
Operator precedence and the visibly pushdown property★

Stefano Crespi Reghizzi and Dino Mandrioli

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci 32, I–20133 Milano

{stefano.crespireghizzi, dino.mandrioli}@polimi.it

Abstract. Operator precedence languages, designated as Floyd’s Languages(FL) to honor
their inventor, are a classical deterministic context-free family. FLs are known to be a boolean
family, and have been recently shown to strictly include the Visibly PushdownLanguages
(VPDL); the latter are FLs characterized by operator precedence relations determined by the
alphabet partition. In this paper we give the non-obvious proves that FLs have the same clo-
sure properties that motivated the introduction of VPDLs, namely under reversal, concatenation
and Kleene’s star. Thus, rather surprisingly, the historical FL family turns out to be the largest
known deterministic context-free family that includes the VPDL and has the same closure prop-
erties needed for applications to model checking and for defining mark-up languages such as
HTML. As a corollary, an extended regular expression of precedence-compatible FLs is a FL
and a deterministic parser for it can be algorithmically obtained.

1 Introduction

From the very beginning of formal language science, research has struggled with the wish
and need to extend as far as possible the elegant and practical properties of regular languages
to other language families that overcome the limitations of finite-state models in terms of
expressivity and allow more accurate modelling of relevant phenomena. Inparticular, it is
well known that closure properties under basic operations allow to automatically construct
complex models from simple ones, and to decide important problems: e.g. model checking
relies on closure w.r.t. boolean operations and on decidability of the emptinessproblem.
Since, among the classic formal language families, only regular languages enjoy closure
w.r.t. the needed operations, the search for new subclasses – mostly of context-free (CF)
languages – exhibiting the wished properties, is a long-standing researchconcern.

A major step has been made by McNaughton with parenthesis grammars [12], whose
productions are characterized by enclosing any righthand side (r.h.s) within a pair of paren-
theses; the alphabet is the disjoint union of internal characters and the pair. By considering
instead of strings thestencil(or skeletal) trees encoded by parenthesized strings, some typi-
cal properties of regular languages that do not hold for CF languagesare still valid: unique-
ness of the minimal grammar, and boolean closure within the class of languageshaving
the same production stencils. Further mathematical developments of those ideashave been
pursued in the setting of tree automata [16]. Short after McNaughton’s results, we investi-
gated similar closure properties ofFloyd’s operator precedenceGrammarsandLanguages

★ 10.02.2010. Partially supported by PRIN 2007TJNZRE-002, CNR-IEIIT and ESF AutoMathA.

2

[10] 1 (FG and FL), elegant precursors of LR(k) grammars and Deterministic CF (DCF)
languages, also exploited in early work on grammar inference [5]. The production set of an
operator grammar determines three binary precedence relations (greater/less/equal) over the
alphabet, that for a FG grammar are disjoint, and are presented in a matrix. The precedence
matrix, even in the absence of the productions, fully determines the topology (or stencil)
of the syntax tree, for any word that is generated by any FG having the same precedence
matrix. The families of FGs that share the same precedence matrix and the corresponding
languages are boolean algebras [8, 5].
We also extended the notion ofnon-countingregular languages of McNaughton and Papert
[13] to parenthesis languages and to FLs [6].

Decades later, novel interest for parentheses-like languages arosefrom research on
mark-up languages such as XML, and produced the family ofbalanced grammarsand lan-
guages [3]. They generalize parenthesis grammars in two ways: several pairs of parentheses
are allowed, and the r.h.s of grammar rules allow for regular expressions over nonterminal
and internal symbols to occur between matching parentheses. The property of uniqueness
of the minimal grammar is preserved, and the family has the closure property w.r.t. concate-
nation and Kleene star, which was missing in parenthesis languages. Clearly, balanced as
well as parenthesis languages, are closed under reversal.

Model checking and static program analysis provide another motivation for such fami-
lies of languages – those that extend the typical finite-state properties to infinite-state push-
down systems. The influential paper by Alur and Madhusudan [1] (also in[2]) defines the
visibly pushdown automataand languages(VPDA, VPDL), a subclass of realtime push-
down automata and DCF. The input alphabet is partitioned into three sets namedcalls (or
opening), returns (or closing), and internals. The decision of the type of move to perform
(push, pop, or a stack neutral move) is purely driven by the membership of an input char-
acter in one of the three sets, a property that justifies the name “visibly pushdown”. VPDLs
extend balanced grammars in ways that are important for modelling symbolic program ex-
ecution. For each partitioned alphabet, the corresponding language familyis closed under
reversal and boolean operations, concatenation and Kleene star.

Guided by the intuition that precedence relations between terminals in a FG determine
the action on the pushdown stack in a more flexible way than in a VPDA, we recently [7]
proved that VPDLs are a proper subclass of FLs, characterized by afixed partition of the
precedence matrix, induced by the alphabetic partition into opening, closing and internal
letters.

From the standpoint of their generative capacity and expressivity, FGsare more power-
ful than VPDAs in various practical ways. An example of structural adequacy possible with
FG but not with VPDA is the semantic precedence of multiplication operators over additive
ones (which inspired Floyd in the definition of operator precedence). Anexample of the
higher generative capacity are the nested constructs opened and closed by means of a se-
quence of characters, e.g./* */, rather than by two distinct single characters, one

1 We propose to name themFloyd grammarsto honor the memory of Robert Floyd and also to avoid confusion
with other similarly named but quite different types of precedence grammars.

3

for the opening and one for the closing of the scope. Overall FGs, though less general than
LR(1) grammars, offer a comfortable notation for specifying syntaxes ofthe complexity of
programming languages, and are still occasionally used in compilation [11]. Surprisingly
enough, nothing was known on the closure of FL under concatenation and Kleene star. This
paper provides a positive but not immediate answer, in contrast to the factthat for the main
language families closure under the two operations is either trivially presentor trivially ab-
sent: examples of the former case are CF and VPDLs with a fixed alphabetic partitioning,
while DCF is an example of the latter. In this perspective FGs represent an interesting sin-
gularity: they are closed but in a far from obvious way. Precisely, although the parse tree of
a stringx ⋅ y is solely determined by the given precedence relations of the grammars gener-
ating the two factors, the tree ofx ⋅ y may be sharply different from the pasting together of
the trees ofx andy. The difficulty increases for Kleene star, because the syntax tree of, say,
x ⋅ x ⋅ x cannot be obtained by composing the trees of eitherx ⋅ x andx or x andx ⋅ x, but
may have an entirely different structure.

Thus, rather surprisingly, a classical, half-forgotten language family turns out to en-
joy all the desirable properties that motivated the recent invention of VPDLs! To the best
of our knowledge FG currently qualifies as the largest DCF family closed under boolean
operations, reversal, concatenation and Kleene star.

The paper proceeds as follows: Section 2 lists the essential definitions of FG, and a
summary of known results; Section 3 proves closure under concatenation; Section 4 proves
closure under Kleene star and shows an application of the closure properties to regular
expressions. Section 5 concludes. Appendix 1 shows introductory examples. Appendices 2
and 3 contain the full proofs of the main theorems.

