

 278 Int. J. Web Engineering and Technology, Vol. 1, No. 3, 2004

 Copyright © 2004 Inderscience Enterprises Ltd.

A low-latency resilient protocol for e-business
transactions

Muhammad Younas*
Distributed Systems and Modelling Research Group,
School of Mathematical and Information Sciences,
Coventry University, Coventry, CV1 5FB, UK
E-mail: m.younas@coventry.ac.uk
*Corresponding author

Barry Eaglestone
Department of Information Studies,
Computational Informatics Research Group,
University of Sheffield,
Sheffield, S10 2TN, UK
E-mail: b.eaglestone@sheffield.ac.uk

Kuo-Ming Chao
Distributed Systems and Modelling Research Group,
School of Mathematical and Information Sciences,
Coventry University,
Coventry, CV1 5FB, UK
E-mail: k.chao@coventry.ac.uk

Abstract: This paper proposes a novel protocol for e-business transaction
management, called the low latency resilient (LLR) protocol. LLR applies new
correctness criteria based upon enforcing semantic atomicity with increased
resilience to failure, and has been implemented as a prototype system for
e-business transaction processing. The analysis given shows that LLR avoids
resource blocking of e-business systems and significantly reduces response
time between such systems. In addition, LLR significantly improves the
resiliency of e-business transactions in the event of failures or the unavailability
of requested services. This is achieved through the use of e-business transaction
within which alternative sub-transactions are specified.

Keywords: transaction management; e-business; SACReD transactions;
resiliency; latency of transaction commit protocols; evaluation of commit
protocols; performance; resource blocking; calculus of communicating systems
(CCS); formal specification.

Reference to this paper should be made as follows: Younas, M., Eaglestone, B.
and Chao, K-M. (2004) ‘A low-latency resilient protocol for e-business
transactions’, Int. J. Web Engineering and Technology, Vol. 1, No. 3,
pp.278–296.

 A low-latency resilient protocol for e-business transactions 279

Biographical notes: Dr. Muhammad Younas is a Senior Lecturer in Computer
Science in the School of Mathematical and Information Sciences at Coventry
University, UK. He has received PhD degree in Computer Science from the
University of Sheffield, UK, in 2001. His research interests include web and
database systems, transaction processing, agent technology, and mobile
computing. He has published various papers in these areas.

Dr. Barry Eaglestone is a Senior Lecturer in Information Systems in the
Department of Information Studies at the University of Sheffield, UK. He has
been an active researcher in the area of databases since the early 1980s, and has
published widely in the research literature on databases and advanced database
applications. He has also authored textbooks on relational, object-oriented and
web databases. Dr. Eaglestone is Director of the Centre for Health Information
Management Research and leads the Sheffield University Data Management
and Information Systems Research Group and also the Music Informatics
Research Group.

Dr. Kuo-Ming Chao is a Senior Lecturer in Computer Science in the School of
Mathematical and Information Sciences at Coventry University, UK. He leads
the Distributed System and Modelling Research Group. His main research
interests are intelligent agents, web and database technologies and their
applications.

1 Introduction

This paper proposes a low-latency resilient (LLR) protocol, for effective management of
e-business transactions. E-business facilitates the development, deployment and operation
of new electronic business services over the internet. It is therefore federated, since it
involves interaction across management domains and enterprise networks, and
autonomous, since different participating parties generally belong to different
organisations. Transaction management (TM) is therefore a key requirement, to protect
and manage the integrity of transaction outcomes, since these are often financially
critical. TM is also essential to consistently manage the critical information resources
which underlie many e-business activities. In practical terms, effective e-business TM is
necessary from the customers’ perspective, to guarantee that services and products
obtained from an e-business are consistent with what the customers believe they have
requested and the system has delivered. From the perspective of those involved in
providing the services and products, TM must ensure that e-business transactions are
correctly executed, that the enterprise has correct information about the outcomes of
those transactions, and that the information held in an enterprise’s databases is
maintained to provide a truthful and consistent record of the state of the enterprises.
However, TM is problematic because the integrity of transactions and databases must be
ensured in the presence of concurrent transactions, system and transaction failures and
abandoned or aborted transactions, while at the same time providing acceptable resource
utilisation and response time for customers.

LLR addresses those requirements. Specifically, our evaluation of LLR shows a
reduction in latency (response time) between participating systems of e-business
transactions, compared to current technologies based on the classical two-phase commit
(2PC) protocols. Other improvements are avoidance of blocking while still maintaining

 280 M. Younas, B. Eaglestone and K-M. Chao

systems’ autonomy, and enhanced resilience of e-business transactions to failures. The
transaction correctness criteria that allow LLR to achieve these improvements are called
SACReD (Semantic atomicity, Consistency, Resiliency, Durability) [1] – which better
meet the requirements of e-business transactions.

Section 2 critically analyses current approaches to e-business transactions
management (TM), thus presenting the motivation for LLR protocol. Sections 3 and 4,
respectively, describe the LLR protocol, and evaluate its performance and resiliency, in
comparison with existing protocols for e-business TM. Section 5 concludes the paper.

2 Related work

In this preliminary section we present the motivation for our new e-business TM
mechanism, through a critical review of related work. Arguably, the requirement for
effective TM has heightened importance for e-business, since the environment is more
open, non-prescriptive, and vulnerable to failure due to the widespread distribution and
unreliable nature of the internet. However, in spite of this, much e-business TM
technology remains grounded in the technology developed for ‘conventional’ database
systems [2,3]. In particular, 2PC and its variant Presumed Abort (PA) protocols, are
widely used in the commit service of e-business transactions (e.g. [4–7]), even though
their limitations are well-known [1,8–10]. The first part of this section therefore focuses
on inadequacies, within the e-business context, of 2PC-based protocols and the ACID
(Atomicity, Consistency, Isolation, Durability) transaction correctness criteria they
enforce. The second part reviews less conventional approaches which address those
limitations. Finally, we present the SACReD criteria which better suit the characteristics
of e-business transactions.

