to be simulated with the tau-leap method in
most of the domain (about 10.4 % of the total degrees of freedom are tau-leaped)
and this makes the simulation 10 times faster than the pure SSA simulation. The
simulation from t = 0 to t = 0:001 s took 18.6 s of CPU time. A simulation to the
final time t = 100 s would still take about 3 weeks, but this is an improvement
compared to over 7 months using only NSM.

4.2.4 Scenario 3. A small species in high concentration in the cell

exterior.

In this final scenario, one of the small species inside the cell is removed and
instead it is present outside the cell in an initial concentration of 20 mM and
it can be thought of as e.g. a small metabolite in the medium. We let it enter
the cell by slow diffusion events over the plasma membrane (
 = 0:25 nm2=s).
In this case, it is impossible to simulate the system on a time scale relevant to
the dynamics in the nuclear and cytosolic module. It took 558 s with only NSM
using URDME to evolve the system to t = 1 � 10�5 s. Not a single reaction event
occurred in this time interval.

Figure 4.7: The partitioning chosen by the adaptive hybrid algorithm for the small
species is shown to the left at t = 0:01 s. Red color indicates a macroscopic diffusion,
green tau-leap and blue that the subvolume is simulated with NSM. To the right we
show the small species as it enters the cell at the plasma membrane.

The adaptive method detects that macroscopic diffusion can be used for the
small species in almost all subvolumes in the exterior of the cell. Since the work
for macroscopic diffusion is small, this saves a lot of computational time. Our
algorithm simulates the system to t = 0:01 s using 187 s of CPU time, about
3000 times faster than SSA alone. The simulation cost for the hybrid algorithm is
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about the same as in Scenario 2 above. Adding species in macroscopic concentra-
tion does not affect the CPU time while it makes a pure stochastic simulation of
the system nearly impossible. There is little point from a computational perspec-
tive not to include the species explicitly in the reactions if we already included
the small species inside the cell.

The left panel of Figure 4.7 shows the partitioning into SSA, tau-leap and
macroscopic degrees of freedom for the small, extracellular species. Near the
plasma membrane, the subvolumes become smaller, cf. Figure 4.5, and the hybrid
algorithm chooses tau-leap instead of the macroscopic solver. At the membrane,
the much smaller diffusion constant allows for a macroscopic treatment even
though the subvolumes are smaller there too. In most of the cytoplasm, tau-leap
is chosen since the concentration is not yet sufficiently large. Inside and near the
nucleus, NSM is the dominant method. The small species enters the cell through
the plasma membrane in the right panel of Figure 4.7.

5 Conclusions

An algorithm has been proposed and analyzed for chemical systems with a spa-
tial variation modeled by the reaction-diffusion master equation (RDME). The
assumption is that diffusion events outnumber reaction events in a realization
of the system and a special treatment of the diffusion is necessary. The RDME
operator is split into three parts and advanced in time by a Strang splitting pro-
cedure. The timesteps are chosen adaptively based on an estimated local error.
The molecular diffusion is simulated at the mesoscopic level by the stochastic
simulation algorithm (SSA) or tau-leaping and at the macroscopic level by the
diffusion equation. The algorithm switches automatically and dynamically be-
tween the different approximations with a control of the errors. All reactions
are handled by SSA. The method is applied to diffusion in 2D and a model of a
yeast cell in 3D with more than twelve species and realistic parameters in three
scenarios. With few molecules, SSA is the method of choice. The diffusion of
species with higher concentrations are simulated with with tau leaping and for
the largest concentrations, macroscopic diffusion is switched on. The CPU time
is reduced by a factor 3000 in one example allowing macroscopic diffusion instead
of diffusion by SSA making simulations in short intervals feasible on a desktop
computer.
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