2 Basic definitions and properties

We list the essential definitions of Floyd grammars. For the basic definitions ofCF gram-
mars and languages, we refer to any textbook, such as [15]. The empty string is denoted",
the terminal alphabet is�. For a stringx and a lettera, ∣x∣a denotes the number of occur-
rences of lettera, and the same notation∣x∣� applies also to a set� ⊆ �; first(x) and
last(x) denote the first and last letter ofx ∕= ". The projection of a stringx ∈ �∗ on� is
denoted��(x).
A Context-FreeCF grammar is a 4-tupleG = (VN , �, P, S), whereVN is the nonterminal
alphabet,P is the production set,S is the axiom, andV = VN ∪�. An empty rulehas" as
right hand side (r.h.s.). Arenaming rulehas one nonterminal as r.h.s. A grammar isreduced
if every production can be used to generate some terminal string. A grammar isinvertible if
no two productions have identical r.h.s.
The following naming convention will be adopted, unless otherwise specified: lowercase
Latin lettersa, b, c denote terminal characters; lettersu, v, x, y, w, z denote terminal strings;
Latin capital lettersA,B,C denote nonterminal symbols, and Greek letters�, . . . , ! denote
strings overV . The strings may be empty, unless stated otherwise.
For a productionA → u0A1u1A2 . . . uk−1Ak, k ≥ 0, thestencil is the productionN →
u0Nu1N . . . uk−1N , whereN is not inVN .

4

A production is inoperator formif its r.h.s. has no adjacent nonterminals, and anoperator
grammar(OG) contains just such productions. Any CF grammar admits an equivalentOG,
which can be also assumed to be invertible [15].
For a CF grammarG over �, the associatedparenthesis grammar[12] G̃ has the rules
obtained by enclosing each r.h.s. of a rule ofG within the parentheses ‘[’ and ‘]’ that are
assumed not to be in�.
Two grammarsG,G′ areequivalentif they generate the same language, i.e,L(G) = L(G′).
They arestructurally equivalentif in addition the corresponding parenthesis grammars are
equivalent, i.e,L(G̃) = L(G̃′).
For a grammarG consider asentential form� with S

∗
⇒ � and� = �A, A ∈ VN . ThenA

is aSuffix of the Sentential Form(SSF); similarly we define thePrefix of a Sentential Form
(PSF).

The coming definitions for operator precedence grammars [10], here namedFloyd Gram-
mars, are from [8]. (See also [11] for a recent practical account.)
For a nonterminalA of an OGG, theleft and right terminal setsare

ℒG(A) = {a ∈ � ∣ A
∗
⇒ Ba�} ℛG(A) = {a ∈ � ∣ A

∗
⇒ �aB} (1)

whereB ∈ VN ∪ {"}. The two definitions are extended to a setW of nonterminals and to a
string� ∈ V + via

ℒG(W) =
∪

A∈W

ℒG(A) and ℒG(�) = ℒG′(D) (2)

whereD is a new nonterminal andG′ is the same asG except for the addition of the pro-
ductionD → �. Notice thatℒG(�) = ∅. The definitions forℛ are similar. The grammar
nameG will be omitted unless necessary to prevent confusion.
R. Floyd took inspiration from the traditional notion of precedence betweenarithmetic op-
erators, in order to define a broad class of languages, such that the shape of the parse tree
is solely determined by a binary relation between terminals that are consecutive, or become
consecutive after a bottom-up reduction step.
For an OGG, let�, � range over(VN∪�)∗ anda, b ∈ �. Three binary operator precedence
(OP) relations are defined:

equal-precedence:a
.
= b ⇐⇒ ∃A → �aBb�,B ∈ VN ∪ {"}

takes precedence:a⋗ b ⇐⇒ ∃A → �Db� anda ∈ ℛG(D) (3)

yields precedence:a⋖ b ⇐⇒ ∃A → �aD� andb ∈ ℒG(D)

For an OGG, theoperator precedence matrix(OPM)M = OPM(G) is a∣�∣ × ∣�∣ array
that to each ordered pair(a, b) associates the setMab of OP relations holding betweena
andb. Between two OPMsM1 andM2, we define set inclusion and operations.

M1 ⊆ M2 if ∀a, b : M1,ab ⊆ M2,ab, M = M1∪M2 if ∀a, b : Mab = M1,ab∪M2,ab (4)

5

Definition 1. G is an operator precedence or Floyd grammar (FG) if, and only if,M =
OPM(G) is a conflict-free matrix, i.e.,∀a, b, ∣Mab∣ ≤ 1. Two matrices are compatible if
their union is conflict-free. A matrix is total if it contains no empty case.

In the following all precedence matrices are conflict-free.

2.1 Known properties of Floyd grammars

We recall some relevant definitions and properties of FGs. To ease cross-reference, we fol-
low the terminology of [8].

Definition 2. Normal forms of FG
A FG is in Fischer normal form [9] if it is invertible, the axiomS does not occur in the r.h.s.
of any production, the only permitted renaming productions haveS as left hand side, and
no"-productions exist, except possiblyS → ".
An FG is in homogeneous normal form [8, 5] if it is in Fischer normal form and, for any
productionA → � with A ∕= S, ℒ(�) = ℒ(A) andℛ(�) = ℛ(A).

Thus in a homogeneous grammar, for every nonterminal symbol, all of its alternative pro-
ductions have the same pairs of left and right terminal sets.

Statement 1 For any FGG a structurally equivalent homogeneous FGH can be effectively
constructed [8].

For the reader unfamiliar with FGs, in Appendix 1 an example illustrates the formalism,
and the boolean family induced by a given precedence matrix, to be next presented.

We consider FGs having identical or compatible precedence relations and we state their
boolean properties.

Definition 3. Precedence-compatible grammars
For a precedence matrixM , the class [8]CM of precedence-compatible FGs is

CM = {G ∣ OPM(G) ⊆ M} .

The equal-precedence relations of a FG have to do with an important parameter of the
grammar, namely the maximal length of the r.h.s. of the productions. Clearly, a production
A → A1a1 . . . AtatAt+1, where eachAi is a possibly missing nonterminal, is associated
with a1=̇a2=̇ . . . =̇at. If the =̇ relation is circular, the grammar can have productions of
unbounded length. Otherwise the length of any r.h.s. is bounded by(2.c) + 1, wherec
is the length of the longesṫ=-chain. For both practical and mathematical reasons, when
considering the class of FG associated to a given OPM, it is convenient to restrict attention
to grammars with bounded r.h.s. This can be done in two ways.

Definition 4. Right-bounded grammars
The classCM,k of FGs with right boundk ≥ 1 is defined as

CM,k = {G ∣ G ∈ CM ∧ (∀ productionA → � ofG, ∣�∣ ≤ k)}

6

The class oḟ=-acyclic FGs is defined as

CM,=̇ = {G ∣ G ∈ CM ∣ matrixM is =̇-acyclic}

A class of FGs is right bounded if it isk-right-bounded for somek.

The class of=̇-acyclic FGs is obviously right-bounded. Notice also that, for any matrixM ,
the set of the production stencils of the grammars inCM,k (or inCM,=̇) is finite.

The following closure properties are from [8] (Corol. 5.7 and Theor. 5.8).

Statement 2 For every precedence matrixM , the class of FLs

{L(G) ∣ G ∈ CM,k}

is a boolean algebra.

In other words, the proposition applies to languages generated by right-bounded FGs having
precedence matrices that are included in, or equal to some matrixM . Notice that the top
element of the boolean lattice is the language of the FG that generates all possible syntax
trees compatible with the precedence matrix; in particular, ifM is total, the top element is
�∗.

We observe that the boolean closure properties of VPDL immediately follow from State-
ment 2 and from the fact that a VPDL is a FL characterized by a particular form of prece-
dence matrix [7].

Other simple properties

Statement 3 The class of FG languages is closed with respect to reversal.