2.1 Two-phase commit-based protocols

The common model for the 2PC protocols [11,12] executes over a configuration
comprising a coordinator process at the site from which the transaction is submitted, and
participant processes at sites that are accessed by the transaction. The coordinator
enforces the integrity of a transaction by authorising participants to commit their
respective sub-transactions, only after they have unanimously confirmed that they are
able to do so. Otherwise, the transaction is aborted. Thus, 2PC enforces the classical
ACID criteria for transaction correctness, maintaining a strict atomic and isolation policy.
Consequently, transaction must follow the ‘all-or-nothing’ ethos and intermediate results
of partially completed transactions cannot be exposed to other transactions. Variants of
2PC are also used for e-business TM so as to reduce protocol overheads. The most
commonly used variant of 2PC is the presumed abort (PA) protocol [5–7]. PA protocol
reduces the numbers of messages and forced-write operations by assuming that a
sub-transaction is aborted, in the absence of confirmation that it has been committed.

Limitations of 2PC are well known [1,8–10,13]. In particular, a 2PC-based protocol
becomes vulnerable to performance deterioration when participant processes enter into
the prepared-to-commit state. In this state, a participant has confirmed to the coordinator
that it is able to commit its sub-transaction. Sub-transactions are then suspended pending
on the decision of the coordination process and are therefore vulnerable to arbitrary and
long delays. This can occur, for example, if an internet failure isolates one of the

 A low-latency resilient protocol for e-business transactions 281

processes involved in the transaction. Also, in order to ensure atomicity, resources cannot
be released by sub-transactions until the commitment or abortion of the whole
transaction. Consequently, resources held by the transaction are blocked for use by others
during these delays. In fact, even in a hypothetical failure free environment, useless
consumption of system resources can increase as a consequence of delays caused by
internet related problems, such as overloaded links and servers [14]. Performance
problems are also a consequence of characteristics of e-business transactions
themselves [10]. These are often long and involve multiple nested transactions ranging
over multiple systems, with extensive user interaction. Consequently, 2PC-based
e-business TM is prone to resource blocking, in particular caused by slow user response
time during heavily interactive transactions.

The above performance problems may be further exacerbated where heterogeneous
system domains belong to distinct and possibly competing business organisations. For
example, a 2PC-based protocol called TIP (transaction internet protocol [5]) can be used
to cause deliberate blocking and jamming of e-business transactions in order to gain
competitive advantage [15]. A participant can block a competitor’s system by simulating
a failure which, if it had occurred, would prevent participating systems from
communicating. It can also cause jamming by deliberately delaying responses, or by
aborting sub-transactions. Kemptser et al. [15] also note the potential for a participant to
strategically delay completion of a transaction to gain financial advantage. They cite, as
an illustration, a system for buying bonds and gold futures, the prices of which generally
move in opposite directions when the interest rate changes. A TIP-based transaction is
initiated to buy these commodities from two different suppliers who, in principle, must
respond together against the prepared message. However, a bond seller may delay a
response, pending imminent news on interest rates, so as to profit from any market price
falls that are lower than the agreed delivery price.

As a more general criticism of 2PC-based protocols (enforcing ACID criteria)
we note that safeguarding atomicity and consistency of e-business transactions in the
presence of failures is at the expense of system resilience and transaction throughput.
For example, when web failure occurs or a requested service is unavailable, the only
solution is to abort the transaction and all of its component transactions. However, this
strategy conflicts with the ‘common sense’ principle of avoidance of aborting
transactions and sub-transactions whenever possible, so as to preserve the valuable
results.

2.2 Other approaches

Less conventional TM mechanisms have been proposed for e-business to address the
above limitations of 2PC-based protocols and ACID criteria. These include an interesting
proposal for a business transaction framework (BTF) for web services [10]. This proposal
outlines requirements and characteristics of business transactions, and introduces a set of
functional criteria for the proposed BTF. It also analyses current standard initiatives such
as Business Process Execution Language (BPEL) for web services, WS-Transactions,
WS-Coordination, etc. IBM and Microsoft have introduced WS-Transactions [8] and
WS-Coordination [16] that aim to address issues related to 2PC-based protocols, such as
TIP (as described above [5]). These approaches aim to define a framework for providing
transactional coordination of participants of services offered by multiple autonomous
businesses that are based on web services technologies. They also provide support for

 282 M. Younas, B. Eaglestone and K-M. Chao

long-running business activities in addition to the short-lived transactions. Further, [17]
describes a framework called WSTx (web services transactions) for web services, and
introduces the concept of transactional attitudes. This approach requires web service
clients to declare their transactional requirements and web service providers to declare
their individual transactional capabilities and semantics.

The above approaches are interesting and possibly have greater potential than the
more conventional approaches previously reviewed. However, as yet, they are limited to
the specification of frameworks within which TM can be conducted. To our knowledge
these approaches do not provide formal treatments of the TM protocols or any rigorous
analysis and evaluation in terms of performance and resilience of e-business transactions.

A further alternative is the agent-based approach [18–20], in which multi-agent
techniques are applied to transaction management in the e-business applications.
For example, [18] incorporates multi-agents to model cooperative transactions in
e-commerce. Unlike 2PC protocols, which have a centralised coordinator process, this
approach manages transactions using peer-to-peer protocols. Similarly, [20] combines
multi-agents and extended transaction models to provide dynamic transaction capabilities
to mobile commerce (m-commerce) applications. Further, [19] applies transaction
management techniques to provide multi-agents with concurrency and recovery aspects.
Agent-based approaches are also interesting, but these provide only the framework within
which TM can be conducted.

