Operator precedence and the visibly pushdown property

Stefano Crespi Reghizzi and Dino Mandrioli

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci 32, 1-20133 Milano
{stefano.crespireghizzi, dino.mandrig@®polimi.it

Abstract. Operator precedence languages, designated as Floyd's Langkge® honor
their inventor, are a classical deterministic context-free family. FLs aogvk to be a boolean
family, and have been recently shown to strictly include the Visibly Pushdosnguages
(VPDL); the latter are FLs characterized by operator precedendéorelaletermined by the
alphabet partition. In this paper we give the non-obvious proves thathiale the same clo-
sure properties that motivated the introduction of VPDLs, namely urdtersal, concatenation
and Kleene’s star. Thus, rather surprisingly, the historical FL familggut to be the largest
known deterministic context-free family that includes the VPDL and hasaime<losure prop-
erties needed for applications to model checking and for defining oqatknguages such as
HTML. As a corollary, an extended regular expression of precezlenmpatible FLs is a FL
and a deterministic parser for it can be algorithmically obtained.

1 Introduction

From the very beginning of formal language science, research hegkd with the wish

and need to extend as far as possible the elegant and practical popkrtigular languages

to other language families that overcome the limitations of finite-state models in terms of
expressivity and allow more accurate modelling of relevant phenomeparficular, it is

well known that closure properties under basic operations allow to aut@iationstruct
complex models from simple ones, and to decide important problems: e.g. nhedé&imng

relies on closure w.r.t. boolean operations and on decidability of the emppnaisiem.
Since, among the classic formal language families, only regular languagssaosure

w.r.t. the needed operations, the search for new subclasses — mostiytexteioee (CF)
languages — exhibiting the wished properties, is a long-standing resaarcérn.

A major step has been made by McNaughton with parenthesis grammars [idew
productions are characterized by enclosing any righthand side (rith) @ pair of paren-
theses; the alphabet is the disjoint union of internal characters andithByaonsidering
instead of strings thstencil(or skeletal) trees encoded by parenthesized strings, some typi-
cal properties of regular languages that do not hold for CF languagestill valid: unique-
ness of the minimal grammar, and boolean closure within the class of langbageg
the same production stencils. Further mathematical developments of thosbasledseen
pursued in the setting of tree automata [16]. Short after McNaughtosUdtse we investi-
gated similar closure properties Bloyd’s operator precedendgrammarsandLanguages

*10.02.2010. Partially supported by PRIN 2007 TINZRE-002, CNIRFI&nd ESF AutoMathA.

2

[10] ! (FG and FL), elegant precursors of L(grammars and Deterministic CF (DCF)
languages, also exploited in early work on grammar inference [5]. Tdduption set of an
operator grammar determines three binary precedence relations (fesatequal) over the
alphabet, that for a FG grammar are disjoint, and are presented in a matigrddedence
matrix, even in the absence of the productions, fully determines the topatogtencil)

of the syntax tree, for any word that is generated by any FG having the peecedence
matrix. The families of FGs that share the same precedence matrix and tespoording
languages are boolean algebras [8, 5].

We also extended the notion wbn-countingegular languages of McNaughton and Papert
[13] to parenthesis languages and to FLs [6].

Decades later, novel interest for parentheses-like languages faboseesearch on
mark-up languages such as XML, and produced the famibatdnced grammarand lan-
guages [3]. They generalize parenthesis grammars in two ways: lse®iesaof parentheses
are allowed, and the r.h.s of grammar rules allow for regular expressiensonterminal
and internal symbols to occur between matching parentheses. Thetgropeniqueness
of the minimal grammar is preserved, and the family has the closure propettyancate-
nation and Kleene star, which was missing in parenthesis languages. Chedalyced as
well as parenthesis languages, are closed under reversal.

Model checking and static program analysis provide another motivatisufth fami-
lies of languages — those that extend the typical finite-state properties fiteisfiate push-
down systems. The influential paper by Alur and Madhusudan [1] (alEg))mefines the
visibly pushdown automatandlanguages(VPDA, VPDL), a subclass of realtime push-
down automata and DCF. The input alphabet is partitioned into three sets wcaitsetbr
opening), returns (or closing), and internals. The decision of the typgowe to perform
(push, pop, or a stack neutral move) is purely driven by the memberghip ioput char-
acter in one of the three sets, a property that justifies the name “visibly pushdvPDLs
extend balanced grammars in ways that are important for modelling symbodjcapnaex-
ecution. For each partitioned alphabet, the corresponding language famitysed under
reversal and boolean operations, concatenation and Kleene star.

Guided by the intuition that precedence relations between terminals in a FE&adeter
the action on the pushdown stack in a more flexible way than in a VPDA, wathe{é]
proved that VPDLs are a proper subclass of FLs, characterizedikgdpartition of the
precedence matrix, induced by the alphabetic partition into opening, closthinternal
letters.

From the standpoint of their generative capacity and expressivityaFé&sore power-
ful than VPDAs in various practical ways. An example of structural adey possible with
FG but not with VPDA is the semantic precedence of multiplication operatorsaoiditive
ones (which inspired Floyd in the definition of operator precedence)example of the
higher generative capacity are the nested constructs opened andl lojoseans of a se-
guence of characters, elg: =*/,ratherthan by two distinct single characters, one

1 We propose to name thefloyd grammargo honor the memory of Robert Floyd and also to avoid confusion
with other similarly named but quite different types of precedence grarsm

for the opening and one for the closing of the scope. Overall FGs, thiesg general than
LR(1) grammars, offer a comfortable notation for specifying syntaxeéseo€omplexity of
programming languages, and are still occasionally used in compilation [@ddriSingly
enough, nothing was known on the closure of FL under concatenatibiilaene star. This
paper provides a positive but not immediate answer, in contrast to thianéador the main
language families closure under the two operations is either trivially presémtially ab-
sent: examples of the former case are CF and VPDLs with a fixed alphabeititoping,
while DCF is an example of the latter. In this perspective FGs representeaasting sin-
gularity: they are closed but in a far from obvious way. Precisely, afhdbe parse tree of
a stringx - y is solely determined by the given precedence relations of the grammars gene
ating the two factors, the tree of- y may be sharply different from the pasting together of
the trees ofc andy. The difficulty increases for Kleene star, because the syntax treayof, s
x - x - x cannot be obtained by composing the trees of either andz or x andzx - x, but
may have an entirely different structure.

Thus, rather surprisingly, a classical, half-forgotten language famihystout to en-
joy all the desirable properties that motivated the recent invention of VPDh ¢he best
of our knowledge FG currently qualifies as the largest DCF family close@&muboolean
operations, reversal, concatenation and Kleene star.

The paper proceeds as follows: Section 2 lists the essential definitions,odrtd a
summary of known results; Section 3 proves closure under concater@gotion 4 proves
closure under Kleene star and shows an application of the closurerfiespt® regular
expressions. Section 5 concludes. Appendix 1 shows introductoryesa. Appendices 2
and 3 contain the full proofs of the main theorems.