This follows from the fact that, ifa ⋖ b for a FG grammarG, then it holdsb ⋗ a for the
grammarGR obtained by reversing the r.h.s. of the productions ofG; and similarly fora⋗b.
Thea

.
= b relation is turned intob

.
= a by production reversal. It follows thatGR is a FG.

It is interesting to briefly discuss the cases of very simple precedence matrices. First
consider a matrixM containing only⋖, hence necessarily conflict free. Then the non-
empty r.h.s.’s of the productions of any grammar inCM may only be of the typesaN or
a. Therefore the grammar isright-linear. (Conversely for⋗ and left-linearity.) Second,
supposeM does not contaiṅ=. Then any production of any grammar inCM only admits
one terminal character. Notice thatlinear CF grammars can be cast in that form, but not all
linear CF languages are FG since they may be non-DCF.

To finish, we compare regular languages and FGs.

Statement 4 LetR ⊆ �∗ be a regular language. There exists a FG grammar forR in the
familyCM,2, whereM is the precedence matrix such thatMab = ⋖ for all a, b ∈ �.

The statement follows from the fact that every regular language is generated by a right-
linear grammar. If the empty string is inR, the FG has the axiomatic ruleS → ".
A stronger statement holding for any precedence matrix will be proved in Subsection 4.1 as
a corollary of the main theorems.

7

3 Closure under concatenation

Although FGs are the oldest deterministic specialization of CF grammars, the fundamental
but non-trivial questions concerning their closure under concatenation and Kleene star have
never been addressed, to the best of our knowledge. This theoreticalgap is perhaps due to the
facts that DCF languages are not closed under these operations, and that the constructions
used for other grammar or PDA families do not work for FG, because they destroy the
operator grammar form or introduce precedence conflicts. The closureproofs to be outlined,
though necessarily rather involved, are constructive and practical. The grammars produced
for the concatenation (or the Kleene star) structurally differ from the grammars of the two
languages to be combined in rather surprising ways: the syntax tree of the prefix string may
invade the other syntax tree, or conversely, and such trespasses may occur several times.

A simple case is illustrated byL ⋅ L whereL = a+ ∪ b+ ∪ ab with precedencesa ⋖

a, b ⋗ b, a=̇b. Then fory1 = aaa the structure is
(
a
(
a(a)

))
, for y2 = bb the structure is

(
(b)b

)
, but the structure ofy1 ⋅ y2 is

(
a
(
a(ab)b

))
, which is not a composition of the two.

The following notational conventions apply also to Section 4. Let the grammarsbe
G1 = (VN1

, �, P1, S1) andG2 = (VN2
, �, P2, S2), and the nonterminals be conveniently

namedVN1
= {S1, A1, A2, . . .} andVN2

= {S2, B1, B2, . . .}, in order to have distinct
names for the axioms and nonterminals of the two grammars.
To simplify the proofs we operate on FGs in homogeneous normal form.
For two sets�1, �2 ⊆ � and a precedence sign, say⋖, the notation�1 ⋖ �2 abbrevi-
ates∀a ∈ �1, ∀b ∈ �2, a ⋖ b. Moreover, we extend precedence relations from� × � to
pairs of strings�, � ∈ (� ∪ VN)+ such that�� /∈ ((� ∪ VN)∗ ⋅ VNVN ⋅ (� ∪ VN))

∗

by positing� ⋖ � ⇐⇒ ℛ(�) ⋖ ℒ(�), and similarly for⋗; for =̇ the condition is
last (��(�)) =̇first (��(�)).
When writing derivations and left/right terminal sets, we usually drop the grammar name
when no confusion is possible.

Theorem 1. LetG1, G2 be FGs such thatOPM(G1) is compatible withOPM(G2). Then
a FG grammarG can be effectively constructed such that

L(G) = L(G1) ⋅ L(G2) andOPM(G) ⊇ OPM(G1) ∪OPM(G2) .

Proof We give a few hints on the construction ofG and support the intuition by means of
figures and examples. For simplicity, we assume thatM = OPM(G1) ∪ OPM(G2) is a
total matrix. This does not affect generality, because at every step, thealgorithm checks the
precedence relation between two lettersa andb, and ifMab = ∅, it canarbitrarily assign a
value toMab, thus obtaining a matrix compatible withM .

The core of the algorithm builds a “thread” of productions that joins the parse trees ofx1
andx2, x1 ∈ L1, x2 ∈ L2. The thread is recursively built in accordance with the precedence
relations that connect the letters occurring at the right of the parse tree of x1 and at the left of
the parse tree ofx2, respectively. Since the parsing driven by operator precedence relations
is bottom-up, the initialization of the construction is based on the possible “facing” of the

8

rightmost letter ofx1 and the leftmost one ofx2. If x1 = y1 ⋅ a, x2 = b ⋅ y2 anda=̇b,
then we build a production of the type[AB] → . . . ab . . ., [AB] being a new nonterminal
(see Figure 1). If instead the rightmost part ofx1 can be parsed without affectingx2 up to a

S1

. . . A

�′ a

S2

B

b �′

. . .

⇊

[AB]

�′ a b �′

Fig. 1.Cross-border production constructed when the facing letters are equal in precedence.

derivationN
∗
⇒ y1 becauseℛ(N) ⋗ b, then, when the parsing ofx1 leads to a production

such asA → � ⋅ a ⋅N with a=̇b, the junction of the two syntax trees begins at that point by
means of a production such as[AB] → � ⋅ a ⋅ N ⋅ b ⋅ � (see Figure 2) so that the original
precedence relations ofG1 andG2 are unaffected.

S1

. . . A

�′ a N

.

S2

B

b �′

. . .

⇊

[AB]

�′ a N

.

b �′

Fig. 2.Another case of cross-border production whenℛ(N)⋗ b.

Similar rules apply if insteada⋖ b.
After this initialization, the construction of the “joint parsing thread” follows thenatural

bottom-up parsing. For instance, suppose that a nonterminal of type[AB] has been built;
this means thatA is a SSF,B is a PSF and[AB] “joins” two derivationsA

∗
⇒ y1, at the end

of a parse tree for some stringx1 of L1 andB
∗
⇒ y2 at the start of a stringx2 of L2; thus,

if G1 contains a ruleA1 → � ⋅ a ⋅ A (A1 being a SSF) and symmetricallyB1 → B ⋅ b ⋅ �,
with a=̇b, then the new production[A1B1] → � ⋅ a ⋅ [AB] ⋅ b ⋅ � is created.
The casesa⋗ b anda⋖ b are treated accordingly. The last situation is illustrated in Figure
3 (right). ⊓⊔

The complete proof is in Appendix 2.

9

[AB] → . . . is created
at initialization

[AB1] → . . . is created

S1

. . . A1

� a A

. . .

S2

B

b �

. . .

S1

. . . A1

� a A

. . .

S2

B1

B b1 �1

. . .

⇊ ⇊

[AB]

A

. . .

b �

[AB1]

[AB]

A

. . .

b �

b1 �1

Fig. 3.Productions created by growing the cross-border thread.