2.3 Transaction correctness criteria

Much of the above e-business TM is based upon conventional ACID-enforcing database
technology, and therefore has well-known limitations. In particular it lacks the resilience
required in the web environment to maintain performance in the presence of errors, and is
open to abusive competitive sabotage. However, other approaches currently lack the
functionality and rigour of database TM. We therefore question whether the problem with
current conventional solutions is the validity of the ACID criteria for e-business, rather
than the overhead of enforcing them. The over restrictive nature of the ACID test does
not fit well within the e-business environment, and can have an adverse impact on system
performance. In particular, the blocking of resources, potentially for the duration of long,
nested, distributed and highly interactive e-business transactions, is necessary for
transaction atomicity but clearly undesirable within an e-business context. Similarly,
visibility of intermediate results can be advantageous, where transactions involve
cooperation between participants, or where business decisions require only approximate
information. Accordingly, we have defined less restrictive transaction correctness criteria
for e-business transactions in our previous work [1,21,22], i.e., the SACReD (Semantic
atomicity, Consistency, Resiliency, Durability) criteria, of which only semantic atomicity
is required (SA).

Semantic atomicity is a weaker requirement than the classical atomicity. Whereas an
atomic transaction is guaranteed to complete successfully or not at all, semantic atomicity
allows the unilateral commitment of component transactions irrespective of the
commitment of their (parent) e-business transaction, with the constraint that information
sources must remain consistent after the execution of transaction. Durability, as in the
ACID criteria, requires that effects of a committed transaction must be made permanent
in the respective databases, even in the case of failures. Resiliency is the ability to
commit in spite of failures, and is defined as a desirable, but not mandatory, property.

 A low-latency resilient protocol for e-business transactions 283

This is important in e-business environment, as transactions are vulnerable to failures due
to the unreliable nature of internet, stronger requirements for local autonomy and
consequentially increased likelihood of component transaction failures. Resilience is
increased by associating alternative transactions with the component sub-transactions of
an e-business transaction.

In our previous work, we have formally specified and verified protocols that enforce
SACReD criteria [21,22]. In the remainder of this paper we extend that work, by
enhancing the previous protocols to address the specific problems discussed above,
relating to blocking, latency, and resilience, within the context of autonomous e-business
systems.

3 The LLR protocol for e-business

In this section we describe the LLR protocol for e-business TM. First we establish the
basic definitions and concepts (3.1). We then describe the formal specification language,
called Calculus of Communicating Systems (CCS), with which the protocol is
defined (3.2). Finally we present the formal CCS specification of LLR (3.3).

A formal verification of the LLR protocol is given in [21,22]. Also, LLR has been
validated through the development of a prototype e-business TM system, which
operates over heterogeneous and autonomous web servers and database systems.
The implementation uses Java IDL [23], a CORBA-based software tool.

3.1 Basic definitions and concepts

E-business operation can range over a wide range of new electronic business services
over the internet. Accordingly, we define an e-business transaction (denoted as Teb) as the
execution of an application which can be divided into well defined units that provide
semantically correct transitions between consistent states of the shared databases.
An e-business transaction can therefore be decomposed into component transactions,
denoted CTi. A component transaction can be compensated if its effects on the database
can be semantically undone by executing a compensating transaction. It can be replaced
if there is an associated alternative transaction.

The configuration and general approach of LLR is based on 2PC, with two main
modifications to address the problems reviewed in the previous section. Firstly, we
introduce flexible component transactions, by allowing alternative transactions to be
specified, which can be executed in place of an aborted component transaction.
This enhances flexibility and resilience to failures by increasing the number of
component transaction sequences that terminate in a commit. Secondly, we relax the
atomicity constraint, thus ensuring only semantic atomicity. To this end, we introduce
compensating component transactions (as in [2,3]), i.e., ones which semantically reverse
the corresponding transaction, and allow component transaction that can be compensated
to autonomously commit. Thus, we avoid the blocking effect of 2PC. However, a
consequence of relaxing atomicity is the loss of the isolation property, since intermediate
transitory result can become exposed to other transactions.

LLR executes within a configuration comprising a process coordinator, referred to as
the business transaction coordinator (BTC), which executes at the site where the
transaction is submitted, and a set of participant processes, called business transaction

 284 M. Younas, B. Eaglestone and K-M. Chao

agents (BTAs), which execute at the various sites that are accessed by the transaction.
The BTC and BTAs serve as middleware component systems for e-business transactions.

3.2 Calculus of communicating systems

The formal specification of LLR uses the Calculus of Communicating Systems (CCS), an
algebra for specifying and reasoning about concurrent and possibly distributed
systems [24,25]. CCS algebra provides a set of terms, operators and axioms with which
elements of a system can be specified as expressions. The system’s behaviour can then be
analysed by manipulating those expressions. The basic element in CCS is a uniquely
named agent (or process) that exhibits a specified behaviour defined by a set of actions.
CCS operators (listed in Table 1) are used to specify the occurrence of those actions. For
example, a single agent (of a commit protocol) may be defined to perform a set of actions
{decision . send-message}, to make a decision and then send a message to another agent.
In particular, the occurrence of actions is specified using the prefix operator,
denoted as ‘.’.

Replicas of an agent, can be defined using the CCS relabelling operator, denoted
as []. This allows the name of one or more actions to be changed. For example, the
following relation

P
def
= Q [decisionp/decisionq, send-messagep/send-messageq]

defines an agent P, which is structurally identical to Q but uses the names decisionp and
send-messagep wherever Q uses the names decisionq, and send-messageq. Relabelling is
very useful when several replicates of an agent are used to define complex behaviour.