2 Basic definitions and properties

We list the essential definitions of Floyd grammars. For the basic definitioG$ afram-
mars and languages, we refer to any textbook, such as [15]. The etriptyis denoted,
the terminal alphabet i&'. For a stringr and a lettew, |z|, denotes the number of occur-
rences of letter, and the same notatidm|a applies also to a seh C X; first(z) and
last(x) denote the first and last letter of#~ <. The projection of a string € X* on A is
denotedr a(x).

A Context-FreeCF grammar is a 4-tupl€’ = (Vy, X, P, S), whereVy is the nonterminal
alphabetP is the production sef§ is the axiom, and” = Viy U X. An empty rulehase as
right hand side (r.h.s.). fenaming rulehas one nonterminal as r.h.s. A grammaesuced
if every production can be used to generate some terminal string. A grammeaeiigble if
no two productions have identical r.h.s.

The following naming convention will be adopted, unless otherwise specifie@rcase
Latin lettersa, b, ¢ denote terminal characters; letters, x, y, w, z denote terminal strings;
Latin capital lettersA, B, C denote nonterminal symbols, and Greek letters ., w denote
strings overl/. The strings may be empty, unless stated otherwise.

For a productiomd — ugAjuiAs ... up_1Ag, k > 0, thestencilis the productionV —
ugNuiN ... up_1 N, whereN is notinVy.

4

A production is inoperator formif its r.h.s. has no adjacent nonterminals, ancparator
grammar(OG) contains just such productions. Any CF grammar admits an equivaent
which can be also assumed to be invertible [15].
For a CF grammat: over X, the associategarenthesis grammajl2] G has the rules
obtained by enclosing each r.h.s. of a ruletofvithin the parenthese$ ‘and ‘|’ that are
assumed not to be if.
Two grammars>, G’ areequivalentif they generate the same language, L&) = L(G').
They arestructurally equivalentf in addition the corresponding parenthesis grammars are
equivalent, i.eL(G) = L(G').
For a grammat consider aentential formy with S = « anda = A, A € Vy. ThenA
is aSuffix of the Sentential For(®SF); similarly we define therefix of a Sentential Form
(PSF).

The coming definitions for operator precedence grammars [10], heredtdoyd Gram-
mars are from [8]. (See also [11] for a recent practical account.)
For a nonterminal of an OGG, theleft and right terminal setare

Lo(A)={a€ Y| AS Baa} Ra(A)={a € X | A= aaB} (1)

whereB € Vy U{e}. The two definitions are extended to a Bétof nonterminals and to a
strings € V1 via

LeW)= | Lo(4) and La(B) = La(D) ©)
AeW

whereD is a new nonterminal an@’ is the same a& except for the addition of the pro-
ductionD — (. Notice thatLs(e) = 0. The definitions forR are similar. The grammar
nameG will be omitted unless necessary to prevent confusion.

R. Floyd took inspiration from the traditional notion of precedence betwagdmmetic op-
erators, in order to define a broad class of languages, such thatappe shthe parse tree
is solely determined by a binary relation between terminals that are consgartbecome
consecutive after a bottom-up reduction step.

Foran OGG, leta, B range ove(VyUX)* anda, b € Y. Three binary operator precedence
(OP) relations are defined:

equal-precedencer = b <= JA — aaBbS, B € Viy U{¢e}
takes precedencer > b <= JA — aDbf anda € R (D) 3
yields precedences < b <= JA — aaDp andb € L (D)

For an OGG, theoperator precedence matrfoPM) M = OPM (G) is a|X| x | X| array
that to each ordered pa(u, b) associates the saét/,;, of OP relations holding between
andb. Between two OPM34/1; and M, we define set inclusion and operations.

My C Ms if Va, b : Ml,ab - M2,ab7 M = M{UM; if Va,b : My, = Ml,abUMQ,ab 4)

Definition 1. G is an operator precedence or Floyd grammar (FG) if, and onhy\f, =
OPM(Q) is a conflict-free matrix, i.e¥a, b, | M| < 1. Two matrices are compatible if
their union is conflict-free. A matrix is total if it contains no empty case.

In the following all precedence matrices are conflict-free.

2.1 Known properties of Floyd grammars

We recall some relevant definitions and properties of FGs. To ease m@f@sence, we fol-
low the terminology of [8].

Definition 2. Normal forms of FG

A FG is in Fischer normal form [9] if it is invertible, the axiodoes not occur in the r.h.s.
of any production, the only permitted renaming productions h&wes left hand side, and
no e-productions exist, except possitsty— ¢.

An FG is in homogeneous normal form [8, 5] if it is in Fischer normal fornd afor any
productionA — a with A # S, L(«a) = L(A) andR(a) = R(A).

Thus in a homogeneous grammar, for every nonterminal symbol, all of itsatites pro-
ductions have the same pairs of left and right terminal sets.

Statement 1 For any FGG a structurally equivalent homogeneous HGcan be effectively
constructed [8].

For the reader unfamiliar with FGs, in Appendix 1 an example illustrates the isrma
and the boolean family induced by a given precedence matrix, to be resdnied.

We consider FGs having identical or compatible precedence relationseasidig their
boolean properties.

Definition 3. Precedence-compatible grammars
For a precedence matriX/, the class [8]C), of precedence-compatible FGs is

O = {G | OPM(G) C M} .

The equal-precedence relations of a FG have to do with an important geraohdhe
grammar, namely the maximal length of the r.h.s. of the productions. Clearlgdagiion

A — Aiar... A Aryq, Where eachy; is a possibly missing nonterminal, is associated
with a1=as=...=a;. If the = relation is circular, the grammar can have productions of
unbounded length. Otherwise the length of any r.h.s. is bounde@.by + 1, wherec

is the length of the longest-chain. For both practical and mathematical reasons, when
considering the class of FG associated to a given OPM, it is conveniegdttact attention

to grammars with bounded r.h.s. This can be done in two ways.

Definition 4. Right-bounded grammars
The classC)y , of FGs with right bound: > 1 is defined as

Cui =1{G |G e Cy A (Vproductiond — a of G, |o| < k)}

6

The class of=-acyclic FGs is defined as
Cu=={G| G e Cy | matrix M is =-acyclic}
A class of FGs is right bounded if it isright-bounded for somg.

The class of=-acyclic FGs is obviously right-bounded. Notice also that, for any matfix
the set of the production stencils of the grammar§'in;, (or in Cjy,~) is finite.
The following closure properties are from [8] (Corol. 5.7 and The@®).5

Statement 2 For every precedence matri¥, the class of FLs
{L(G) | G € Cr i}
is a boolean algebra.