4 Closure under Kleene star

In many language families the closure under Kleene star comes together with theclosure
under union and concatenation. Thus for a CF languageL, the syntax tree of a string
x = y1y2 . . . yi ∈ Li with yj ∈ L, is simply obtained by linking, in a left- or right-linear
structure, the syntax trees of componentsy1, y2, . . . , yi. In the case of FG, a similar compo-
sition is in general not possible, because the syntax tree ofx may have a sharply different
structure, as already observed for the concatenationL ⋅ L.
A case is illustrated by the third power of languageL ⊃ a+ ∪ b+ ∪ c+, assuming the prece-
dences (induced by further sentences not considered) to be:a ⋖ a, a=̇b, b ⋗ b, b=̇c, c ⋖ c.
Then the structure of a string such asy1 ⋅ y2 ⋅ y3 = a3 ⋅ b2 ⋅ c2 ∈ L3 is not the composition
of the structures of eithery1 ⋅ y2 andy3, or of y1 andy2 ⋅ y3.
Before we enter the main topic, it is useful to return to the=̇-acyclicity condition of Defi-
nition 4. Consider languageL = {aa} with the circular precedence relationM = {a=̇a},
and a stringa2p, p ≥ 0, in the Kleene closure ofL. The FG grammar ofL∗ with OPM
M would then need to contain an unbounded production set{S → a2p, p ≥ 0}, which
is not permitted by the standard definition2 of CF grammar. For this reason we make the
hypothesis that the precedence matrix is=̇-acyclic.

Theorem 2. Let G = (VN , �, P, S) be a FG such thatOPM(G) is =̇-acyclic. Then a
FG Ĝ = (V̂N , �, P̂ , Ŝ) with OPM(Ĝ) ⊇ OPM(G) can be effectively built such that
L(Ĝ) = (L(G))∗.

As in Theorem 1 we assume without loss of generality the precedence matrix tobe total, and
in this case alsȯ=-acyclic. Not surprisingly the construction of̂G is based on the construc-
tion in Theorem 1 forL.L, but the required extensions involve some technical difficulties.

2 We do not discuss the possibility of allowing regular expressions in the productions.

10

We need to consider only the irreflexive closureL+, since forL∗ it suffices to add the
productionS → ". We assume the form of grammarG to be homogeneous. Again, we give
here just an intuitive description of the construction; the complete proof of the theorem is
Appendix 3.

Ĝ is built as the last element of a series of grammars that begins withG1 = G and
continues with the grammarG2 that generatesL ⋅ L ∪ L, computed according to the con-
catenation algorithm outlined in Section 3 and the union algorithm implied by Statement
2. ThenG3 is built by iterating the application of the concatenation algorithm toL2 and
L itself. Notice, however, that this new application produces new nonterminalsof the type
[[AB]C]. Obviously this process cannot be iterated indefinitely since it would produce a
grammar with infinite nonterminals and productions. Thus, nonterminals of type[[AB]C]
are “collapsed” into[AC]. Intuitively, this operation is justified by the observation that the
production of an “intermediate” nonterminal of the type[[AB]C] means that, inG,A

∗
⇒ x1

a suffix of some stringx ∈ L, B
∗
⇒ y belonging toL, andC

∗
⇒ z1, a prefix of somez ∈ L.

In this way, the number of possible new nonterminals is bounded and the construction of
Ĝ terminates when no new nonterminals and productions are generated. Figure 4 gives an
idea of how the sequenceG1, G2, G3 is built.
Notice also that the details of the construction involve the production of so called compound
nonterminals of type{[AB], [CD], E}, i.e., collection of “boundary nonterminals”. This is
due to the need to iteratively apply a normalization procedure that eliminates repeated r.h.s.
For instance, suppose that during the process the following productionsare built:

[AB] → � ∣ �, [CD] → � ∣ , E → � ∣ �

whereA,B,C,D,E ∈ VN , and we recall that the nonterminals of the form of a pair[AB]
are created by the concatenation algorithm. Then, elimination of repeated r.h.s.’s produces
a normalized homogeneous grammar containing the rules:

{[AB], [CD], E} → �, {[AB]} → �, {[CD]} → , {E} → �

⊓⊔
It is possible to prove that the closure of FL under boolean operations, concatenation

and Kleene star, implies that certain subfamilies of FG languages are closed under the same
set of operations: the cases of regular languages and of visibly pushdown languages over
the same partitioned alphabet are straightforward.

4.1 Regular languages with prescribed precedences

For regular languages, we have already observed that their standardChomsky grammar of
type 3, say right-linear, is a very special FG containing only⋖ relations. LetR ⊆ �∗ be
a regular language and letM be any precedence matrix. A more interesting question is
whether it is possible to find a FG that generatesR, with M as OPM. The positive answer
follows from Theorems 1 and 2 under fairly general hypotheses.

11

grammarG: H

ℎ

K

k A

C

B

b

c

grammarG2: [AB]

a b

[HK]

ℎ k A

parsing ⋖ℎ =̇ k [AB] c ⋗ e

grammar ofL(G2).L(G1): [[HK]C]

ℎ k [AB]

a b

c

grammarG3 : [HC]

ℎ k [AB]

a b

c

Fig. 4.Productions used for parsing a string inL.L.L.

Corollary 1. LetM be any total=̇-acyclic precedence matrix over�. Then the family of
regular languages over� is (strictly) included in the family of languages generated by FGs
ranging overCM .

Proof. Let R be defined by a regular expression. In order to construct a FG grammarwith
the given matrixM , we analyze the regular expression starting from the atomic subexpres-
sions. Anytime two subexpressions are combined by union or concatenationrespectively,
the constructions of [8] or of Theorem 1 respectively produce a grammar, compatible with
M , for the union or concatenation. Similarly, anytime a subexpression is understar, the
construction of Theorem 2 produces the corresponding grammar. ⊓⊔

This result gives a procedure, based on the previous algorithms, for constructing from a
regular expression, a FG grammar with the specified precedences. In particular, when the
assigned precedences correspond to the left-linear (or right-linear) structure, the procedure
returns a left-linear (or right linear) grammar. When the precedences are those of a VPL [1,
7], the procedure returns a grammar with the specified partition of the alphabet into call,
return and internal symbols.

Notice that the procedure works as well for ambiguous regular expressions. We are not
aware of comparable methods for constructing a deterministic CF grammar, in order to
parse in accordance with a prescribed syntactic structure, a language specified by a regular
expression.

The same procedure, when applied to a regular expression, possibly augmented with
intersection and complement, over precedence-compatible FG languages, permits to obtain
an equivalent FG. From a practical standpoint, this approach would permit to construct a
precedence parser for a grammar featuring “extended” regular expressions in the right-hand
sides. This should of course be contrasted with the well-known non-closure of DCF under
intersection and union.

12

5 Conclusion

We mention some questions raised by the present study.
Every class of Floyd languages over a given=̇-acyclic precedence matrix includes (pos-

sibly after filling the precedence matrix to totality) the regular language family andis closed
with respect to the basic operations: concatenation, Kleene star, reversal, and all boolean
operations. The FG family appears at present to be the largest family exhibiting such prop-
erties; in particular it strictly includes [7] the visibly pushdown language (VPDL) family.
On the other hand, several other language families fall in between the VPDLand the CF,
such as the height-deterministic family of [14] or the synchronized pushdown languages
of [4], but some of the basic closure properties are missing or the language family is non-
deterministic. We wonder whether a significant family of deterministic CF languages, more
general than FL, yet preserving the same closure properties, can be found.

In another direction, one could ask a similar question about the invariance property of
FLs with respect to the non-counting (or aperiodicity) property [6].

It would be interesting to assess the suitability of Floyd languages for applications, es-
pecially to XML documents and to model checking, that have motivated other language
models such as the balanced grammars and the visibly pushdown languages.We observe
that the greater generative capacity of FGs should improve the realism of the intended mod-
els, by permitting the use of more flexible multi-level and recursively nested structures.