Table 1 Description of CCS notation

Notation Description

. Prefix operator, which represents the occurrence of actions

 Represents the concurrent execution or synchronisation of agents

+ Describes the choice between two actions

[] Re-labelling operator

∑ Ei Summation (describes choice between expressions Ei)

def Defines the behaviour of an agent

3.3 Formal specification of the LLR protocol

In the following we use CCS to formally specify the business transaction coordinator
(BTC) and business transaction agents (BTAs) of the LLR protocol. The CCS
specifications are supplemented by informal explanatory notes.

Business transaction coordinator (BTC). The BTC has the responsibility of overseeing
the execution of an e-business transaction, the component transactions of which are
delegated to individual BTAs. Its behaviour, when a new transaction is initiated, is as
follows:

 A low-latency resilient protocol for e-business transactions 285

1 BTC
def
= newTrans(Teb) . /BTC (Teb)

2 BTC′ (Teb)
def
= s-write (begin-of-Teb) . Wait (0, rec, Teb)

3 where rec = {1, ..., k} is a set of indices of BTAs having sent their votes.

4 Wait (n, rec, Teb)
def
= (n = no-of-ST . BTC-commit (Teb))+

5
no of ST

k 1

− −

=
∑ votek (vote) . ((k ∈ rec . ignore(vote))+

6 (votea . s-write (local-abortedi) . BTC-abort(CTi, Teb))+

7 ((votec . s-write (local-commitedi)) . Wait (n + 1, rec, Teb)

In the above procedure, initially, a new e-business transaction, Teb, is assigned to the BTC
(line 1). The start of Teb is then recorded by BTC in a log file using a simple write
operation and BTC enters into a wait state, pending messages from the BTAs concerning
completion of component transactions (lines 2–3). When a vote is received from BTAk

(lines 4–7), the BTC tests if the vote received is a duplicate, i.e., k ∈ rec, in which case it
is ignored (line 5). If k ∉ rec, then BTC acts according to BTC-commit (Teb) to commit
Teb (line 4), or BTC-abort (CTi, Teb) to abort Teb (if CTi is not replaceable) (line 6).
Note that the possibility of duplicated vote arises in the situation when a BTA fails while
sending a vote to the BTC. Thus the recovery process (detailed in [21,22]) forces the
BTA to re-send the commit/abort vote to BTC.

The BTC commit procedure is as follows:

BTC-commit (Teb)
def
= f-write (commit-decision) . send-commit (0, no-of-CT)

send-commit (i, no-of-CT)
def
= (i = no-of-CT . Global-commit)

+
no of CT

k 1

− −

=
∑ g commit− k . send-commit (i + 1, no-of-

CT)

Global-commit
def
= Terminate (Teb) . BTC

In the above commit procedure, BTC forcibly writes the commit decision and sends
global commit messages to all BTAs. It then terminates Teb according to Global-commit
and starts processing a new e-business transaction. Importantly, BTC does not require
acknowledgements from BTAs regarding the commit of CTi as they are already
(unilaterally) committed.

The BTC aborts Teb according to the following procedure:

BTC-abort(CTi,Teb)
def
= (replaceable (CTi) . Wait (n, rec, Teb))

+ f-write (abort-decision) . send-abort (0, no-of-CT)

Note that, in the above abort procedure, if a replaceable component transaction, CTi, is
aborted, then an alternative component transaction is initiated. BTC then waits for each

 286 M. Younas, B. Eaglestone and K-M. Chao

BTA’s decision regarding commitment or abortion of the alternative component
transaction. If CTi cannot be replaced then BTC forcibly writes the abort decision and
proceeds accordingly to send-abort(i, no-of-CT) as follows:

send-abort (i, no-of-CT)
def
= (i = no-of-CT . Global-abort)

+
no of CT

k 1

− −

=
∑ g abort− k . send-abort (i + 1, no-of-CT)

Global-abort
def
= Terminate (Teb) . BTC

In the above, BTC sends global-abort messages to all the BTAs, and terminates the
transaction.

Business transaction agent (BTA): In the LLR protocol, BTAs exhibit similar
characteristics. Thus, we model a single generic BTA and then make use of the CCS
re-labelling operator [] to define individual BTAs.

Each BTA manages the execution of its component transaction, CTi as follows:

BTA(CTi)
def
= s-write (begin-of- CTi) . WTA-process (CTi) (1)

BTA-process(CTi)
def
= execute(CTi) . Voting (CTi) + (g-abort . abort (CTi)

. s-write (CTi-global-abort) . Terminate (CTi) . 0)

Initially, when a new CTi is assigned to a BTA, it records the start of CTi in the log file
using simple write operation and then starts the processing (equation (1)).

After executing CTi, BTA sends a vote to BTC. Also, BTA can receive a global-abort
message from BTC amid the processing of CTi (equation (2)). If that occurs, BTA must
abort and terminate CTi. This situation can arise when BTC receives an abort vote from
another BTA, in which case BTC must send global abort messages to all BTAs.

The BTA voting decision follows the following procedure:

Voting(CTi)
def
= (commit(CTi) . local-committed (CTi)) + local-aborted (CTi)

local-aborted (CTi)
def
= f-write (abort-decision) . vote (abort) . Terminate (CTi) . 0

Note that BTA forcibly writes the abort of CTi, sends an abort vote to BTC, and declares
CTi as local-aborted. It then terminates CTi , and stops processing.

A BTA can locally commit, as follows:

local-committed(CTi)
def
= f-write (commit-decision) . vote (commit)

 . Wait(BTC-decision)

In the above, the BTA forcibly writes a commit decision, sends a commit vote to BTC
and then waits for BTC’s decision, as follows:

Wait(BTC-decision)
def
= (g-commit . global-commit(CTi))

+(g-abort . global-abort (CTi))

 A low-latency resilient protocol for e-business transactions 287

global-commit (CTi)
def
= s-write (CTi-global-commit) . Terminate (CTi) . 0

Note that, after receiving the global commit decision, the BTA simply writes the global
commit of CTi and changes the status of CTi from local-committed to global-committed.

