
τέχνη: A First Step

Timothy Davis, Robert Geist, Sarah Matzko, James Westall
Department of Computer Science

Clemson University
Clemson, SC 29634-0974

{tadavis|rmg|smatzko|westall}@cs.clemson.edu

ABSTRACT
A new approach to the design of the computing curriculum for a
Bachelor of Arts degree is described. The approach relies exten-
sively on problem-based instruction and computer graphics. The
novelty arises from the magnitude and origin of the problems to be
integrated into the curriculum and the breadth of the impact across
the curriculum. Results from a trial course, the first experiment
with the new approach, are described. The course, Tools and Tech-
niques for Software Development, is a sophomore-level course in
programming methodology. Construction of a ray-tracing system
(for generating synthetic images) was the vehicle chosen for the
instruction.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education—Curriculum

General Terms
Design, Experimentation, Human Factors

Keywords
computer graphics, curriculum design, problem-based instruction,
ray-tracing,τέχνη

1. INTRODUCTION
The keyword in the title,τέχνη, is the Greek word forart. It

shares its root withτεχνoλoγία, the Greek word fortechnology. It
is unfortunate that this strong connection between the two, estab-
lished in the language of those who took a foundational role in both,
has been largely dismissed by the U.S. educational system. Today
undergraduate curricula in computing are laden with computing-
specific requirements that allow little time for exploration of disci-
plines outside science, let alone the connections between each of
those disciplines and computing.

In 1999, Clemson University established a (graduate) degree pro-
gram that bridges the arts and the sciences. The Master of Fine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE 2004Norfolk, Virginia USA
Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Arts in Digital Production Arts is a two-year program that is aimed
at producing digital artists who carry a solid foundation in com-
puter science and thus can expect to find employment in the rapidly
expanding special effects industry for video, film, and interactive
gaming. All students in the program are required to complete grad-
uate level work in both the arts and computer science. Although
the DPA program was not begun until 1999, graduates have already
found employment in many of the top studios, e.g., Industrial Light
& Magic (Lucasfilms), Rhythm & Hues, BlueSky Studios, Tippett
Studios, and Pixar. The program has also effected a significant
change in the Clemson undergraduate degree program enrollment.
The faculty has witnessed a substantial shift of undergraduate ma-
jors from the B.S. degree in Computer Science to the B.A. degree
in Computer Science with an elected minor in Art. Whether these
undergraduate students ultimately pursue the DPA Program or not,
it is our position that this shift to a more balanced educational ex-
perience is of substantial benefit to the students and to society.

The goal of theτέχνη project is a zero-based re-design of the
B.A. degree program in computer science. The overriding direc-
tive of the new design is the direct incorporation of DPA and com-
puter graphics research results into all required computing courses
in the curriculum. Instruction in these (new) courses will be strictly
oriented toward large-scale problem-solving, where the large-scale
problems are those that have arisen naturally in the research in-
vestigations of the computer graphics faculty. Problem-based in-
struction is not new (See [5] for a comprehensive treatment.), nor
is the suggestion that computer graphics may be an ideal vehicle
for such. Cunningham [3] recounts tools of thought for problem-
solving identified by Root-Bernstein [13] and then effectively ar-
gues that these aspects of problem-solving, as well as associated
communication skills, are remarkably well supported by computer
graphics. What is new here is the magnitude and origin of the prob-
lems to be integrated and the broad impact of the approach across
an entire curriculum.

Any zero-based design must begin with an identification of goals,
in this case, fundamental concepts and abilities to be imparted to
and developed in the undergraduate student of computer science.
In this endeavor, we must recognize the rapidly changing nature of
the discipline and focus on the challenges the students will most
likely face in the years after graduation. Ability and enthusiasm for
computational problem-solving, rather than experience with popu-
lar software or hardware platforms, should then be of paramount
importance.