Finally, to apply these theoretical results in practice, e.g. to derive model checking algo-
rithms therefrom, the computational complexity aspects should be investigated. Admittedly,
the closure algorithms presented in this paper have a typical combinatorial nature: the worst
case complexity in fact is dominated by the size of nonterminal alphabets which are con-
structed as power sets of the original ones. Notice also that the algorithms assume as starting
point grammars in homogeneous normal form, which in turn require a nonterminal alphabet
constructed on top of the power set of the terminal alphabet.

On the other hand, the risk of combinatorial explosion is rather intrinsic in these fami-
lies of algorithms, starting from the seminal papers on model checking and VPDL. We hope
that further research will produce suitable heuristics and techniques to manage such a com-
plexity with the same success obtained by the long-standing research in modelchecking.

Aknowledgment.We thank Jean Berstel for lively discussions.

References

1. R. Alur and P. Madhusudan. Visibly pushdown languages. InSTOC: ACM Symposium on Theory of
Computing (STOC), 2004.

2. R. Alur and P. Madhusudan. Adding nesting structure to words.J. ACM, 56(3), 2009.
3. J. Berstel and L. Boasson. Balanced grammars and their languages. In W. Brauer et al., editor,Formal and

Natural Computing, volume 2300 ofLNCS, pages 3–25. Springer, 2002.
4. D. Caucal. Synchronization of pushdown automata. In O. H. Ibarraand Z. Dang, editors,Developments in

Language Theory, volume 4036 ofLNCS, pages 120–132. Springer, 2006.
5. S. Crespi Reghizzi.The mechanical acquisition of precedence grammars. PhD thesis, University of Cali-

fornia UCLA, School of Engineering, 1970.

13

6. S. Crespi-Reghizzi, G. Guida, and D. Mandrioli. Operator precedence grammars and the noncounting
property.SICOMP: SIAM Journ. on Computing, 10:174—191, 1981.

7. S. Crespi-Reghizzi and D. Mandrioli. Algebraic properties of structured context-free languages: old ap-
proaches and novel developments. InWORDS 2009 - 7th Int. Conf. on Words, preprints. available as
http://arXiv.org/abs/0907.2130, 2009.

8. S. Crespi-Reghizzi, D. Mandrioli, and D. F. Martin. Algebraic properties of operator precedence languages.
Information and Control, 37(2):115–133, May 1978.

9. M. J. Fischer. Some properties of precedence languages. InSTOC ’69: Proc. first annual ACM Symp. on
Theory of Computing, pages 181–190, New York, NY, USA, 1969. ACM.

10. R. W. Floyd. Syntactic analysis and operator precedence.J. ACM, 10(3):316–333, 1963.
11. D. Grune and C. J. Jacobs.Parsing techniques: a practical guide. Springer, New York, 2008.
12. R. McNaughton. Parenthesis grammars.J. ACM, 14(3):490–500, 1967.
13. R. McNaughton and S. Papert.Counter-free Automata. MIT Press, Cambridge, USA, 1971.
14. D. Nowotka and J. Srba. Height-deterministic pushdown automata. InL. Kucera and A. Kucera, edi-

tors,Mathematical Foundations of Computer Science 2007, MFCS 2007, Ceský Krumlov, Czech Republic,
August 26-31, 2007, Proceedings, volume 4708 ofLNCS, pages 125–134. Springer, 2007.

15. A. K. Salomaa.Formal Languages. Academic Press, 1973.
16. J. Thatcher. Characterizing derivation trees of context-free grammars through a generalization of finite

automata theory.Journ. of Comp. and Syst.Sc., 1:317–322, 1967.

14

Appendix 1. Illustration of Floyd grammars

Example 1.The languages

L1 = {bncn ∣ n ≥ 1}, L2 = {fndn ∣ n ≥ 1}, L3 = {en(fb)n ∣ n ≥ 1}

are generated by the homogeneous normal form grammars:

F1 = {S1 → A, A → bAc ∣ bc}

F2 = {S2 → B, B → fBd ∣ fd}

F3 = {S3 → C, C → eCfb ∣ efb}

Their precedence matrices are:

M1 =

b c d e f

b ⋖ =̇

c ⋗

d

e

f

M2 =

b c d e f

b

c

d ⋗

e

f =̇ ⋖

M3 =

b c d e f

b ⋗

c

d

e ⋖ =̇

f =̇

The three matrices are conflict-free and precedence compatible (in particular they are dis-
joint). Consider the matrixM = M1 ∪ M2 ∪ M3, which is =̇-acyclic, and the gram-
mar/language familiesCM,4 andCM,=̇. The two families contains the three grammars, as
well as the union languageL123 = L1 ∪L2 ∪L3, whose grammarF123 has the productions
S123 → A ∣ B ∣ C instead ofS1 → A, etc.
Incidentally, in [7] it is proved that languageL123 is not a visibly pushdown language [1].
The four grammars are also free FG. Now consider the family of homogeneous FGsW−1(F3),
and a grammarH included therein:

H = {S → X2, X2 → eX1fb ∣ efb, X1 → eX2fb}

We observe thatH is a homogeneous but not a free grammar becauseℒH(X2) = ℒH(X1)
andℛH(X2) = ℛH(X1). ThenH ≤ F3 andL(H) ⊆ L(F3). The classW−1(F3) is a
boolean algebra.

15

Appendix 2. Proof of concatenation closure

Theorem 1. Let G1, G2 be FGs such thatOPM(G1) is compatible withOPM(G2).
Then a FG grammarG can be effectively constructed such that

L(G) = L(G1).L(G2) andOPM(G) ⊇ OPM(G1) ∪OPM(G2)

Proof. We assume thatG1 andG2 are in homogeneous normal form. First we present the
algorithm that constructs a homogeneous FGG = (VN , �, P, S) such thatOPM(G) ⊇
OPM(G1) ∪ OPM(G2). Then, by means of a series of lemmas, we prove thatL(G) =
L(G1).L(G2).

Algorithm building grammar G of concatenation

For simplicity, we assume thatM = OPM(G1) ∪ OPM(G2) is a total matrix. This does
not affect generality, because if, at any step, the following algorithm checks the precedence
relation between two lettersa andb, andMab = ∅, we canarbitrarily assign toMab a value,
thus obtaining a matrix compatible withM .
Two types of nonterminals occur inG: the non-axiomatic nonterminals ofG1 andG2 and
new nonterminals named by certain pairs[AB] such thatA ∈ VN1

andB ∈ VN2
.

The algorithm may produce non-invertible grammars and may create useless productions.
Thus, a final step will transform the grammar into the desired normal form atthe end.

Initialization Initialize G with VN = VN1
∪ VN2

∖ {S1, S2} andP with the productions of
P1 andP2 that do not containS1 or S2. Then add toG the productions created using the
following two initial cases.

1. Initial case=̇. For everyA → � ∈ P1, B → � ∈ P2 such thatA is a SSF andB is a
PSF and�=̇�, and one of the following mutually exclusive conditions hold:
– � = �′a, � = b�′, schematized by:

S1

. . . A
�′ a

S2

B
b �′

. . .

⇊

[AB]

�′ a b �′

– � = �′aN, � = b�′, ℛ(N)⋗ b, N ∈ VN schematized by:

16

S1

. . . A
�′ a N

.

S2

B
b �′

. . .