In the case of a global abort decision from the BTC, the BTA will execute the
following procedure:

global-abort (CTi)
def
= local-committed (CTi) . compensate(comp(CTi))

s-write (CTi-compensated). Terminate (CTi) . 0

In the above, if CTi is locally-committed and BTA receives an abort message, BTA must
execute the compensating transaction for CTi. This is logged by BTA by simply writing
the compensation decision and then marking the end of CTi. It is to be noted that BTA
does not send commit and abort acknowledgements to BTC, as CTi has either unilaterally
committed or aborted. LLR therefore removes the need for acknowledgement messages,
in a similar manner to the presumed abort and commit protocols.

Now we define the behaviours of individual BTAs as instances of the above generic
BTA using the relabelling function [] of CSS, as follows:

BTAk (k = 1, ..., n)
def
= BTA[processk/process, votek/vote, compensatek/compensate,

g-commitk /g-commit, g-abortk/g-abort]

In the above, a label pair such as processk/process defines the mapping of process to
processk, vote to votek, and so on. This defines the behaviour of n WTAs which are
involved in the execution of component transactions CTi.
Now that we have specified the behaviours of WTC and WTAs, the LLR protocol is
defined as follows:

LLR
def
= (BTC BTA1 BTA2 BTA3, ..., BTAk)

The state transition diagrams for BTC and BTAs are given in Figure 1 [21], in which
edge labels represent (above the line) the reason for the transition, i.e., the message (or an
action taken), and (below the line) the message that is sent as a result.

Figure 1 State transition diagram of LLR protocol

 288 M. Younas, B. Eaglestone and K-M. Chao

4 Evaluation of the protocols

This section evaluates LLR protocol in comparison to the existing protocols in terms of
latency, resource blocking, and resilience to failures.

The time complexity analysis (as in [3,11,26]), of LLR, 2PC and PA, evaluates their
relative performance in terms of system resource blocking (or latency), i.e., the delay
required to release the system resources. System resources are held by e-business
transactions, for example, when a participant waits, in a prepared-to-commit state, to
receive a decision from the coordinator. Latency is calculated as the sum of the delays
incurred by the participating systems, i.e.:

• The time (P) each participant takes to process a component transaction, excluding the
time required for forced-write operations and the message arrival which are treated
separately.

• The time (M) a coordinator and each participant take to exchange messages.

• The time (W) a coordinator and each participant take in force-writing a commit or
abort decision. Note that forced-write operations significantly affect the performance
of the protocols. This is because the communication between participating e-business
systems is suspended until the required information is written to the persistent
storages such as log files of the web servers or database systems.

We assume (as in [11,26]) that the coordinator sends (and receives) messages to (from)
all the participants concurrently, and also that participants process the component
transactions and perform the write operations in parallel. Accordingly, the latency for
each of the protocols is calculated in the following subsections.

4.1 Latency of the protocols

4.1.1 2PC protocol

Commit case. In this case the time required to release the system resources is calculated
as 3 × M + 2 × W + P. Each participant receives two messages (preparation and decision)
and sends one message (local commit vote) to the coordinator in order to release the
systems resources held by a component transaction. In addition, the coordinator and each
participant take time W to respectively force write the global commit/abort decision and
the prepare-to-commit state to a log file. Further, each participant takes a delay of P to
process a component transaction.

We now consider the two situations in which an abort can occur.

Abort case-1. In this case, it is assumed that at least one of the participants is in the
prepare-to-commit state. This is because the participants, having no prepare-to-commit
states, can unilaterally abort and terminate their component transactions and will not
enter into the second phase of the protocol. In this case, 2PC takes the delay of
3 × M + 2 × W + P to release the system resources. If at least one participant is in the
prepare-to-commit state, then the same number of messages (as that of commit case) are
communicated between the coordinator and the participants to release the system
resources.

 A low-latency resilient protocol for e-business transactions 289

Abort case-2. In this case, it is assumed that none of the participants is in the
prepare-to-commit state. Consequently the participants can unilaterally abort and
terminate their component transactions and will not enter into the second phase of the
protocol. Thus 2PC incurs a delay of W + P to release the system resources. In this case
participants are not required to wait for the coordinator messages if they are going to
abort the transaction. Each participant takes the delay of P, which is the time required to
process the component transaction.

4.1.2 PA protocol

Commit case. PA behaves similar to 2PC in the commit case. PA therefore takes the
delay of 3 × M + 2W + P to release the system resources.

Abort case-1. For the above reason, it is assumed that at least one of the participants is in
the prepare-to-commit state. Thus the delay required to release the system resources is
3 × M + W + P. In this case, PA reduces the delay by one W, as the coordinator does not
force-write the abort decision to persistent storage.

Abort case-2. If none of the participant is in the prepared-to-commit case then PA takes
the delay of W + P to release the system resources (as is the abort case-2 of 2PC).

4.1.3 LLR protocol

Commit case. The LLR protocol allows the unilateral commitment of component
transactions. Participants therefore release the system resources as soon as they complete
executing their component transactions. They do not wait for the global decision from the
coordinator to release the system resources. LLR therefore takes the delay of W + P to
release the system resources; where P is the time required to process a component
transaction and W is the time required to force-write the commit decision. LLR does not
need any message to be communicated between the participants and coordinator to
release the system resources.

Abort case. In the abort case, LLR releases the system resources after the delay of
2 × W + 2 × P. In this case, LLR needs additional P and W to execute the compensating
transactions, if any of the component transaction is unilaterally committed. This is
because, system resources will be held twice; once by the original component transaction
and then by the compensating transaction. No delays are incurred on account of
messages, as in the commit case.