We recognize the extensive efforts in curriculum design and eval-
uation that are conducted annually by the Computing Accredita-
tion Commission (CAC). The B.S. program in Computer Science at
Clemson was among the first 35 programs to receive accreditation
from CAC (then CSAC) in June, 1986. The Curriculum Standards

document of CAC will be kept in hand during this design process.
Nevertheless, we must also note that the B.A. degree in Computer
Science at Clemson was born from a general faculty sentiment that
the Curriculum Standards may be overly prescriptive for many of
our students. Recent discussion of intentional learning [11] would
support this view. Although the newer Curriculum Standards are
decidedly less prescriptive than the original [8], we do not want to
commit, a priori, to meeting standards such as, “IV-1. The curricu-
lum must include at least 40 semester hours of up-to-date study in
computer science topics.” The “up-to-date” would not trouble us,
but the “40 semester hours” might. Our approach is certainly con-
structivist in nature [2], and one might argue, as do Kirkley and
Duffy [9], that such an approach could significantly impact inten-
tion. If so, it could subvert our goal of flexibility in design. Never-
theless, the interaction between constructivism and intention is not
well-established, whereas the overall benefits of cooperative learn-
ing [7] and a view of learners as constructors of knowledge [1] are
well-accepted and hence direct our approach.

Further, the collection of key concepts we have tentatively iden-
tified shows considerable overlap with the Curriculum Standards
item IV-6, but it also show considerable differences. Our tentative
collection comprises:

• a machine model (imperative programming, machine capa-
bilities, machine limits)

• a connection model (networks for communication and dis-
tributed processing)

• software design (the object-oriented paradigm, large-scale
development, testing)

• windowing and operating systems (resource management, pro-
tection levels, security)

• data structures and performance (performance measurement,
bottleneck identification, work-flow management)

• cross-platform computing (PDAs, embedded systems, cross-
compilation, external device control)

We stress that this is a starting point, and we recognize that it may
undergo substantial revision during the formative evaluation pro-
cess.

A trial course in this new program has now been completed, and
it is our purpose here to discuss the results from that offering. The
trial course, with key conceptsoftware design, is CPSC 215, Tools
and Techniques for Software Development. The intent is instruc-
tion in programming methodology using C and C++. Construction
of a ray-tracing system for rendering synthetic images is the large-
scale problem upon which the course is based.

2. COURSE DESIGN
Ray-tracing is a technique for synthesizing images by following

hypothetical photon paths [4, 6, 12]. A ray-tracing system models
a virtual viewer looking upon a collection of geometrically speci-
fied objects in Euclidean three-space. A virtual rectangular viewing
screen is interposed between the viewer and the objects. The screen
is oriented so that a vector normal to the screen and based at the
center of the screen passes through the eyepoint of the viewer. The
screen is considered a two-dimensional lattice of equally spaced
points representing pixels or sub-pixels of the final projected im-
age. The ray-tracing algorithm creates the image by firing a virtual
photon from the viewpoint through each lattice point. If the photon
hits an object it bounces, and it may proceed to hit additional ob-
jects. The color assigned to the lattice point is a weighted sum of

the colors of all objects hit by the photon. Many commercial ren-
dering systems for special effects are based upon ray-tracing [10].

From a pedagogical perspective, the development of a ray-tracing
system provides an ideal mechanism for exposing the student to
the object-oriented paradigm in a way that decouples the paradigm
from its implementation in a particular programming language. The
system implementation can be initiated in an imperative style, but
it quickly becomes apparent that the most reasonable way to repre-
sent the interactions of photons or rays with different types of ge-
ometric objects is to associate functions for calculating ray-object
intersection points and surface normal vectors with each type of
object. The overall design is drawn, in a verynatural way, into
the object-oriented paradigm. The benefits of inheritance and poly-
morphism are clear from the onset of their introduction. Because
the systems naturally grow large and complex very quickly, tech-
niques for partitioning, testing, and large-scale development are
well-received.

2.1 Phase I - Fundamentals
Students entering CPSC 215 typically have completed the CS

I and II courses but have had little or no exposure to the C lan-
guage or basic concepts of computer graphics. Three weeks of the
fifteen-week course were devoted to fundamentals of the C lan-
guage, the standard library, and their use in the representation, stor-
age, and retrieval of image data. These topics were introduced in
the context of several assigned 2D image transformation problems
including: converting color images to grayscale; digital halfton-
ing (converting grayscale to black-white); “colorizing” grayscale
movie frames; and reformatting standard television images to dis-
play on High Definition monitors.