⇊

[AB]

�′ a N

.

b �′

– � = �′a, � = Nb�′, a⋖ ℒ(N), N ∈ VN (the symmetric of the preceding case);
add toVN the nonterminal[AB] and toP the production[AB] → ��. ℒG([AB]) =
ℒG1

(A) andℛG([AB]) = ℛG2
(B), therefore no new precedence relations are added

to M by the new productions, because, thanks to the homogenous form ofG1 andG2,
ℒ(�) = ℒ(B) andℛ(�) = ℛ(A).

2. Initial cases⋖ and⋗.

(a) Case⋖. For every derivations

S1
∗
⇒ �A1 ⇒ ��aA with � ∕= ", andS2

∗
⇒ B� ⇒ b��

such thatℛ(A) ⋗ b anda ⋖ b, add toVN the nonterminal[AB] and toP the pro-
duction[AB] → Ab�. This case is schematized below.

step 2(a)

S1

. . . A1

� a A
. . .

S2

B

b �

. . .

⇊

[AB]

A

. . .

b �

Remark: from the homogeneous form, for any productionsA → �1 ∣ �2, it is
ℛ(�1) = ℛ(�2) = ℛ(A) and precedence relations are unaffected.

(b) Case⋗. This and the previous case are symmetrical. For every derivations

S1
∗
⇒ �A ⇒ ��a andS2

∗
⇒ B1� ⇒ Bb�� with � ∕= "

such thata ⋖ ℒ(B) anda ⋗ b, add toVN the nonterminal[AB] and toP the pro-
duction

[AB] → �aB

17

Remark: the precedence relations are unaffected.
(c) For every productions

S1 → A1, B → b�

such thatB is a PSF andℛ(A1)⋗ b, add toG the production[A1B] → A1b�.
Remark: the precedence relations are unaffected.

(d) Symmetrically, for every
A → �a, S2 → B1

such thatA is a SSF anda⋖ ℒ(B1), add toG the production[AB1] → �aB1.
Remark: the precedence relations are unaffected.

Then the following rules 3., 4., 5. are applied over and over, until no more productions
are added to the grammar. In rules 3., 4., 5., the nonterminalsA1, A are SSF and the non-
terminalsB1, B are PSF. In all cases the precedence relations are unaffected.

3. Case=̇. For everyA1 → �aA ∈ P1 andB1 → Bb� ∈ P2 (clearly it isA1 ∕= S1 and
B1 ∕= S2 since the grammar is homogeneous), such thata=̇b and[AB] ∈ VN , add toP
the production[A1B1] → �a[AB]b�.

4. Case⋗. For everyA1 → �aA ∈ P1 such thatA1 is a SSF, and for everyB ∈ VN2
, b ∈

�, such thata ⋗ b andS2
∗
⇒ B1� ⇒ Bb� and [AB] ∈ VN , add the production

[A1B] → �a[AB] to P .
The subcaseS2 → B is included in the case, because conventionally everya ∈ � takes
precedence over⊥.

5. Case⋖. For everyB1 → Bb� ∈ P2 such thatB is a PSF, for everyA ∈ VN1
, a ∈ �,

such thata⋖ b andS1
∗
⇒ �aA and[AB] ∈ VN , add the production[AB1] → [AB]b�

to P .
The next figure illustrates the productions created by Case 5.

step 5 after step 2(a)

S1

. . . A1

� a A

. . .

S2

B1

B b �

. . .

[AB1]

[AB]

.

b �

The subcaseS1 → A is included in the case, because conventionally⊥ yields prece-
dence to everyb ∈ �.

18

At last, to create the productions for the axiom, apply the rule:

6. Case axiom. Apply the following rules to every pair of productionsS1 → A1 and
S2 → B1.
(a) If [A1B1] ∈ VN , add toP the productionS → [A1B1].
(b) If A1 → �aN with N ∈ VN1

∪ {"}is in P1 andB1 → b� is in P2, such thata⋗ b,
then add toP the productions[A1B1] → A1b� andS → [A1B1].

(c) If A1 → �a ∈ P1 andB1 → Nb� ∈ P2 with N ∈ VN2
∪ {"}, such thata⋖ b, then

add toP the productions[A1B1] → �aB1 ∈ P andS → [A1B1].
Remark: the productions thus added toP do not modify the precedence matrixM .

It is obvious that the construction terminates, because there are finitely manypossible new
nonterminals of the form[AB] and finitely many possible righthand sides for the produc-
tions.
Finally, since each step of the construction does not induce new precedence relations, the
grammarG is a FG with a matrixM compatible withM1 andM2.
From Statement 1, a structurally equivalent grammar in homogeneous normalform can be
obtained. in particular, the grammar must be reduced by eliminating useless productions
and repeated righthand sides. The normalization will be refined later, for the construction of
Kleene star.

Proof that L(G) = L(G1).L(G2) The inclusionL(G) ⊆ L(G1).L(G2) follows easily
from the construction, so we just have to prove the inclusionL(G) ⊇ L(G1).L(G2). For
that we need the next four lemmas. The next one states two symmetrical properties.

Lemma 1. – If there are derivations

S1 ⇒ A1
∗
⇒ x S2

∗
⇒ y = b.z b ∈ �

andℛ(A1)⋗ b, thenG has a derivation

S ⇒ [A1B]
∗
⇒ [A1Bk]� ⇒ A1b�

∗
⇒ xy.

– If there are derivations

S1
∗
⇒ x = z.a, a ∈ �, S2 ⇒ B1

∗
⇒ y

anda⋖ ℒ(B1), thenG has a derivation

S ⇒ [AB1]
∗
⇒ �[Ak B1] ⇒ �aB1

∗
⇒ xy.

Proof. For the first item: ifS2 ⇒ B1 ⇒ b�
∗
⇒ y then by construction 2(c) and 6(a)

∃[A1B1] → A1b� andS → [A1B1]. If S2
∗
⇒ Bk� ⇒ b��

∗
⇒ y, then from 2.(a)∃[A1Bk] →

A1b� and for everyBi → Bj�j in the derivationS2
∗
⇒ Bi� ⇒ Bj�j�

∗
⇒ y there exists by

rule 5. a production[A1Bi] → [A1Bj]�j . ThusS
∗
⇒ x.y. For the second item the proof is

symmetrical.

19

Lemma 2. It states two symmetrical properties:

– If there are derivationsS1
∗
⇒ x1A1 ⇒ x1�aA

∗
⇒ xw, A

∗
⇒ w, andS2

∗
⇒ By ⇒

b�y
∗
⇒ bz.y such thatℛ(A)⋗ b, a⋖ b, then there exists a nonterminal[AB] such that

[AB] ⇒ Ab�
∗
⇒ w.bz. (Proof: by rule 2.(a).)

– Symmetrically, if there are derivationsS1
∗
⇒ xA ⇒ x�a

∗
⇒ x.za with a ∈ � and

S2
∗
⇒ B1y1 ⇒ Bb�y1

∗
⇒ wy with b ∈ �, B

∗
⇒ w such thata ⋖ ℒ(B), a ⋗ b, then

there exists a nonterminal[AB] such that[AB] ⇒ �aB
∗
⇒ zaw. (Proof: by rule 2.(b).)

Similar to Lemma 2, the next lemma takes care of the conditiona=̇b.

Lemma 3. It states two symmetrical properties:

– If there are derivations
S1

∗
⇒ x1A ⇒ �aA1

∗
⇒ x1vw

with A1
∗
⇒ w, and

S2
∗
⇒ By ⇒ b�y

∗
⇒ bzy

such thata=̇b andℛ(A1) ⋗ b, then there exists a nonterminal[AB] and a production
[AB] → �aA1b�. (Proof: by rule 1.)

