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In the past 100 years, only three subtypes of influenza virus have 
adapted to human populations to cause four pandemics: H1N1 in 1918 
and 2009, H2N2 in 1957 and H3N2 in 1968 (1–3). Other subtypes (e.g., 
H5N1, H6N1, H7N2 and H9N2) have caused epizootics in domestic 
poultry in certain regions of the world (4), with a recent H7N9 human 
infection in China (5). H5N1 virus, especially, has spread through wild 
and domestic bird populations across Asia and into Europe, the Middle 
East and Africa (6, 7). H5N1 virus has also caused several hundred spo-
radic cases of human infections with high fatality (8–10), but it has not 
acquired the ability to efficiently transmit among humans. 

Two recent studies identified several mutations that allow the H5N1 
virus to become transmissible by airborne route in a ferret mammalian 
model system, raising the question of whether or not these mutations can 
also confer airborne transmissibility between humans (11, 12). Both 
reports show that several mutations in hemagglutinin (HA) of the H5N1 
virus are sufficient to change the receptor binding specificity from an 
avian receptor preference (α2,3-linked SA receptor) to a human receptor 
preference (α2,6-linked SA receptor). 

We know how the HAs of the H1, H2 and H3 subtypes bind to α2,3- 
and α2,6-linked SA receptors (13), and that for the HAs of the H2, H3 and 
H5 subtypes, two amino acid substitutions (Q226L and G228S) in the 
receptor binding site can switch the avian viruses to human-adapted 
viruses (14–16). In H1 subtype, the HA contains Q226 and G228, and the 
amino acids at position 190 and 225 are important for the binding pref-
erence (17, 18). However, in H5 subtype, there is no structural evidence 
for how the receptor binding preference switches from avian to human 
receptors. 

We generated soluble H5 HA protein (InH5) and its mutant 
(InH5mut, containing H110Y/T160A/Q226L/G228S, H3 numbering) 
from the influenza virus A/Indonesia/5/2005 to enable structural and 
binding studies (11). The genes encoding the HA ectodomains were 

cloned into the pFastbac1 vector (Invi-
trogen) and expressed using a bacu-
lovirus expression system (3). The 
recombinant proteins were purified with 
good purity and integrity (fig. S1) (19). 

Surface plasmon resonance (SPR) 
experiments measured the binding af-
finities of InH5 and InH5mut to canon-
ical avian and human receptors. The 
wild type InH5 displayed a strong 
binding preference for the avian recep-
tor, with an affinity of 60 μM (Fig. 1, A 
and E), but weak binding to the human 
receptor (> 1 mM, which is beyond the 
BIAcore® measurement range) (Fig. 1, 
B and E). The InH5mut displayed sig-
nificantly reduced binding affinity to the 
avian receptor (affinity of 554 μM) (Fig. 
1, C and F) and increased binding affin-
ity to the human receptor (affinity of 372 
μM) (Fig. 1, D and F), changing the 
binding preference (Fig. 1, E and F). It is 
noteworthy that the InH5mut binding 
affinities for both the avian and human 
receptors were relatively low. 

Using X-ray crystallography, the 
structures of both InH5 and InH5mut 
were determined to 2.5 and 2.9 Å, re-
spectively. We solved the structures of 
both InH5 and InH5mut complexed with 
the two sialo-pentasaccharides LSTa 
and LSTc, which are natural sialosides 

from human milk (20). These sialo-pentasaccharides are analogs of the 
avian and human receptors, respectively, and contain the three terminal 
saccharides (Sia-Gal-GlcNAc) (20). The receptor analogs are in good 
electron density map (fig. S2). 

Conventionally, the receptor binding site (RBS) of H5 is divided into 
two parts: the base, consisting of conserved residues Y98, W153 and 
H183; and the side, consisting of three secondary elements, i.e., the 
130-loop, 190-helix and 220-loop (13). The earlier crystal structures of 
H5 avian and H9 swine influenza bound to avian and human receptor 
analogs have identified the α2,3-linkage-specific motif (trans confor-
mation) in avian H5 and the α2,6-linkage-specific motif (cis confor-
mation) in swine H9 (21). 