2.2 Phase II - Ray-tracing Structure
In the next five weeks of the class the ray-tracing problem was

described and the key elements required in its solution were in-
troduced. These elements included the use of structures, unions,
pointers, and recursion. A breadth-first approach with repeated re-
finements was employed. In this way the students were quickly able
to render simple images and then refine them using more sophisti-
cated treatments. Key to success was a carefully defined structure
to represent the “objects” in the scene. A typical example is shown
in Figure 1. Note the extensive use of function pointers. Acolor is

struct object{
struct color (*ambient)();
struct color (*diffuse)();
struct color mirror; /* weight on specular */
void (*get normal)();
int (*hits)();
union{

struct ball ball;
struct floor floor;
} config;

struct object *next;
};

Figure 1: Fundamental Object Structure

specified as a triple of red, green and blue (RGB) intensities in the
range[0,255]. The functionsambientanddiffusereturn coefficients
representing the degree to which the surface of the object reflects
red, green, and blue components of incident light. These functions
typically return constant values but the functional representation
supports procedural textures such as a checkerboard floor. An ob-

ject’s hits function is responsible for determining if and where a
given ray intersects this object. Theget normal function returns a
unit vector normal to the surface at any point. In Phase II, only two
types of objects, a sphere, here namedball, and an infinite horizon-
tal plane, here namedfloor, were defined, and colors were limited
to grayscale (R = G = B).

A call to trace a ray from a virtual eyepoint through a pixel be-
gins with an iteration over the object list to find (viahits) the object
whose ray-object intersection is closest to the virtual eyepoint. The
color of that pixel is set to the weighted sum of ambient, diffuse
and specular illumination components. The ambient component is
a constant unless a procedural texture is in use. The diffuse compo-
nent is proportional to the cosine of the angle between the surface
normal at the intersection point and a vector pointing toward the
scene light source. The specular component is computed recur-
sively. The incident ray is reflected about the surface normal, and
a recursive call to ray-trace is made with the intersection point as
the new virtual eye and the reflected ray as the new ray direction.
The returned value from the recursion is the specular component.
Pseudo-code for the ray-tracing algorithm is shown in figure 2.

color t raytrace (rayt ray, float raydepth)
{
if (ray depth> max depth) return(black);
bestdistance =+∞;
for (each object in the scene){

compute ray-object intersection point, pt;
if (distance(pt,viewpoint)< bestdistance){

record object and pt;
update bestdistance;
}

}
if (no object intersected) return(background color);
add bestdistance to raydepth;
set color to ambient color for this object;
get normal for this object at pt;
for (each light in the scene){

if (pt not in shadow){
compute diffuse component for this pt/light;
add diffuse color to color;
}

}
if (object has a specular component){

compute reflected ray;
reflectedcolor = raytrace (reflected ray, raydepth);
add reflectedcolor to color;
}

return(color);
}

Figure 2: Pseudo-code for ray-tracing

Requirements for the first ray-tracing project were flexible:

1. Scene geometry must include at least one light source, two
spheres, a checkerboard planar surface, and a sky.

2. The image should illustrate shadows, diffuse and specular
illumination, and anti-aliasing through sub-pixel sampling.

3. The image should have aspect ratio 4:3, with no ratio-induced
distortions, and it should be at least 1024x768 pixels.

In spite of the limited tools available to them, the students showed
an impressive ability in code design and an impressive creativity in

scene design. In Figure 3 (a) and (b) we show images from two of
the students.

2.3 Phase III - Ray-tracing Refinements
In the next four weeks of the course, the design of the ray-tracing

system was extended to include refraction, stereographic projec-
tion, and new object types. New types included boxes, quadrics,
and surfaces of revolution. Algorithms for the defining functions,
hits() andget norm(), were derived in class, but the implementa-
tion was left to the students. These additions to the task natu-
rally generated discussions of new tools and techniques including
dynamic memory allocation, non-trivial linking, and modular pro-
gram design. Rather than a burdensome extension, students found
“makefiles” to offer a welcome relief. Requirements for the second
project were again brief and flexible:

1. Scene geometry must include at least 3 light sources, 2 boxes,
2 spheres, a planar surface, and a sky (unless the scene is
completely enclosed by a sphere or box).