In other words, the proposition applies to languages generated by nghtdbd FGs having
precedence matrices that are included in, or equal to some nidtridotice that the top
element of the boolean lattice is the language of the FG that generates #llgpsgatax
trees compatible with the precedence matrix; in particulay/ ifs total, the top element is
P

We observe that the boolean closure properties of VPDL immediately foltmw 8tate-
ment 2 and from the fact that a VPDL is a FL characterized by a particoitar 6f prece-
dence matrix [7].

Other simple properties
Statement 3 The class of FG languages is closed with respect to reversal.

This follows from the fact that, it. < b for a FG grammarz, then it holdsb > « for the
grammaiG* obtained by reversing the r.h.s. of the production§pénd similarly fora > b.
Thea = b relation is turned intd = « by production reversal. It follows th&t” is a FG.

It is interesting to briefly discuss the cases of very simple precedence esaffiicst
consider a matrix}/ containing only<, hence necessarily conflict free. Then the non-
empty r.h.s.’s of the productions of any grammaiCigy may only be of the types N or
a. Therefore the grammar isght-linear. (Conversely for> and left-linearity.) Second,
supposel does not contaig=. Then any production of any grammardr,; only admits
one terminal character. Notice tHatear CF grammars can be cast in that form, but not all
linear CF languages are FG since they may be non-DCF.

To finish, we compare regular languages and FGs.

Statement 4 Let R C X* be a regular language. There exists a FG grammarfoin the
family Cr 2, where)M is the precedence matrix such thet, = < forall a,b € X.

The statement follows from the fact that every regular language is gieokeby a right-
linear grammar. If the empty string is iR, the FG has the axiomatic ruke — .

A stronger statement holding for any precedence matrix will be provedhsestion 4.1 as
a corollary of the main theorems.

3 Closure under concatenation

Although FGs are the oldest deterministic specialization of CF grammars, tharfiemtal
but non-trivial questions concerning their closure under concatenario Kleene star have
never been addressed, to the best of our knowledge. This theoggticial perhaps due to the
facts that DCF languages are not closed under these operationsaatiikticonstructions
used for other grammar or PDA families do not work for FG, because thstray the
operator grammar form or introduce precedence conflicts. The clpsuwés to be outlined,
though necessarily rather involved, are constructive and practicalgif@dmmars produced
for the concatenation (or the Kleene star) structurally differ from thengrars of the two
languages to be combined in rather surprising ways: the syntax tree attinegtring may
invade the other syntax tree, or conversely, and such trespassesouageveral times.

A simple case is illustrated b¥ - L whereL = a™ U b™ U ab with precedences <

a,b > b, a=b. Then fory; = aaa the structure is(a(a(a))), for yo = bb the structure is

((b)b), but the structure of; -y is (a(a(ab)b)), which is not a composition of the two.

The following notational conventions apply also to Section 4. Let the grambwrs
G = (Wn,, X, P1,51) andGe = (V,, X, P35, S2), and the nonterminals be conveniently
namedVy, = {S1, 41, As,...} andVy, = {Se, By, Bs,...}, in order to have distinct
names for the axioms and nonterminals of the two grammars.

To simplify the proofs we operate on FGs in homogeneous normal form.

For two setsq, A; C X and a precedence sign, say the notationd; < A, abbrevi-
atesva € Aq1,Vb € As, a < b. Moreover, we extend precedence relations ftbnx X' to
pairs of stringse, 3 € (X U Vy)* such thatas ¢ (ZUVy)" - VaVn - (ZU V)"
by positinga < <= R(a) < L(F), and similarly for>; for = the condition is
last (mx(a)) =first (ms(B)).

When writing derivations and left/right terminal sets, we usually drop thengrar name
when no confusion is possible.

Theorem 1. LetGy, G2 be FGs such tha® PM (G1) is compatible withtO PM (G5). Then
a FG grammairG can be effectively constructed such that

L(G) = L(G1) - L(G2) andOPM(G) 2 OPM(G1) U OPM(Gs) .

Proof We give a few hints on the construction@fand support the intuition by means of
figures and examples. For simplicity, we assume at= OPM (G1) U OPM (G») is a
total matrix. This does not affect generality, because at every steglghgthm checks the
precedence relation between two lette@ndb, and if M, = (), it canarbitrarily assign a
value toM,;, thus obtaining a matrix compatible wift1.

The core of the algorithm builds a “thread” of productions that joins thegees of:;
andxs, 1 € L1, x5 € Lo. The thread is recursively built in accordance with the precedence
relations that connect the letters occurring at the right of the parseftigeaad at the left of
the parse tree af,, respectively. Since the parsing driven by operator precedelat®res
is bottom-up, the initialization of the construction is based on the possible “facfrthe

rightmost letter ofz; and the leftmost one of,. If 1 = y;1 - a, x2 = b - yo anda=b,
then we build a production of the tygd B] — ...ab..., [AB] being a new nonterminal
(see Figure 1). If instead the rightmost partgfcan be parsed without affecting up to a

[AB]

N>

Fig. 1. Cross-border production constructed when the facing letters aréiaquacedence.

derivationN = y; becausél () > b, then, when the parsing af, leads to a production
such asd — «a - a - N with a=b, the junction of the two syntax trees begins at that point by
means of a production such g$B] — «-a - N - b - 3 (see Figure 2) so that the original
precedence relations 6f; andG are unaffected.

Fig. 2. Another case of cross-border production whefiV) > b.

Similar rules apply if instead < b.

After this initialization, the construction of the “joint parsing thread” follows tia¢ural
bottom-up parsing. For instance, suppose that a nonterminal of #Behas been built;
this means thatl is a SSFB is a PSF andlA B] “joins” two derivationsA = y1, atthe end
of a parse tree for some string of L; andB = y, at the start of a string, of Lo; thus,
if G; containsaruled; — o -a- A (A; being a SSF) and symmetricallyy — B - b - 3,
with a=b, then the new productio; B1] — a - a - [AB]-b- S is created.

The caseg > b anda < b are treated accordingly. The last situation is illustrated in Figure
3 (right). a
The complete proof is in Appendix 2.

[AB] — ... is created [AB1] — ...is created
at initialization
2N X AN PN
'y A RV B i

a/ JL \zlél b B a/ JL \1‘4 B/b,1 \51
L

U uo

AB AB1\

N |

8 AB b1 B1

Fig. 3. Productions created by growing the cross-border thread.

4 Closure under Kleene star

In many language families the closure under Kleene star comes together witloshiee
under union and concatenation. Thus for a CF languagéhe syntax tree of a string
T = y1y2...y; € L' with y; € L, is simply obtained by linking, in a left- or right-linear
structure, the syntax trees of componentsys, . . ., y;. In the case of FG, a similar compo-
sition is in general not possible, because the syntax treenofy have a sharply different
structure, as already observed for the concatendtioh.