– If there are derivations
S1

∗
⇒ xA ⇒ x�a

∗
⇒ xva

and
S2

∗
⇒ By1 ⇒ B1b�y1

∗
⇒ wzy1

with B1
∗
⇒ w, such thata = b anda ⋖ ℒ(B1), then there exists a nonterminal[AB]

and a production[AB] → �aB1�.

Finally, the following lemma synthesizes all previous results and leads to the thesis.

Lemma 4. If there are derivations

S1
∗
⇒ xA, A

∗
⇒ w, S2

∗
⇒ By, B

∗
⇒ z

thenG has the derivation
S

∗
⇒ x[AB]y

∗
⇒ xw.zy

Proof. By induction. The initialization is covered by Lemmas 1, 2, 3, and weexplain the
induction step. Assume by inductive hypothesis that

S1
∗
⇒ xA1 ⇒ x�aA

∗
⇒ x�ax1

S2
∗
⇒ B1y ⇒ Bb�y

∗
⇒ y1b�y

andG has the derivation[AB]
∗
⇒ x1y1. Three cases may occur.

1. a=̇b. Then, the constructions at Case 1, (initial case=̇) and at Case 3. of the algorithm
ensure thatG contains the production[A1B1] → �a[AB]b�.

20

2. a⋗ b. Similarly, by construction Case 4.
3. a⋖ b. Similarly, by construction Case 5.

Example 2.

G1 = {S1 → A0, A0 → aA1 A1 → aA1b ∣ ab}

G2 = {S2 → B, B → bc ∣ Bbc}

The left/right terminal sets and the precedence matrixOPM(G1) ∪OPM(G2) are:

ℛ ℒ

A0 a, b useless
A1 b useless
B useless b

M1,2 =

a b c

a ⋖ =̇

b ⋗ =̇

c ⋗

We list the results of the steps.
Initialization

VN = {A0, A1, B}; P = {A0 → aA1, A1 → aA1b ∣ ab, B → bc ∣ Bbc}

1. Initial case=̇
A0, A1 are SSF,B is PSF. From the derivationsA0 ⇒ aA1, B ⇒ bc and from the relation
ℛ(A1) = b⋗ b, create production

[A0B] → aA1bc

Then no production is created by the following steps:
2(a). initial case⋖; 2(b). initial case⋗; 2(c). ; 2(d). ; 3. casė= ; 4. case⋗ .

For 5. case⋖, fromS1 → A0, B → Bbc, from the relation⊥⋖ b, and the existence of
nonterminal[A0B], create the production

[A0B] → [A0B]bc

6. Axiom
FromS1 → A0, S2 → B

6(a). Since[A0B] exists, create production

S → [A0B]

The cases 6(b). and 6(c). are unproductive, and collecting all the productions, we obtain
the grammar:

S → [A0B], [A0B] → aA1bc, [A0B] → [A0B]bc, A0 → aA1, A1 → aA1b ∣ ab, B → bc ∣ Bbc

Grammar normalization deletes productionsA0 → aA1, B → bc ∣ Bbc. No repeated right
parts are present and the homogeneous condition is already met.

21

Appendix 3. Proof of closure under Kleene star

Theorem 2. Let G = (VN , �, P, S) be a FG such thatOPM(G) is =̇-acyclic andL =
L(G). Then a FGĜ = (V̂N , �, P̂ , Ŝ) with OPM(Ĝ) ⊇ OPM(G) can be effectively built
such thatL(Ĝ) = L∗.

First we present the algorithm, then we prove the equivalenceL(Ĝ) = L∗.

Algorithm constructing the grammar of Kleene closure

The algorithm constructs a finite series of grammarsG = G1, G2, . . . , GI , . . . with L =
L(G1) ⊂ L(G2) ⊂ . . ., eventually converging toL+ = L(Ĝ).

Initialization Let G1 = G = (VN , �, P, S). Using the construction for concatenation, we
build the grammar denoted byF2 such thatL(F2) = L2(G1).
Then we build the grammarG2 generating the languageL(G2) = L2(G1) ∪ L(G1), and
cast it into homogeneous normal form. It is important that when applying normalization,
the nonterminal names ofG2 are chosen so to preserve information on the original nonter-
minals.

Disciplined normalizationMore precisely, inG2, as well as in all subsequent grammars, the
nonterminal alphabet isVN,2 ⊆ ℘(VN×VN∪VN). A nonterminal such as{[AB], [CD], E}
is termedcompound, while asimplenonterminal has the form, say,{E} or {[AB]}.
The intended meaning of such nonterminal names is clarified by the next example. Suppose
before normalization the grammar contained the rules:

[AB] → � ∣ �, [CD] → � ∣ , E → � ∣ �

whereA,B,C,D,E ∈ VN , and we recall that the nonterminals of the form of a pair[AB]
are created by the concatenation algorithm. The normalized, invertible grammarthen con-
tains the rules:

{[AB], [CD], E} → �, {[AB]} → �, {[CD]} → , {E} → � (5)

In addition, in order to preserve language equivalence, for any occurrence of a nonterminal
N in a righthand part, the alternatives must be added that have instead ofN any com-
pound nonterminalN ′ such thatN ⊂ N ′. Continuing the example, if ruleX → �[AB]#
is present, the normalized grammar contains the rules{X} → �{[AB]}# and{X} →
�{[AB], [CD], E}#.
We observe that, sinceG does not contain rules with identical right parts, a compound
nonterminalN ∈ VN,2 may not contain more than one singleton, i.e.,∣N ∩ VN ∣ ≤ 1.

The next lemmas are straightforward consequences of disciplined normalization.

Lemma 5. The set of strings generated by grammarG2 starting from a compound nonter-
minalN is

LG2
(N) =

∩

A,B∈VN∧[AB]∈N∧C∈N

{LG(A).LG(B) , LG(C)}

22

We observe that the language generated byG2 starting from a simple nonterminal , say{A},
if A occurs also in some compound nonterminal, may differ from the language generated
byA in G:

LG2
({A}) ⊆ LG(A)

In other words the above change in the nonterminal and production sets ofG2 partitions the
set of strings derivable from an original nonterminal according to the context where they can
occur: if, in some place, the same string can be derived, say, both by[AB] and byC, in the
new version it will be derived by{[AB], C}. We will see that this separation is necessary to
distinguish between sentences that are part of a concatenation of two adjacent strings, say,
x andy, of L in L∗ and those that are generated by the original grammarG.

The next proposition relates the derivations inG and inG2.

Lemma 6. LetN ∈ VN,2 and[AB] ∈ N . Then inG2 nonterminalA is a SSF, nonterminal
B is a PSF, and all strings derivable byA.B in G are derivable inG2 by some nonterminal
N containing[AB].

Iteration Initially we set the iteration index toI = 2.

1. Apply Algorithm 5 to the languageL(GI).L(G) ∪ L(GI), with the following variant.
Whenever the old algorithm would combine a nonterminalN ∈ VN,I and a nontermi-
nal H ∈ VN into the pair[NH] with associated production{[NH]} → � , the new
algorithm writes instead the productionQ → � where

Q is {[AH], [CH] ∣ for someB ∈ VN , it is [AB] ∈ N, andC ∈ VN is in N} (6)

Clearly the mapping from the old to the new nonterminal names can be many-to-one.
To illustrate, the combination ofN = {[AB], [CD], E} andN ′ = {[AD], [CD], E}
with H gives rise to the same compound nonterminal{[AH], [CH], [EH]}. In such
cases, we say that the nonterminalsB,D have beendropped by the renaming mapping.
On the other hand, the pair[EH] has been created without dropping a nonterminal.
Notice that this construction can introduce new recursive rules or derivations.