The structure of InH5 with the avian receptor analog LSTa revealed 
that the ligand binds in a trans conformation (Fig. 2A), similar to that seen 
in a previously reported H5 HA/LSTa complex and nearly all other avian 
HA/LSTa complexes (13, 21). The ‘avian-signature’ residue Q226 forms 
two hydrogen bonds with the ligand: one with the glycosidic oxygen of 
the α2,3 linkage and the other with the 4-OH of Gal-2. Similarly, the 
structure of InH5 with the human receptor analog LSTc revealed that the 
ligand binds in a trans conformation (Fig. 2B), by contrast to all human 
HAs (which are observed in a cis conformation). In this structure, the 
‘avian signature’ residue Q226 makes three hydrogen bonds with Sia-1, 
with no hydrogen bonding to Gal-2 (table S1). 

The structure of InH5mut with the avian receptor analog LSTa 
showed, by contrast to the wild type complexes, that the ligand binds in a 
cis conformation (Fig. 2C). Interestingly, in this structure, the side-chain 
OH of S137 forms one hydrogen bond with Gal-2, which has not been 
observed in other HA/receptor complexes. The ‘human signature’ residue 
L226 makes extremely weak van der Waals interactions (only two at-
om-to-atom contacts) with the LSTa (table S1). In this case, most of the 
interactions are contributed by the 130-loop. Likewise, the structure of 
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InH5mut with the human receptor analog LSTc showed that the ligand 
binds in a cis conformation (Fig. 2D). The ‘human signature’ residue 
L226 makes stronger van der Waals interactions (eight atom-to-atom 
contacts) with LSTc than LSTa (table S1). 

Structural analysis indicates that a cis/trans conformational switch 
can occur when InH5 and InH5mut bind to different receptor analogs as a 
result of the Q226L substitution. The structures showed that in wild type 
H5 HA bound to LSTa, the hydrophilic glycosidic oxygen became ex-
posed to the hydrophilic residue Q226 (Fig. 3A) and two hydrogen bonds 
bridged the Q226 to Sia-1 and Gal-2, and LSTa took up a trans confor-
mation. However, when the mutant HA is bound to LSTa, the hydropho-
bic residue L226 creates an unfavorable environment for the hydrophilic 
glycosidic oxygen, and the glycosidic oxygen orients away from L226, 
switching the conformation of LSTa form trans to cis, and pushing the 
sialic acid receptor closer to the 130-loop by ~1 Å (Fig. 3A). This con-
formational switch may reduce the interaction between the InH5mut and 
LSTa. 

By contrast, when wild type HA binds to mammalian receptor analog, 
LSTc, the hydrophilic residue Q226 creates an unfavorable environment 
for the non-polar portion of LSTc, and pushes it away from Q226 to take 
up a trans conformation, that tilts the Gal-2 upward (Fig. 3B). However, 
when the mutant HA binds to LSTc, the hydrophobic residue L226 creates 
a favorable environment for the non-polar portion of LSTc and the 
non-polar part orients toward the L226 to adopt a cis conformation (Fig. 
3B) and makes a tighter interaction between the receptor and ligand. 
Hence, it appears that the avian and human receptors possess the inherent 
flexibility to accommodate different amino acid mutations in the RBS of 
HAs. 