A case is illustrated by the third power of langudge> o™ Ub™ U ¢, assuming the prece-
dences (induced by further sentences not considered) o ®ei, a=b,b > b, b=c,c < c.
Then the structure of a string suchas ys - y3 = a® - b? - ¢ € L3 is not the composition
of the structures of eithey; - y» andys, or ofy; andys - ys.

Before we enter the main topic, it is useful to return to #hacyclicity condition of Defi-
nition 4. Consider language = {aa} with the circular precedence relatidd = {a=a},
and a stringa®”,p > 0, in the Kleene closure of.. The FG grammar of.* with OPM
M would then need to contain an unbounded production{Set+ a?’,p > 0}, which

is not permitted by the standard definitfoof CF grammar. For this reason we make the
hypothesis that the precedence matrixiscyclic.

Theorem 2. LetG = (Vn, X, P,S) be a FG such thaDPM (G) is =-acyclic. Then a
FG G = (Vn, 2, P,S) with OPM(G) 2 OPM(G) can be effectively built such that
L(G) = (L(G))".

As in Theorem 1 we assume without loss of generality the precedence madtexatal, and
in this case alse=-acyclic. Not surprisingly the construction 6fis based on the construc-
tion in Theorem 1 for.. L, but the required extensions involve some technical difficulties.

2 We do not discuss the possibility of allowing regular expressions in theuptioas.

10

We need to consider only the irreflexive closure, since forL* it suffices to add the
productionS — . We assume the form of gramm@rto be homogeneous. Again, we give
here just an intuitive description of the construction; the complete proofeothborem is
Appendix 3.

G is built as the last element of a series of grammars that begins@ith= G and
continues with the gramma¥, that generated - I. U L, computed according to the con-
catenation algorithm outlined in Section 3 and the union algorithm implied by Statement
2. ThenGs is built by iterating the application of the concatenation algorithni.fcand
L itself. Notice, however, that this new application produces new nonternohie type
[[AB]C]. Obviously this process cannot be iterated indefinitely since it would pedu
grammar with infinite nonterminals and productions. Thus, nonterminals of]pdg C]
are “collapsed” intd AC]. Intuitively, this operation is justified by the observation that the
production of an “intermediate” nonterminal of the tyjhé B]C] means that, i/, A = x;

a suffix of some string: € L, B = y belonging toL, andC' = z;, a prefix of some: € L.

In this way, the number of possible new nonterminals is bounded and th&wxim of
G terminates when no new nonterminals and productions are generatec Eigives an
idea of how the sequencg;, G5, G3 is built.

Notice also that the details of the construction involve the production of salcalapound
nonterminals of typg[AB], [CD], E}, i.e., collection of “boundary nonterminals”. This is
due to the need to iteratively apply a normalization procedure that eliminatestegir.h.s.
For instance, suppose that during the process the following productiermuilt:

[AB] = a| B, [CD]—al|y, E—ald

whereA, B,C, D, E € Vy, and we recall that the nonterminals of the form of a paiB]
are created by the concatenation algorithm. Then, elimination of repeated ptoduces
a normalized homogeneous grammar containing the rules:

{[AB],[CD],E} = o, {[AB]} =, {[CD]} =~, {E}—=¢

O
It is possible to prove that the closure of FL under boolean operationsatenation
and Kleene star, implies that certain subfamilies of FG languages are clodedthe same
set of operations: the cases of regular languages and of visibly pushidnguages over
the same patrtitioned alphabet are straightforward.

4.1 Regular languages with prescribed precedences

For regular languages, we have already observed that their stabdandsky grammar of
type 3, say right-linear, is a very special FG containing oalyelations. LetR C X* be

a regular language and I8 be any precedence matrix. A more interesting question is
whether it is possible to find a FG that generalgsvith M as OPM. The positive answer
follows from Theorems 1 and 2 under fairly general hypotheses.

11

grammarG': C
)Z k/K\A f/ \c
grammarG’s: [AB] [HK]

' T g B
parsing <h=k[AB]c>e
grammar ofL(G2).L(G1): HK]C

[AB}\
< N
grammarGs : [HC)
T
b

Fig. 4. Productions used for parsing a stringlinL.. L.

Corollary 1. Let M be any totak=-acyclic precedence matrix over. Then the family of
regular languages ovekF' is (strictly) included in the family of languages generated by FGs
ranging overCy.

Proof. Let R be defined by a regular expression. In order to construct a FG grawmithar

the given matrix)M/, we analyze the regular expression starting from the atomic subexpres-
sions. Anytime two subexpressions are combined by union or concatenesipectively,

the constructions of [8] or of Theorem 1 respectively produce a grapuampatible with

M, for the union or concatenation. Similarly, anytime a subexpression is @taerthe
construction of Theorem 2 produces the corresponding grammar. a

This result gives a procedure, based on the previous algorithmspffstracting from a
regular expression, a FG grammar with the specified precedencegtitulaa, when the
assigned precedences correspond to the left-linear (or right-lineacjse, the procedure
returns a left-linear (or right linear) grammar. When the precedenedbase of a VPL [1,
7], the procedure returns a grammar with the specified partition of the aplvab call,
return and internal symbols.

Notice that the procedure works as well for ambiguous regular eXpresdVe are not
aware of comparable methods for constructing a deterministic CF grammaigen tor
parse in accordance with a prescribed syntactic structure, a languegjéesl by a regular
expression.

The same procedure, when applied to a regular expression, possiheated with
intersection and complement, over precedence-compatible FG languagegsto obtain
an equivalent FG. From a practical standpoint, this approach wouldifpir construct a
precedence parser for a grammar featuring “extended” regulaessipns in the right-hand
sides. This should of course be contrasted with the well-known nonfrela$tDCF under
intersection and union.

12

5 Conclusion

We mention some questions raised by the present study.

Every class of Floyd languages over a giveracyclic precedence matrix includes (pos-
sibly after filling the precedence matrix to totality) the regular language familysaridsed
with respect to the basic operations: concatenation, Kleene star,ak\and all boolean
operations. The FG family appears at present to be the largest familyitexdnguch prop-
erties; in particular it strictly includes [7] the visibly pushdown language§\/Pfamily.
On the other hand, several other language families fall in between the \&RDlthe CF,
such as the height-deterministic family of [14] or the synchronized pushdamguages
of [4], but some of the basic closure properties are missing or the lapdaagly is non-
deterministic. We wonder whether a significant family of deterministic CF larggjagore
general than FL, yet preserving the same closure properties, caue f

In another direction, one could ask a similar question about the invarianpenty of
FLs with respect to the non-counting (or aperiodicity) property [6].

It would be interesting to assess the suitability of Floyd languages for apphisaes-
pecially to XML documents and to model checking, that have motivated othgudaye
models such as the balanced grammars and the visibly pushdown langivegelkserve
that the greater generative capacity of FGs should improve the realism iot&mded mod-
els, by permitting the use of more flexible multi-level and recursively nestadtstes.