2. The image should illustrate shadows, diffuse and specular
illumination, and anti-aliasing through sub-pixel sampling.

3. The image should be in color and should have an aspect ratio
of 16:9 (HDTV ratio), with no ratio-induced distortions, and
it should be at least 1024x576 pixels.

2.4 Phase IV - Scene Specification Language
To permit complex scenes and animations to be defined using

external, file-based specifications, a week was spent on additional
I/O techniques and the design of an integrated parser. The Scene
Specification Language suggested was a highly simplified synthe-
sis of several current formats [14]. Students were free to extend
the language, and several did. In the final two weeks, source code
simplificationsavailable through use of C++ were discussed. Be-
cause OO is a design paradigm, not a language, and because the
students had a large OO design in front of them, the transition was
not viewed as a major one. In particular, simplifications available in
vector operations (spatial and color) through operator overloading
and the advantages of derived classes were easily described. The
use of C++ for the final ray-tracing project was optional, and sev-
eral took that option. In figure 3 (c) - (f) we show final images from
two classes.

3. DISCUSSION
Throughout all phases of the ray-tracing project, but especially

in the final phase, students were encouraged to be creative in scene
design. As noted earlier, the images in 3 (a) and (b) represent work
from the first phase of the ray tracer. Considering that the only ge-
ometries known to the students at this stage were the sphere and the
infinite plane, these images show an impressive capability, which
can probably be attributed to the students’ heightened level of in-
terest. The remaining images show mastery of additional features,
such as reflection and anti-aliasing, as well as optional features,
such as quadrics and textures.

As evidenced by anonymous semester-end evaluations, students
responded positively to learning C/C++ through graphics. Many
students felt that the semester-long project was educational and in-
teresting to implement. They especially seemed to appreciate the
visual feedback from their projects, both for aesthetic and prob-
lem determination purposes. Corroborating evidence is supplied
by the near absence of student decisions to drop the course, which
is unusual for these classes. Many students brought their laptops
(Clemson requirement) to class to discuss (or show off) the previ-
ous night’s rendering successes and failures.

(a) Image by undergraduate student S. Duckworth. (b) Image by undergraduate student T. Nguyen.

(c) Image by undergraduate student S. Duckworth. (d) Image by undergraduate student T. Nguyen.

(e) Image by undergraduate student J. Holcombe. (f) Image by undergraduate student S. Haroz.

Figure 3: CPSC 215 Example Student Renderings.

The following are sample excerpts from anonymous student eval-
uations of the course:

The ray tracer project was good because it gave visual
feedback of your accomplishments and impressive re-
sults. I liked that we continued with several versions
of the project leading to a large and useful program in
the end.

The ray tracer is a much better assignment than the
usual use-once throw away programs we develop.

The ray tracing project was great. It provided practical
usage to learning C rather than just making a useless
program that ’implements a linked list or binary tree.’
The ray tracer also gave me a much stronger knowl-
edge of C than [other courses] did with Java.

It is the first class where I wrote a program that I will
not throw away at the end of the semester.

The class wasn’t just like some ordinary class. We got
to do something fun and different.

Making a ray tracer is so much cooler than making a
card game.

Other areas of comment, but on the negative side, involved the
amount of work required toward the end of the semester. We are
attempting to address this problem, and accrue some additional
learning advantages, by changing the third phase of the ray tracing
project to a cooperative venture. Theτέχνη plan calls for specific
instructional procedure as well as content. Cooperative learning
in attacking the large-scale problems will be essential. Of course,
even the strongest advocates of cooperative learning [7, 15] will
admit to drawbacks, and we acknowledge that certain hooks to cap-
ture the positive aspects of competitive learning will be necessary.
In team programming projects, weaker students will occasionally
“hide” in large, strong teams and fail to engage in the projects. Off-
setting competitive hooks, such as a bonuses on test scores if all
team members exceed given levels, can often ameliorate such diffi-
culties, and we plan to pursue this approach.