Previous studies demonstrate that RBSs of the human and swine in-
fluenza virus HAs are larger than those of the avian influenza virus HAs 
(21). Comparison of the wild type H5 HA, the mutant and the 1957 Sin-
gapore human H2 (57H2) was made to see if the Q226L and G228S 
substitutions alone can convert avian type HA into a human-like HA. The 
distance between the 130-loop and the 220-loop, which form two sides of 
the receptor binding site, is greater by ~1 Å in the InH5mut structure than 
in the InH5 structure (Fig. 4A). The distances between the 130-loop and 
220-loop are comparable in the InH5mut and 57H2 structures (Fig. 4B). 
However, the mutant InH5mut does not display as strong a binding af-
finity for the human receptor, as 57H2 does. Our structural comparisons 
showed a ~3 Å displacement in the InH5mut/LSTc complex relative to the 
57H2/LSTc complex (Fig. 4C), resulting in fewer contacts with the re-
ceptor binding site. Further analysis revealed that InH5mut contains an 
arginine (R) at position 193 in the 190-helix whose long side chain might 
push the glycan away from the receptor binding site in the InH5mut/LSTc 
complex. In contrast, 57H2 has a threonine (T) at the same position in its 
190-helix whose side chain is much shorter than R193 (Fig. 4C). Simi-
larly, the 1968 Hong Kong human H3 (68H3) contains an S193 in its 
190-helix (Fig. 4D). 

In summary, our binding studies in vitro showed that the wild type 
HA of the avian H5N1 influenza virus protein preferentially binds to an 
analog for the avian receptor. Whereas, binding of the wild type HA to a 
human sialic acid receptor analog was undetectable (> 1 mM). If the H5 
HA was mutated at Q226L, it acquired the ability to bind to both avian 
and human receptor analogs but with less affinity than that of wild type 
HA binding to the avian receptor analog. Our structural studies showed 
that the mutation in HA at Q226L caused a trans/cis conformational 
switch in the glycan receptor that affected atomic contacts within the RBS 
and hence altered binding affinity. Our findings here might be expanded 
to explain the recent H7N9 virus, whose hemagglutinin has a natural 
Q226L substitution, with higher human infection rate in China (5). 

In the HAs of the H2 and H3 subtypes, Q226L and G228S dou-
ble-substitution mutations switch the affinity of the virus receptor from 
avian to high avidity for the human receptor (22, 23). However, our SPR 

results demonstrated that InH5mut still has a low affinity for the human 
receptor, despite containing Q226L and G228S. The basis for the low 
affinity appears to be the long side chain of R193, which displaces the 
glycan from the receptor binding site by ~3 Å in the InH5mut/LSTc. This 
displacement decreased the atomic contacts between the LSTc and the 
receptor binding site, resulting in a low binding affinity. Further substi-
tutions may improve the affinity and thus transmissibility between hu-
mans. 

Two other amino acid substitutions, H110Y and T160A, are also 
important for the transmissibility of avian H5 virus among mammals (fig. 
S3A). Temperature-dependent circular dichroism (CD) spectroscopic 
experiments revealed that InH5mut has a higher thermostability than wild 
type InH5 proteins (fig. S3B), while structural comparison showed that 
Y110 in the InH5mut forms a hydrogen bond with the N413 of the adja-
cent monomer to stabilize the trimeric protein whereas the H110 in the 
wild type InH5 cannot do so (fig. S3, C and D). The T160A mutation, 
which results in the loss of a glycosylation site on the head of the HA 
close to the receptor binding site, enhances H5N1 virus binding to the 
α2,6-linked human receptor (11, 12). However, in our InH5 structure, we 
did not observe the glycan in this glycosylation site due to an artifact of 
baculovirus expression, and this structure will require further research. 
Moreover, this poor glycosylation in InH5 might be the reason why we get 
similar affinities of binding of mutant HA to human and avian receptor 
analogs, which has a discrepancy with respect to the avian receptor 
binding of the mutant virus in studies by Herfst et al. (11) and Chutin-
imikul et al. (24) using different assays and substrates. 

Other amino acid changes elsewhere in the virus may be critical to 
enable the H5N1 virus to transmit in humans. For example, Herfst et al. 
(11) introduced E627K into the PB2 protein (25, 26), together with the 
two substitutions introduced by reverse genetics and two acquired upon 
ferret passage in InH5mut, to generate a H5N1 virus that is transmissible 
among ferrets (11). 