Finally, to apply these theoretical results in practice, e.g. to derive modekuty algo-
rithms therefrom, the computational complexity aspects should be investigabektédly,
the closure algorithms presented in this paper have a typical combinatdtied rthe worst
case complexity in fact is dominated by the size of nonterminal alphabets wid@atoa-
structed as power sets of the original ones. Notice also that the algoriteomass starting
point grammars in homogeneous normal form, which in turn require a nontratphabet
constructed on top of the power set of the terminal alphabet.

On the other hand, the risk of combinatorial explosion is rather intrinsic iretfaesi-
lies of algorithms, starting from the seminal papers on model checking abd MWe hope
that further research will produce suitable heuristics and techniquestagaauch a com-
plexity with the same success obtained by the long-standing research inchedking.

Aknowledgment.We thank Jean Berstel for lively discussions.

References

1. R. Alur and P. Madhusudan. Visibly pushdown languagesST®C: ACM Symposium on Theory of

Computing (STOCR004.

R. Alur and P. Madhusudan. Adding nesting structure to watdaCM, 56(3), 2009.

J. Berstel and L. Boasson. Balanced grammars and their largyuagd. Brauer et al., editoFormal and

Natural Computingvolume 2300 o£ NCS pages 3-25. Springer, 2002.

4. D. Caucal. Synchronization of pushdown automata. In O. H. llzardaZ. Dang, editordevelopments in
Language Theorywolume 4036 o£.NCS pages 120-132. Springer, 2006.

5. S. Crespi ReghizziThe mechanical acquisition of precedence grammeitD thesis, University of Cali-
fornia UCLA, School of Engineering, 1970.

whn

10.
11.
12.
13.
14.

15.
16.

13

S. Crespi-Reghizzi, G. Guida, and D. Mandrioli. Operator precaggnammars and the noncounting
property. SICOMP: SIAM Journ. on Computin$0:174—191, 1981.

S. Crespi-Reghizzi and D. Mandrioli. Algebraic properties of stmecticontext-free languages: old ap-
proaches and novel developments. WORDS 2009 - 7th Int. Conf. on Words, preprirdasailable as
http://arXiv.org/abs/0907.2130, 2009.

S. Crespi-Reghizzi, D. Mandrioli, and D. F. Martin. Algebraic praojesrof operator precedence languages.
Information and Contrql37(2):115-133, May 1978.

M. J. Fischer. Some properties of precedence languag&TdC '69: Proc. first annual ACM Symp. on
Theory of Computingpages 181-190, New York, NY, USA, 1969. ACM.

R. W. Floyd. Syntactic analysis and operator precedehdCM 10(3):316-333, 1963.

D. Grune and C. J. Jacolarsing techniques: a practical guid&pringer, New York, 2008.

R. McNaughton. Parenthesis grammdrsACM 14(3):490-500, 1967.

R. McNaughton and S. Pape@ounter-free AutomataMIT Press, Cambridge, USA, 1971.

D. Nowotka and J. Srba. Height-deterministic pushdown automatd.. Kucera and A. Kucera, edi-
tors,Mathematical Foundations of Computer Science 2007, MFCS 2007y ®esilov, Czech Republic,
August 26-31, 2007, Proceeding®lume 4708 oL.NCS pages 125-134. Springer, 2007.

A. K. SalomaaFormal LanguagesAcademic Press, 1973.

J. Thatcher. Characterizing derivation trees of context-fremmeas through a generalization of finite
automata theoryJourn. of Comp. and Syst.S&:317-322, 1967.

14

Appendix 1. lllustration of Floyd grammars
Example 1.The languages

Ly ={b"c" |n>1}, Ly={f"d"|n=>1}, L3={e"(fb)" |n=>1}
are generated by the homogeneous normal form grammars:

F12{51—>A, A—)bAC|bC}
Fy=1{S3 = C, C—eCfb|efb}

Their precedence matrices are:

b|cl|dle|f bic|d|e| f blcd|el|f
<

Vo

M,y

|||

My

o[O |

M; =

>

|||

f flE = fl=

The three matrices are conflict-free and precedence compatible (in peartioey are dis-
joint). Consider the matrix/ = M; U M, U M3, which is =-acyclic, and the gram-
mar/language familie€’y; 4 andCj ~. The two families contains the three grammars, as
well as the union language; 23 = L1 U Lo U L3, whose grammak 3 has the productions
S123 — A | B | C'instead ofS; — A, etc.

Incidentally, in [7] it is proved that languade 23 is not a visibly pushdown language [1].
The four grammars are also free FG. Now consider the family of homogeri@sV —1(F3),
and a grammakf included therein:

H = {S — XQ, XQ — eleb ‘ efb, X1 — engb}

We observe thall is a homogeneous but not a free grammar bec8ygeXs) = L (X1)
andRpy(X2) = Ry (X1). ThenH < FyandL(H) C L(F3). The classW —!(F3) is a
boolean algebra.

15

Appendix 2. Proof of concatenation closure

Theorem 1. Let G, G2 be FGs such thabPM (G) is compatible withOPM (Gs).
Then a FG grammak can be effectively constructed such that

L(G) = L(G1).L(G2) andOPM(G) 2 OPM(G1) U OPM(Go)

Proof. We assume that; andG, are in homogeneous normal form. First we present the
algorithm that constructs a homogeneous &G= (Vi, X, P, S) such thatOPM (G) 2
OPM(G1) UOPM(G2). Then, by means of a series of lemmas, we prove fiét) =
L(G1).L(G2).

Algorithm building grammar G of concatenation

For simplicity, we assume that = OPM (G1) U OPM(G2) is a total matrix. This does
not affect generality, because if, at any step, the following algoritheclchthe precedence
relation between two lettersandb, andM,, = (), we canarbitrarily assign tal/,;, a value,
thus obtaining a matrix compatible with .

Two types of nonterminals occur i6: the non-axiomatic nonterminals 6f; andG, and
new nonterminals named by certain pdids3] such thatd € Vi, andB € Vy,.

The algorithm may produce non-invertible grammars and may create usebesgions.
Thus, a final step will transform the grammar into the desired normal fotheagnd.

Initialization Initialize G with Vy = Vi, U Vi, \ {S1, S2} and P with the productions of
P, and P, that do not contairb; or S,. Then add ta= the productions created using the
following two initial cases.

1. Initial case=. For everyA — o € P;,B — 8 € P, such thatd is a SSF and3 is a
PSF andv=4, and one of the following mutually exclusive conditions hold:
- a = da, B = b3, schematized by:

[AB]
O//C/ \b\ﬁ’

—a=daN,B=0b8,R(N)>b, N € Vy schematized by:

16

o/// /Af\b\ﬁ’

—a=da,f=Nbs,a<L(N), N € Vy (the symmetric of the preceding case);
add toVy the nonterminalAB] and to P the productioNAB] — af. Lg([AB]) =
L, (A) andRqg([AB]) = Ra,(B), therefore no new precedence relations are added
to M by the new productions, because, thanks to the homogenous facmarid G-,
L(B) = L(B)andR(a) = R(A).