While increased motivation was an expected result from the new
course, a surprising aspect was the extent of extra work the stu-
dents actually performed, in many cases more than our graduate
students who also write a ray-tracing program for an advanced
graphics course. Several of the undergraduates investigated ad-
vanced techniques, such as new object geometries, texturing, and
3D stereograms, on their own. These features were far beyond the
requirements for the assigned projects.

4. CONCLUSIONS
Overall, the results from our experimental course have been en-

couraging. Based on the work performed and student evaluations,
we feel the projects are more effectively engaging the students in
learning.

A benefit of theτέχνη project is the opportunity for faculty to
engage undergraduates with discussions of the research that carries
their enthusiasm. We conjecture that the benefits to the students
will arise not only from the problem-solving orientation of the in-
struction and the exposure to the vitality of real research problems
but also from a newly induced vitality in the instructors.

Finally, an interesting and initially unexpected result of the (grad-
uate) DPA program has been the demographic of the students en-
rolled. The problem of under-representation of women and mi-
norities in computing programs is well known and, nation-wide,

shows little sign of amelioration. The DPA program has a current
enrollment that is 32% women and 16% African American, both
well above the averages for more conventional graduate programs
in computing, including those at Clemson. A natural conjecture is
that a DPA-based re-design of the B.A. program will effect similar
enrollment shifts, and the new curriculum may merit widespread
adoption on this basis as well as on the bases of enhanced problem-
solving skills of the students and enhanced enthusiasm of all par-
ticipants.

5. ACKNOWLEDGMENTS
This work was supported in part by the CISE Directorate of the

U.S. National Science Foundation under award EIA-0305318 and
the ITR Program of the National Science Foundation under award
ACI-0113139.

6. REFERENCES
[1] D. Cunningham. Assessing constructions and constructing

assessments: A dialogue.Educational Technology, 31(5):13
– 17, 1991.

[2] D. Cunningham and T. Duffy. Constructivism: Implications
for the design and delivery of instruction. In D. Jonassen,
editor,Handbook of Research for Educational
Communications and Technology, pages 170 – 198. Simon &
Schuster/Macmillan, 1996.

[3] S. Cunningham. Graphical problem solving and visual
communication in the beginning computer graphics course.
ACM SIGCSE Bulletin, 34(1):181 – 185, 2002.

[4] T. A. Davis and E. W. Davis. Exploiting frame coherence
with the temporal depth buffer in a distributed computing
environment. InProc. IEEE Parallel Visualization and
Graphics Symposium, San Francisco, CA, October 1999.

[5] B. Duch, S. Gron, and D. Allen.The Power of
Problem-Based Learning. Stylus Publishing, LLC, Sterling,
VA, 2001.

[6] A. Glassner.An Introduction to Ray Tracing. Academic
Press, 1989.

[7] D. Johnson and R. Johnson.Learning Together and Alone.
Allyn and Bacon, Needham Heights, MA, 5 edition, 1999.

[8] L. G. Jones and A. L. Price. Changes in computer science
accreditation.Communications of the ACM, 45(8):99 – 103,
2002.

[9] J. Kirkley and T. Duffy. Expanding beyond a cognitivist
framework: A commentary on martinez’s ‘intentional
learning in an intentional world’.ACM J. on Computer
Documentation, 24(1):21 – 24, 2000.

[10] J. Kundert-Gibbs.Maya: Secrets of the Pros. SYBEX,
Almeda, CA, 2002.

[11] M. Martinez. Intentional learning in an intentional world.
ACM J. on Computer Documentation, 24(1):3 – 20, 2000.

[12] F. Musgrave. Grid tracing: Fast ray tracing for height fields.
Technical Report RR-639, Yale University, Dept. of Comp.
Sci., July 1988.

[13] R. S. Root-Bernstein. Tools for thought: Designing an
integrated curriculum for lifelong learners.Roeper Review,
10:17 – 21, 1987.

[14] K. Rule.3D Graphics File Formats: A Programmer’s
Reference. Addison-Wesley, Reading, MA, October 1996.

[15] L. Williams and R. Upchurch. In support of student
pair-programming.ACM SIGCSE Bulletin, 33(1):327 – 331,
2001.