4.2 Case studies

We now compare the relative performance of 2PC, PA and LLR within five test cases.
These cases use the estimated values of M, P, and W, as shown in Tables 2 and 3.
Determining the exact values of M, P, and W depend on various factors. For example, the
message delay, M, depends on the type and location of participating systems, the type of
internet links (slow or fast), etc. According to [26] a message takes 50 ms on average to
be sent on the internet across the USA. Our own measurement, using the ping utility of
RTT (round trip time) for internet access across the world demonstrate predictable
increases in RTT for intercontinental access. For example, average RTT was found to be
90 ms between web servers located in Coventry, UK, and Pennsylvania, USA, and

 290 M. Younas, B. Eaglestone and K-M. Chao

300 ms between Singapore and Coventry. We therefore assume 100 ms and 300 ms,
respectively as minimum and maximum average RTT values for M. Similarly, the
processing time of a component transaction, P, depends on various factors such as system
load, the nature of the application, etc. For example, some applications involve a larger
number of I/O operations and longer CPU time than others [27]. We therefore take 50
and 100 ms, respectively as minimum and maximum values for P. Further, the values of
W (forced-write delay) are also estimated. The values assumed for W are 15 ms and
35 ms, in line with estimates in [27].

Note that the above values of M, P, and W are estimated values and these vary
according to the nature of the environment in which e-business transactions operate.

4.2.1 Abort case

The computed abort case latency (delays), incurred by 2PC, PA, and LLR, to release the
system resources are respectively listed and shown graphically in Table 2 and Figure 2.

Table 2 Total delay required to release system resources (abort case)

Case M (ms) W (ms) P (ms)
2PC (abort case-1)
(3M + 2W + P)

PA (abort case-1)
(3M + W + P)

2PC/PA (abort
case-2) (W + P)

LLR
(2W + 2P)

1 100 15 50 380 365 65 130

2 300 15 50 980 965 65 130

3 100 15 100 430 315 115 230

4 100 35 50 420 385 85 170

5 300 35 100 1070 1035 135 270

Figure 2 Delay required to release the system resources in abort case

From Figure 2, it is clear that in the abort case-2 (unilateral abort), 2PC and PA incur
shorter delays to release the system resources, compared to LLR. This is because LLR
incurs an extra delay to process compensating transactions, when an e-business
transaction is globally aborted. It is to be noted that such a situation (i.e., abort case-2)
happens very rarely, where all participating systems of 2PC or PA do not enter the
prepare-to-commit state and that they abort their component transactions. The most

 A low-latency resilient protocol for e-business transactions 291

common is the abort case-1. In the abort case-1, both 2PC and PA perform poorer than
LLR, as they are not allowed to abort the component transactions unilaterally in a
prepare-to-commit state. The participants must therefore wait for the coordinator’s
decision to release the system resources. Consequently, 2PC and PA incur greater delays
compared to LLR, as they are required to exchange messages between the coordinator
and participants.

4.2.2 Commit case

The delay required by the protocols 2PC, PA, and LLR, to release the system resources in
the commit case, are respectively listed and shown graphically in Table 3 and Figure 3.

Table 3 Total delay required to release the system resources (commit case)

Case M (ms) W (ms) P (ms) 2PC/PA (3M + 2W + P) LLR (W + P)

1 100 15 50 380 65

2 300 15 50 980 65

3 100 15 100 430 115

4 100 35 50 420 85

5 300 35 100 1070 135

Figure 3 Delay required to release the system resources in commit cases

It is clear from Figure 3 that LLR significantly reduces the latency required to release the
system resources as compared to 2PC and PA protocols in the commit case.
This significant difference arises mainly because of the number of messages
communicated between the coordinator and the participants to release the system
resources. As described earlier, 2PC and PA require 3 × M messages while LLR does not
require any messages to be communicated between the coordinator and participants.
Consequently LLR reduces the delay required to release the system resources. It is to be
noted that in LLR, the coordinator does not send a prepare message to the participants, as
in implicit yes vote (IYV) protocol [28]. In addition, participants release the system

 292 M. Younas, B. Eaglestone and K-M. Chao

resources as soon as they complete the execution of the component transactions.
The participants therefore do not wait for the coordinator’s decision to locally
commit/abort their component transactions.

From the above evaluation it is shown that the LLR protocol incurs low latency and
avoid resource blocking as compared to the existing protocols for e-business transactions.

4.3 Resiliency evaluation

The evaluation of the resiliency of the LLR protocol in comparison to current 2PC-based
approaches is based on the following commit and abort probabilities [29] of the
e-business transactions:

• Actual commit/abort probability: this refers to the commit/abort probability of the
e-business transaction where no alternative transactions are involved.

• Total commit/abort probability: this refers to the commit/abort probability of the
e-business transaction where alternative transactions are involved.

• Existential probability: this refers to the probability of the existence of alternative
transactions. It determines, on the average, the ratio of alternative transactions in the
overall e-business transaction.

The fundamental principle on which the evaluation is based is that, given the abort and
existential probabilities, resiliency of a protocol is determined by the total commit
probability of an e-business transaction. Specifically, an increase in resiliency indicates
an increase in the probability that the e-business transaction will commit.

We conduct two case studies to evaluate the resiliency of LLR protocol in
comparison to the current protocols, using different existential probabilities of 0.3 and
0.5 – showing that there exist 30% and 50% alternative transactions in an e-business
transaction. In each case, different values of the actual commit/abort probabilities are also
used in conjunction with a particular existential probability. Within the context of these
cases various situations are considered. For example, the worst case scenario where the
abort probability of e-business transaction is very high, and also the best case scenario
where the commit chances are high. To model the best case scenario, the actual commit
probability is kept high showing that abort chances of e-business transaction are low. The
commit probability is then gradually reduced such that the abort probability of e-business
transaction reaches the highest level showing the worst case scenario.