2. Initial cases< and>.
(a) Case<. For every derivations
S; = €A = EaaAwith € # e, andSy = BC = bAC¢

such thatR(A) > b anda < b, add toVy the nonterminalAB] and toP the pro-
duction[AB] — Abp. This case is schematized below.

step 2(a)
A P

P /
SN ay

i)
T/‘f .,

\
WM.

Remark: from the homogeneous form, for any productidns— «; | ag, it is
R(a1) = R(a2) = R(A) and precedence relations are unaffected.
(b) Case>. This and the previous case are symmetrical. For every derivations

S1 = CA = CaaandSy, = B¢ = BbBEwith € # ¢

such thatw < £(B) anda > b, add toVy the nonterminalAB] and toP the pro-

duction
[AB] — aaB

17

Remark: the precedence relations are unaffected.
(c) For every productions
S1— A1, B—bs8

such thatB is a PSF an@R (A1) > b, add toG the productiorfA; B] — A;b0.
Remark: the precedence relations are unaffected.
(d) Symmetrically, for every
A— aa, SQ — B1

such thatd is a SSF and < £(B;), add toG the productiofAB;| — aaB;.
Remark: the precedence relations are unaffected.

Then the following rules 3., 4., 5. are applied over and over, until no ma@uations
are added to the grammar. In rules 3., 4., 5., the nontermifigla are SSF and the non-
terminalsB;, B are PSF. In all cases the precedence relations are unaffected.

3. Case=. For everyAd; — aaA € P, andBy — BbS € P, (clearly itisA; # S; and
B # S, since the grammar is homogeneous), suchdhkdtand[AB] € Vy, add toP
the productiorfA; B1] — aa[AB]bS.

4. Case>. For everyAd; — aaA € P; such thatd, is a SSF, and for everip € Vy,,b €
X, such thata > b and Sy = B¢ = Bbp and[AB] € Vy, add the production
[A1B] — aalAB] to P.

The subcas#, — B is included in the case, because conventionally eweryX’ takes
precedence over.

5. Case<. For everyB; — Bbf € P, such thatB is a PSF, for everyd € Vi, ,a € X,
such thatz < b andS; = aaA and[AB] € Vi, add the productiofdB,] — [AB]b3
to P.

The next figure illustrates the productions created by Case 5.

step 5 after step 2(a)
A PA
// 541 Bl/
a/ i \A B/ L \
/[ABlj '
[AB] \b\ﬁ
VRN

\

8

The subcasé; — A is included in the case, because conventionallyields prece-
dence to every ¢ X.

18

At last, to create the productions for the axiom, apply the rule:

6. Case axiomApply the following rules to every pair of productiorts — A; and

SQ — Bj.

(@) If [A1B;] € Vn, add toP the productionS — [A;Bj].

(b) If Ay — aaN with N € Vi, U{e}isin P, andB; — bj is in P, such that > b,
then add taP the production$A; B;] — A;b5 andS — [A;By].

(c) If Ay - aa € PyandB; — NbS € P> with N € Vi, U {e}, such that < b, then
add toP the production$A, B;| — aaB; € P andS — [A;By].

Remark: the productions thus added”alo not modify the precedence matriX.

It is obvious that the construction terminates, because there are finitelypnasiple new
nonterminals of the formiA B] and finitely many possible righthand sides for the produc-
tions.

Finally, since each step of the construction does not induce new prexedsations, the
grammarG is a FG with a matrix\/ compatible withAf; and Ms.

From Statement 1, a structurally equivalent grammar in homogeneous rformatan be
obtained. in particular, the grammar must be reduced by eliminating uselesscpons
and repeated righthand sides. The normalization will be refined later gaottstruction of

Kleene star.

Proof that L(G) = L(G1).L(G2) The inclusionL(G) C L(G1).L(G2) follows easily
from the construction, so we just have to prove the includio§) > L(G1).L(G2). For
that we need the next four lemmas. The next one states two symmetricattigepe

Lemmal. - Ifthere are derivations

Si=>A1=>x So=>y=bz beX
andRR(A;) > b, thenG has a derivation

S = [A1B] = [A1B]¢ = A1b¢ = ay.

— If there are derivations
S\ =>x=za a€cX, Sy = B =y

anda < £L(B1), thenG has a derivation

S = [AB1] = £[A, B1] = aBy = .

Proof. For the first item: ifSy = B; = b8 = y then by construction 2(c) and 6(a)
3[A1By] — AbfandS — [A;By). If Sy = Bip& = bBE = y, then from 2.(ap[A; By —
A1b3 and for everyB; — B;3; in the derivationSy = B¢ = B; 3,6 = y there exists by
rule 5. a production 4, B;] — [A1B;]8;. ThusS = =.y. For the second item the proof is
symmetrical.

19

Lemma 2. It states two symmetrical properties:

— If there are derivationsS; = 214, = z1aad = zw, A = w, andSy, = By =
bBy = bz.y such thatR(A) > b, a < b, then there exists a nonterminal B] such that
[AB] = AbB = w.bz. (Proof: by rule 2.(a).)

— Symmetrically, if there are derivatior§y = 24 = zaa = z.za with a € ¥ and
Sy = Biy1 = BbBy; = wy withb € X, B = w such thate < £(B), a > b, then
there exists a nonterminal B] such thaf AB] = aaB = zaw. (Proof: by rule 2.(b).)

Similar to Lemma 2, the next lemma takes care of the conditioh
Lemma 3. It states two symmetrical properties:

— If there are derivations
S = 11A = aad] = oW

with A; = w, and
Sy = By = bfy = bzy

such thata=b and R (A4;) > b, then there exists a nontermingl B] and a production
[A B] — aaA1bS. (Proof: by rule 1.)
— If there are derivations
S = A = zaa = zva

and
SQ :*> By1 = Blbﬁy1 :*> wzyY1

with B; = w, such thate = b anda < L(By), then there exists a nontermingd B]
and a productiofAB| — aaB1 5.

Finally, the following lemma synthesizes all previous results and leads to ttis.thes

Lemma 4. If there are derivations
S = zA, A w, Sy S By, B3z

thenG has the derivation
S = 2[ABly = zw.zy

Proof. By induction. The initialization is covered by Lemmas 1, 2, 3, andxp&in the
induction step. Assume by inductive hypothesis that

S = xA; = raaA = raary
So = By = BbBy = y1bBy
and@ has the derivationAB)| = z1y1. Three cases may occur.

1. a=b. Then, the constructions at Case 1, (initial caseand at Case 3. of the algorithm
ensure thatz contains the productiopd; B;| — aa[AB]bg.

20

2. a > b. Similarly, by construction Case 4.
3. a < b. Similarly, by construction Case 5.

Example 2.