Our work therefore provides a structural basis to comprehensively 
evaluate the receptor binding properties of H5N1 virus. 
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Fig. 1. BIAcore® binding properties of the InH5 and InH5mut HAs to either α2,3-linked or α2,6-linked sialylglycan 
receptors. (A and B) BIAcore® diagram of InH5 binding to the two receptors, showing strong binding to the α2,3-linked sialylglycan 
receptor but little binding to the α2,6-linked sialylglycan receptor. (C and D) BIAcore® diagram of InH5mut binding to the two 
receptors, showing reduced binding to the α2,3-linked sialylglycan receptor and increased binding to the α2,6-linked sialylglycan 
receptor relative to InH5. (E and F) Response units were plotted against protein concentrations. The KD values were calculated 
using a steady affinity state model by the BIAcore® 3000 analysis software (BIAevaluation Version 4.1). 

 o
n 

M
ay

 2
, 2

01
3

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/content/early/recent
http://www.sciencemag.org/


/ http://www.sciencemag.org/content/early/recent / 2 May 2013 / Page 5/ 10.1126/science.1236787 
 

 
  

Fig. 2. Interaction of the InH5 and InH5mut HAs with either avian or human receptor analogs. The three secondary 
structural elements of the binding site (i.e., the 130-loop, 190-helix and 220-loop) are labeled in ribbon representation, together 
with selected residues in stick representation. The hydrogen bonds are shown as dashed lines. The InH5 HA is colored in green, 
and the InH5mut HA is colored in light blue. The glycans are colored in yellow. (A and B) InH5 HA with the avian receptor analog 
LSTa (α2,3) pentasaccharide (A) or human receptor analog LSTc (α2,6) pentasaccharide (B) bound. Both LSTa and LSTc bind in 
a trans conformation. (C and D) InH5mut HA with the avian receptor analog LSTa (C) or the human receptor analog LSTc (D) 
bound. Both LSTa and LSTc bind in a cis conformation. 
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Fig. 3. Molecular mechanism of the cis/trans conformational switch when InH5 and InH5mut bind either avian or human 
receptors. (A) Comparison of the receptor binding sites between the InH5/LSTa (green) and InH5mut/LSTa (light blue) 
complexes. The sialic acid moves toward the 130-loop by ~1 Å in the InH5mut/LSTa complex structure relative to the InH5/LSTa 
complex structure. The hydrophilic glycosidic oxygen of LSTa is exposed to the hydrophilic residue Q226 in the InH5/LSTa 
complex, while the hydrophilic glycosidic oxygen is exposed away from the hydrophobic residue L226 in the InH5mut/LSTa 
complex. (B) Comparison of the receptor binding sites between the InH5/LSTc (green) and InH5mut/LSTc (light blue) complexes. 
The sialic acids are similarly located in both complexes. The non-polar portion of LSTc is exposed to the hydrophobic residue L226 
in the InH5mut/LSTc complex, while it is exposed away from the hydrophilic residue Q226 in the InH5/LSTc complex. 
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Fig. 4. Comparison of InH5, InH5mut, human H2/H3 and their HA/LSTc complex structures. (A) Comparison of receptor 
binding sites between InH5 (green) and InH5mut (light blue). The receptor binding site of InH5mut is ~1 Å wider than that of InH5 
due to the clash between the hydrophobic residue L226 of the 220-loop and the hydrophilic residues S136 and S137 in the 
130-loop. (B) Comparison of the receptor binding sites between InH5mut (light blue) and 57H2 (yellow). InH5mut has a similar 
wide receptor binding site compared to 57H2 (PDB code: 2WR7). (C and D) Comparison of the InH5mut/LSTc (light blue), human 
H2/LSTc (yellow) and human 68H3/LSTc (cyan) complexes (PDB code: 2YPG). The glycans are displaced away from the receptor 
binding site by ~3 Å in the InH5mut/LSTc complex relative to those in the 57H2/LSTc and 68H3/LSTc complexes. This 
displacement may result from the long side chain of R193, while the equivalent residues in human H2 and H3 (T and S) have short 
side chains. 
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