The total commit/abort probabilities, of an e-business transaction, computed using
different existential probabilities, are shown in Tables 4 and 5. In these tables the
following abbreviations are used:

CP is the actual commit probability of the e-business transaction where no alternative
transactions are involved.

AP is the actual abort probability of the e-business transaction where no alternative
transactions are involved.

P (Alt-ST) This is the probability of the existence of alternative transactions in the
overall e-business transaction.

CP (Alt-ST) refers to the commit probability of alternative transactions.
AP (Alt-ST) refers to the abort probability of alternative transactions.
TAP is the total abort probability of the e-business transaction where alternative

transactions are involved.

 A low-latency resilient protocol for e-business transactions 293

TCP is the total commit probability of the e-business transaction where alternative
transactions are involved.

Table 4 Calculation of total commit probabilities (existential probability = 0.3)

CP AP P (Alt-ST)

CP (Alt-ST) =
CP × AP × P

(Alt-ST)

AP (Alt-ST) =
AP × AP × P (Alt-ST)

TAP = 1 –
 CP + CP

(Alt-St) TCP = 1 – TAP

1.0 0.0 0.3 0.000 0.000 0.000 1.000
0.9 0.1 0.3 0.027 0.003 0.073 0.927
0.8 0.2 0.3 0.048 0.012 0.152 0.848
0.7 0.3 0.3 0.063 0.027 0.237 0.763
0.6 0.4 0.3 0.072 0.048 0.328 0.672
0.5 0.5 0.3 0.075 0.075 0.425 0.575
0.4 0.6 0.3 0.072 0.108 0.528 0.472
0.3 0.7 0.3 0.063 0.147 0.637 0.363
0.2 0.8 0.3 0.048 0.192 0.752 0.248
0.1 0.9 0.3 0.027 0.243 0.873 0.127
0.0 1.0 0.3 0.000 0.300 1.000 0.000

Table 5 Calculation of total commit probabilities (existential probability = 0.5)

CP AP P (Alt-ST)

CP (Alt-ST) =}
 CP × AP × P

(Alt-ST)

AP (Alt-ST) =
AP × AP × P

(Alt-ST)
TAP = 1 – CP + CP

(Alt-St) TCP = 1 – TAP

1.0 0.0 0.5 0.000 0.000 0.000 1.000

0.9 0.1 0.5 0.045 0.005 0.055 0.945

0.8 0.2 0.5 0.080 0.020 0.120 0.880

0.7 0.3 0.5 0.105 0.045 0.195 0.805

0.6 0.4 0.5 0.120 0.080 0.280 0.720

0.5 0.5 0.5 0.125 0.125 0.375 0.625

0.4 0.6 0.5 0.120 0.180 0.480 0.520

0.3 0.7 0.5 0.105 0.245 0.595 0.405

0.2 0.8 0.5 0.080 0.320 0.720 0.280

0.1 0.9 0.5 0.045 0.405 0.855 0.145

0.0 1.0 0.5 0.000 0.800 1.000 0.000

Note that, if the actual commit probability is 1.0 (or 100%), then each transaction will
certainly commit. Consequently, the commit probability of alternative transactions is
zero. Similarly, if the actual abort probability is 1.0, then a transaction will certainly be
aborted. In that case the commit probability of the e-business transaction is zero.
This is the situation where a transaction is aborted due to failures, such as unavailability
of the requested services, or site or communication failures.

Figure 4 graphically represents the total commit probability of e-business transactions
calculated in the aforementioned cases. It also shows the 2PC-based protocols which do
not support alternative transactions.

 294 M. Younas, B. Eaglestone and K-M. Chao

The graph in Figure 4 clearly indicates that LLR protocol with alternative transactions
enhances the resiliency of the e-business transactions. The graph shows that the greater
the commit probability of the e-business transaction, the greater the resiliency.
Comparing the resiliency of the protocols under consideration, it is observed that
resiliency increases with the increase in existential probability; where the average number
of alternative transactions in a particular e-business transaction is high. For example, with
the existential probability of 0.3, the maximum gain achieved in total commit probability
is 0.075 as shown in Table 4. Similarly, the alternative transactions with existential
probability of 0.5 increase the commit probability by 0.125 (maximum gain) as shown in
Table 5. The above cases prove that LLR increases the resiliency of the e-business
transactions as compared to current approaches based on 2PC-based protocols which do
not support alternative transactions.

Figure 4 Evaluation of the resiliency of LLR and 2PC-based protocols

5 Conclusion

For conventional database TM to be adapted for e-business, it is necessary to improve its
performance within a federated web-based environment, and particularly to remove
the potential for performance manipulation for advantage over competitor systems. Also,
the validity of the transaction correctness criteria needs to be considered within the
e-business context. Our proposed LLR e-business TM protocol addresses these problems.
Specifically, it enforces the SACReD criteria, a relaxed version of the ACID criteria,
which we argue is more appropriate for e-business. Within these looser constraints, we
have increased resilience through the use of alternative component transactions, and
reduced delays and resource blocking, through the introduction of unilateral commit and
compensation of component transactions. Our performance and resiliency evaluation has
demonstrated significant improvements over existing e-business transaction protocols.

 A low-latency resilient protocol for e-business transactions 295

References

1 Younas, M., Eaglestone, B. and Holton, R. (2000) ‘A review of multidatabase transactions on
the web: from the ACID to the SACReD’, Proceedings of the 17th British National
Conference on Databases (BNCOD), Exeter, UK, Springer LNCS, pp.140–152.

2 Elmagarmid, A.K. (Eds.) (1992) Database Transaction Models for Advanced Applications,
Morgan Kaufmann Publisher.

3 Gray, J. and Reuter, A. (1993) Transaction Processing: Concepts and Techniques, Morgan
Kaufmann Publishers.

4 Billard, D. (1998) ‘Transactional services for the internet’, Proceeding of the International
Workshop on Web and Database (WebDB’98), Valencia, Spain, pp.14–33.