Gl = {Sl — Ao, AQ — CLA1 A1 — aAlb ’ CLb}
GQZ{SQ%B, B—>bc|Bbc}

The left/right terminal sets and the precedence m&#x\/ (G1) U OPM (G-) are:

R L alblc
Ag| a,b |useless A = S =
Al b |useless L2793 5=
Bluseless b cl |»

We list the results of the steps.
Initialization
Vn ={Ao, A1,B}; P={Ay—al), Ay — aAib|ab, B — bc| Bbc}

1. Initial case=
Ag, Ay are SSFB is PSF. From the derivation$y = a A1, B = bc and from the relation
R(A1) = b> b, create production

[A9B] — aA1bc

Then no production is created by the following steps:
2(a). initial case<; 2(b). initial case>; 2(c). ; 2(d). ; 3. case- ; 4. case> .

For 5. casez, from S; — Ay, B — Bbe, from the relationlL < b, and the existence of
nonterminal A B], create the production

[AoB] — [AoB]be

6. Axiom
FromS; — Ay, S — B
6(a). Sincg A B] exists, create production

The cases 6(b). and 6(c). are unproductive, and collecting all dtiptions, we obtain
the grammar:

S — [A()B], [A()B] — aAle, [A()B] — [A()B]bc, Ag — CLAl, A1 — aAqrd | ab, B — bc ’ Bbe

Grammar normalization deletes productiohs — aA;, B — bc | Bbe. No repeated right
parts are present and the homogeneous condition is already met.

21

Appendix 3. Proof of closure under Kleene star

Theorem 2. LetG = (Vy, X, P, S) be a FG such thab PM (G) is =-acyclic andL =
L(G). Then a FG& = (Vi, X, P, S) with OPM (G) 2 OPM (G) can be effectively built

such thatl(G) = L*. R
First we present the algorithm, then we prove the equivaléricd = L*.

Algorithm constructing the grammar of Kleene closure

The algorithm constructs a finite series of gramm@rs= Gi1,Gs,...,Gr, ... with L =
L(G1) C L(Gs) C ..., eventually converging ta™ = L(G).

Initialization LetG; = G = (Viv, X, P, S). Using the construction for concatenation, we
build the grammar denoted Wy, such thatL(Fy) = L?(G1).

Then we build the gramma&s generating the language(G2) = L*(G1) U L(G,), and
cast it into homogeneous normal form. It is important that when applyinmalaration,

the nonterminal names @f, are chosen so to preserve information on the original nonter-
minals.

Disciplined normalizationMore precisely, irGs, as well as in all subsequent grammars, the
nonterminal alphabet gy 2> C p(Viy x Vy UV). Anonterminal such a§ AB], [CD], E'}

is termedcompoundwhile asimplenonterminal has the form, sa§y2} or {[AB]}.

The intended meaning of such nonterminal names is clarified by the next kxa&8uppose
before normalization the grammar contained the rules:

[AB] = a| B, [CD]—aly, E—ald

whereA, B, C, D, E € Vy, and we recall that the nonterminals of the form of a paiB]
are created by the concatenation algorithm. The normalized, invertible graiimemacon-
tains the rules:

{[AB],[CD],E} = o, {[AB]} = 8, {[CD]} =~, {E}—=¢ (5)

In addition, in order to preserve language equivalence, for anyragoee of a nonterminal
N in a righthand part, the alternatives must be added that have insteddaofy com-
pound nonterminalN’ such thatV ¢ N’. Continuing the example, if rul& — n[AB]Y
is present, the normalized grammar contains the rff$ — n{[AB]}9Y and{X} —
n{[AB],[CD], E}v.
We observe that, sincé does not contain rules with identical right parts, a compound
nonterminalN € V2 may not contain more than one singleton, i|8.,0 V| < 1.

The next lemmas are straightforward consequences of disciplined naaializ

Lemma 5. The set of strings generated by gramnday starting from a compound nonter-
minal N is

L, (N) = N {La(4).La(B) , La(C)}
A,BEVNA[AB]JENACEN

22

We observe that the language generate@pwgtarting from a simple nonterminal , sy},
if A occurs also in some compound nonterminal, may differ from the languageaged
by Ain G:

La,({A}) € La(A)

In other words the above change in the nonterminal and production s@tspafrtitions the
set of strings derivable from an original nonterminal according to théesdwhere they can
occur: if, in some place, the same string can be derived, say, bdth®yand byC, in the
new version it will be derived by[AB], C'}. We will see that this separation is necessary to
distinguish between sentences that are part of a concatenation of twerd&rings, say,
x andy, of L in L* and those that are generated by the original gran@har

The next proposition relates the derivationgirand inGs.

Lemma 6. Let N € Vv 2 and[AB] € N. Then inG2 nonterminalA is a SSF, nonterminal
B is a PSF, and all strings derivable b¥. B in GG are derivable inGs by some nonterminal
N containing[AB].

Iteration Initially we set the iteration index té = 2.

1. Apply Algorithm 5 to the languagé(G;).L(G) U L(Gy), with the following variant.
Whenever the old algorithm would combine a nontermiNaE Vy ; and a nontermi-
nal H € Vy into the pair[N H] with associated productioffNH]|} — « , the new
algorithm writes instead the productiGh— « where

Qis {[AH],[CH] | forsomeB € Vy, itis [AB] € N, andC € Vy isin N} (6)

Clearly the mapping from the old to the new nonterminal names can be mangto-on
To illustrate, the combination oV = {[AB],[CD], E} and N’ = {[AD],[CD], E}
with H gives rise to the same compound nontermiffed #], [CH]|, [EH]}. In such
cases, we say that the nonterming&lsD have beemiropped by the renaming mapping
On the other hand, the pgiF H] has been created without dropping a nonterminal.
Notice that this construction can introduce new recursive rules oratems.

2. Normalize the resulting grammar into homogeneous normal form, adoptingutie s
disciplined naming scheme (5) for nonterminals, as in the initialization step.

3. If Gy differs fromG;_ go to step 1. otherwise sét = G and halt.
The algorithm clearly terminates since the nonterminal alph&het is a subset of
o(Vn x Viy U V) and the length of the production right-hand sides is bounded by the
hypothesis that the OPM is-acyclic.

A first consequence of the above procedure is the next lemma.
Lemma 7. Let N € Vy rand[AB] € N. Then for grammar= the following holds:

— Ais a SSF and3 is a PSF. Moreover either one of the following cases occur:
e NonterminallAB] was created as left part of a production of ty{@ without drop-
ping a nonterminal.

23

e Nonterminal[AB] was created ir(6) dropping a nonterminalkX, i.e., [AB] comes
from [[AX|B] with [AX] € N" € Viy;_1 and X a PSF.

Thus, whereas in the original concatenation construdtio| denotes a nonterminal that
generates two adjacent substrings that are, respectively, the sudftha prefix of strings
belonging toL, after the iteration steps gl B] belonging to a nonterminaV may also
denote that it generates such substrings that may encompass one orhmt@esentences

of L.