5 Lyon, J., Evans, K. and Klein, J. (1998) Transaction Internet Protocol: Version 3.0,
Internet-Draft, April, http://www.ietf.org/ids.by.wg/tip.html.

6 Little, M., Shrivastava, S., Caughey, S. and Ingham, D. (1997) ‘Constructing reliable web
applications using atomic actions’, WWW6/Computer Networks and ISDN Systems, Vol. 29,
Nos. 8–13, pp.1281–1290.

7 Little, M. and Shrivastava, S. (1998) ‘Java transactions for the internet’, Distributed Systems
Engineering, Vol. 5, No. 4, pp.156–167.

8 Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T. and Thatte, S. (2002)
Web Services Transaction (WS-Transaction), http://www-106.ibm.com/developerworks/
library/ws-transpec/.

9 Kappel, G., Rausch-Schott, S. and Retschitzegger, W. (1999) ‘Transaction support for
dataweb applications – a requirement’s perspective’, Proceeding of Fifth American
Conference on Information Systems (AMCIS’99), Milwaukee, Winconsin, USA, pp.877–879.

10 Papazoglou, M. (2003) ‘Web services and business transactions’, World Wide Web, Vol. 6,
No. 1, pp.49–91.

11 Berstein, P., Hadzilacos, V. and Goodman, N. (1987) Concurrency Control and Recovery in
Database Systems, Addison-Wesley, USA.

12 Ozsu, T. and Valduriez, P. (1991) Principles of Distributed Database Systems, Prentice-Hall.

13 Ehmayer, G., Kappel, G. and Reich, S. (1997) ‘Connecting databases to the web: a taxonomy
of gateways’, Proceedings of 8th International Conference on Database and Expert Systems
Applications (DEXA 1997), Toulouse, France, Springer LNCS, Vol. 1308, pp.1–15.

14 Barker, R., Slothouber, L., Tracy, M. and Ware, S. (1997) Professional Web Site Optimization,
Wrox Press Inc.

15 Kempster, T., Stirling, C. and Thanisch, P. (1999) ‘A critical analysis of the transaction
internet protocol’, Proceeding of the 2nd International Conference on Telecommunication and
Electronic Commerce (ICTEC 1999), Nashville, USA.

16 Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D., Orchard , D., Shewchuk, J.
and Storey, T. (2003) Web Services Coordination (WS-Coordination), http://
www-106.ibm.com/developerworks/library/ws-coor/.

17 Mikalsen, T., Tai, S. and Rouvellou, I. (2002) ‘Transactional attitudes: reliable composition of
autonomous web services’, Proceedings of the Workshop on Dependable Middleware-based
Systems (WDMS 2002) at the Dependable Systems & Network Conference (DSN 2002),
Bethesda, MD, USA.

18 Chen, Q. and Dayal, U. (2000) ‘Multi-agent cooperative transactions for e-commerce’,
Proceedings of the 7th International Conference on Cooperative Information Systems (CoopIS
2000), Eilat, Israel, pp.311–322.

19 Nagi, K. (1999) ‘Transactional agents: a robust approach for scheduling orders in
a competitive just-in-time manufacturing environment’, Proceedings of the Workshop on MAS
in Logistic and Economical Perspectives of Agents on Conceptulisation, Germany.

 296 M. Younas, B. Eaglestone and K-M. Chao

20 Younas, M., Chao K-M. and Anane, R. (2003) ‘M-commerce transaction management with
multiagent support’, Proceedings of 17th International Conference on Advanced Information
Networking and Applications (AINA 2003), IEEE CS Press, Xi’an, China, pp.284–287.

21 Younas, M. and Eaglestone, B. (2002) ‘A formal verification strategy for crash recovery in
web-database applications’, Proceeding of 3rd International Conference of Web Information
System Engineering (WISE 2002) Workshops, IEEE CS Press, Singapore, pp.113–119.

22 Younas, M., Eaglestone, B. and Holton, R. (2000) ‘A formal treatment of a SACReD protocol
for multidatabase web transactions’, Proceedings of the 11th International Conference on
Database and Expert Applications (DEXA 2000), Greenwich, London, Springer LNCS,
pp.899–908.

23 Lewis, G., Barber, S. and Siegel, E. (1998) Programming with JavaTM IDL: Developing Web
Applications with Java and CORBA, John Wiley & Sons Inc.

24 Bruns, G. (1997) Distributed Systems Analysis with CCS, C.A.R. Hoare Series Editor,
Prentice Hall.

25 Milner, M. (1989) Communication and Concurrency, C.A.R. Hoare Series Editor,
Prentice Hall.

26 Zhang, Z., Perrizo, W. and Shi, V. (1999) ‘Atomic commitment in database systems over wide
area active networks’, IEEE International Conference on Data Engineering (ICDE 1999),
Sydney, Australia.

27 Spiro, P.M., Joshi, A.M. and Rengaranjan, T.K. (1991) ‘Designing an optimised transaction
commit protocol’, Compaq Digital Technical Journal, Vol. 3, No. 1, Winter,
http://www.research.compaq.com/wrl/DECarchives/DTJ/DTJ100/.

28 Al-Houmaily, Y. and Chrysanthis, P. (1995) ‘Two-phase commit in gigabit-networked
distributed databases’, Proceeding of 8th ISCA International Conference on Parallel &
Distributed Computing Systems, pp.554–560.

29 Gupta, R., Haritsa, J.R. and Ramamritham, K. (1997) ‘Revisiting commit processing in
distributed database systems’, ACM-SIGMOD Record, Vol. 26. No. 2, pp.486–497.