Notice also that Algorithm 5 may produce derivations sucVas- oN 3 with [AB] € N,
which, in the absence of the steps that collapse seyera[AX]Y ...|B] into a single
[AB] would not be recursive. By this way strings belongind tg and not only to a finite
concatenation of, with itself, may be generated. On the other hand the separation between
the variousN; guarantees thal; derives only those strings that would be generated by
everyone of its elements; thus, wherevéris generated in a derivation éf, the strings it
produces are compatible with their context sid¢gls produced in sentential forms where
at least one of its elements would have been generated by some intermealiateagpro-
duced by the above iterative algorithm.

Finally notice that a generic elemelmt B], whether it appears in one or malg, may be

the result of the collapsing of different previous elements. For instahedpllowing pro-
ductions could be generatedAB]} — o~y as the result of collapsingA X|]B] into [AB]
from productions such as

A—a,X —-~v,B— 3, witha=y=8,L(X)C L

and{[AB]} — (.d.n as the result of collapsingAY|B] into [AB] from productions such
as
A—¢ Y —0, B—mn, with{=é=nL(Y)CL

This again means that, if the singlet¢pAB]} is generated in some context, then it may
generate strings that consist of an appropriate SSF derived4rand a PSF derived from
B, that encompass strings bfderivable fromX andY respectively.

As a consequence we can assert the following lemma.

Lemma 8. At every iteration steg, L(G7) is contained inL*.

To complete the proof we now state the converse lemma.

~

Lemma 9. LT is contained inL(G).

Proof Consider a string = z1.2o....x,,z; € L. We want to show that it is possible to
parse it according t6:. Without loss of generality, we assume tidt= OPM(G) is total
so that a bottom-up deterministic parsing of any strind.ihis always possible according
to a FG inC), (as implied by Statement 2).

1) Afirst pass of parsing (possibly absent) can be performegdiynapplying all reduc-
tions completely “contained within singlg”. More precisely, let; , andx; s respectively

denote a prefix and a suffix af. Then it isz; ,dx; = z;. This pass can be performed by

24

using productions originally id-, up to some possible renaming of nonterminals due to the
normalization.

2) A second pass may involve productions generated during the cdimtrad G
(again, up to some renaming of nonterminals and splitting of their set of rigthtsides)
in order to apply reductions in the “boundaries” betweeandz;_ 1, i.e.,d = Ti s Lit1,p-
This pass produces a string= asas ... a;, such thato; = Zi—1,s-Tip, and no further
reductions of the previous types 1) and 2) are possible. This meang tbastain one case
o;=a;4+1. Notice that, as a particular case, the parsing could be completed after disis ph
if, e.g.,

S = Sxy = STp1.Tp ... = T1.To ... Tp

3) If the above case does not occur, let us first consider the case

31) ...<ajs=air1p > ..., Whereq, s is a suffix ofa; anda;y 1, a prefix ofo; 1,
i.e., only two consecutiva’s are involved in the first reduction after phases 1 and 2.
Also, «; s derives a suffixy;—, of x;_, concatenated with a prefix of z; and a;11,
derives a suffixy; of x; concatenated with a prefps,; of ;1.
Sincex;_.x; € L?, its parsing — by using the productions@$ — must produce some

*
N sC = 2i-1.Yi—1-2i-Yi

i.e., ¢ = y;; notice that no further reductioN — a; sCp, Cp being aproper prefix of ¢,
would be possible, since, otherwise, the same reduction could be appéiediering the
second pass above without involving, | ;.
Consider now the parsing @f_;.x;.x;,1 according ta7s. On the one hand we have reduc-
tions (building bottom-up the derivationgjy; s = Zi_1.yi_1.2i; on the otherp 1,V =
Yi-Zi+1-Yi+1. Both reductions up to this point have been applied by using producti@rg in
(as usual, up to the renaming of some nonterminals).
Notice also thatv; 1, is of the typeS N;y , with N; = {[AB],... H,...} and{ = {A for
someA belonging to soméA B] belonging toN;. In other wordsN; denotes the “bound-
ary” where the parsing of; and that ofr;, ; merge according t6:5.

3.1(a) Ifboth¢ and~y are+ ¢, this implies(=~ and the existence i@ of a production
C — B~ with B the second symbol ¢4 B] (A being the same as §H). Thus, on the basis
of the construction of73 the productior[N,|C] — «; s.c;11,, Subsequently transformed
into N, — o s.vi11,p IS In Gz and the corresponding reduction can be applied. It produces
a string

*
- XN]CQZS.OJH_Q o= Xai75ai+17p¢.ai+2 = Xi—1,5-Lip-Li,s-Li+1,p-LTit+1,s-Li+2p

The next figure provides an example of the reductions (Case 3.1(@@@&m the pars-
ing according td=, G2, andGs, respectively.

25

grammarG: jz, . /K\A]f/c\c
grammarGa: [AB] [HK]
« b Tk A
parsing <h=k[AB]c > e
grammar ofL(G2).L(G1): [HK]C|
h/k/ [}43\0
a b
grammarGs : [HC]
h/k/ }B\c
b

3.1(b) Ifinsteadyise (the casé& = « is symmetric), this means th& = z;1.yi+1
in G and¢ > ¢. Thus a productionV, — «; s{A is in Gp with [H A;] belonging toN},
andA; — «aA being a production o7 for someA,, H. Therefore, again, a production
[[NL]B] = i st p, later transformed intdVy, — «; s.iy1,p, With [H B] € Nj, has been
built in G3.

At this point the parsing can proceed in the same way by using suitable qhi@ut
generated during the various iterations of the construction algorithm.

3.2) It may also happen that, during the parsing, a reduction involving mangttvo
consecutiven’s, of the type... — <a;=a;11=...=qa;1 > (With no <, > in between)
becomes necessary, with

ces T ROG=QGLI= =G> = T T4 - T4k

wherej > i, h > k.
For the sake of simplicity assume that such a reduction occurs right aftsetoad phase
(the reasoning applies identically to other cases): this meanalth*atxi,l,s.xi,p, etc.
Thus the construction aff3 has built the productiodV,, — «; s.c11, defined as above
(notice: 41, coincides witha; 1 Sincea; 1 does not contain any, >; not the same for
ai,s)-

At a subsequent iteratioh > 3, grammarG; contains the further productioN; —
Qi s5-Qig1p-012p (A0AINQ;4 2, coincides witha;;2) and so on, until producingv; —

<o;=ai1=. .. =a;>. Since at every iteration new productions are generated and since
k is bounded by the hypothesis that there is no circularity in‘thelation, the production
Ny — <a;=a;41=...=a; > has certainly been generated by the constructioty of

Thus, the parsing of can proceed until the full derivation has been built bottom up.O