2. Normalize the resulting grammar into homogeneous normal form, adopting the same
disciplined naming scheme (5) for nonterminals, as in the initialization step.

3. If GI differs fromGI−1 go to step 1. otherwise set̂G = GI and halt.
The algorithm clearly terminates since the nonterminal alphabetVN,I is a subset of
℘(VN × VN ∪ VN) and the length of the production right-hand sides is bounded by the
hypothesis that the OPM iṡ=-acyclic.

A first consequence of the above procedure is the next lemma.

Lemma 7. LetN ∈ VN,I and[AB] ∈ N . Then for grammarG the following holds:

– A is a SSF andB is a PSF. Moreover either one of the following cases occur:
∙ Nonterminal[AB] was created as left part of a production of type(6) without drop-

ping a nonterminal.

23

∙ Nonterminal[AB] was created in(6) dropping a nonterminalX, i.e., [AB] comes
from [[AX]B] with [AX] ∈ N ′ ∈ VN,I−1 andX a PSF.

Thus, whereas in the original concatenation construction[AB] denotes a nonterminal that
generates two adjacent substrings that are, respectively, the suffix and the prefix of strings
belonging toL, after the iteration steps an[AB] belonging to a nonterminalN may also
denote that it generates such substrings that may encompass one or more whole sentences
of L.
Notice also that Algorithm 5 may produce derivations such asN

∗
⇒ �N� with [AB] ∈ N ,

which, in the absence of the steps that collapse several[[. . . [AX]Y . . .]B] into a single
[AB] would not be recursive. By this way strings belonging toL∗, and not only to a finite
concatenation ofL with itself, may be generated. On the other hand the separation between
the variousNi guarantees thatNi derives only those strings that would be generated by
everyone of its elements; thus, whereverNi is generated in a derivation of̂G, the strings it
produces are compatible with their context sinceNi is produced in sentential forms where
at least one of its elements would have been generated by some intermediate grammar pro-
duced by the above iterative algorithm.
Finally notice that a generic element[AB], whether it appears in one or moreNi, may be
the result of the collapsing of different previous elements. For instance,the following pro-
ductions could be generated:{[AB]} → �� as the result of collapsing[[AX]B] into [AB]
from productions such as

A → �,X → ,B → �, with �=̇=̇�, L(X) ⊆ L

and{[AB]} → �.�.� as the result of collapsing[[AY]B] into [AB] from productions such
as

A → �, Y → �, B → �, with �=̇�=̇�, L(Y) ⊆ L

This again means that, if the singleton{[AB]} is generated in some context, then it may
generate strings that consist of an appropriate SSF derived fromA and a PSF derived from
B, that encompass strings ofL derivable fromX andY respectively.

As a consequence we can assert the following lemma.

Lemma 8. At every iteration stepI, L(GI) is contained inL∗.

To complete the proof we now state the converse lemma.

Lemma 9. L+ is contained inL(Ĝ).

Proof Consider a stringx = x1.x2. . . . xn, xi ∈ L. We want to show that it is possible to
parse it according tôG. Without loss of generality, we assume thatM = OPM(G) is total
so that a bottom-up deterministic parsing of any string in�∗ is always possible according
to a FG inCM (as implied by Statement 2).

1) A first pass of parsing (possibly absent) can be performed onx by applying all reduc-
tions completely “contained within singlexi”. More precisely, letxi,p andxi,s respectively
denote a prefix and a suffix ofxi. Then it isxi,p�xi,s

∗
⇒ xi. This pass can be performed by

24

using productions originally inG, up to some possible renaming of nonterminals due to the
normalization.

2) A second pass may involve productions generated during the construction of G2

(again, up to some renaming of nonterminals and splitting of their set of righthand sides)
in order to apply reductions in the “boundaries” betweenxi andxi+1, i.e.,�

∗
⇒ xi,s.xi+1,p.

This pass produces a string� = �2�3 . . . �n such that�i
∗
⇒ xi−1,s.xi,p, and no further

reductions of the previous types 1) and 2) are possible. This means that at least in one case
�i=̇�i+1. Notice that, as a particular case, the parsing could be completed after this phase
if, e.g.,

S
∗
⇒ Sxn

∗
⇒ Sxn−1.xn . . .

∗
⇒ x1.x2 . . . xn

3) If the above case does not occur, let us first consider the case
3.1) . . .⋖ �i,s=̇�i+1,p ⋗ . . . , where�i,s is a suffix of�i and�i+1,p a prefix of�i+1,

i.e., only two consecutive�’s are involved in the first reduction after phases 1 and 2.
Also, �i,s derives a suffixyi−1 of xi−1, concatenated with a prefixzi of xi and�i+1,p

derives a suffixyi of xi concatenated with a prefixzi+1 of xi+1.
Sincexi−1.xi ∈ L2, its parsing – by using the productions ofG2 – must produce some

��i,s�
∗
⇒ zi−1.yi−1.zi.yi

i.e., �
∗
⇒ yi; notice that no further reductionN → �i,s�p, �p being aproper prefix of �,

would be possible, since, otherwise, the same reduction could be applied even during the
second pass above without involving�i+1,p.
Consider now the parsing ofxi−1.xi.xi+1 according toG3. On the one hand we have reduc-
tions (building bottom-up the derivations)��i,s

∗
⇒ zi−1.yi−1.zi; on the other,�i+1,p#

∗
⇒

yi.zi+1.yi+1. Both reductions up to this point have been applied by using productions inG2

(as usual, up to the renaming of some nonterminals).
Notice also that�i+1,p is of the type�Ni , with Ni = {[AB], . . . H, . . .} and� = �A for
someA belonging to some[AB] belonging toNi. In other words,Ni denotes the “bound-
ary” where the parsing ofxi and that ofxi+1 merge according toG2.

3.1 (a) If both� and are∕= ", this implies�=̇ and the existence inG of a production
C → B with B the second symbol of[AB] (A being the same as in�A). Thus, on the basis
of the construction ofG3 the production[[Nℎ]C] → �i,s.�i+1,p subsequently transformed
intoNk → �i,s.�i+1,p is inG3 and the corresponding reduction can be applied. It produces
a string

. . . �Nk�.�i+2 . . . ⇒ ��i,s�i+1,p�.�i+2
∗
⇒ xi−1,s.xi,p.xi,s.xi+1,p.xi+1,s.xi+2,p

The next figure provides an example of the reductions (Case 3.1(a)) applied in the pars-
ing according toG,G2, andG3, respectively.

25

grammarG: H
ℎ

K
k A

C
B
b

c

grammarG2: [AB]
a b

[HK]
ℎ k A

parsing ⋖ℎ =̇ k [AB] c ⋗ e

grammar ofL(G2).L(G1): [[HK]C]

ℎ k [AB]
a b

c

grammarG3 : [HC]

ℎ k [AB]
a b

c

3.1 (b) If instead is " (the case� = " is symmetric), this means thatB#
∗
⇒ zi+1.yi+1

in G and� ⋗ #. Thus a productionNℎ → �i,s�A is in G2 with [HA1] belonging toNℎ

andA1 → �A being a production ofG for someA1, H. Therefore, again, a production
[[Nℎ]B] → �i,s�i+1,p, later transformed intoNk → �i,s.�i+1,p, with [HB] ∈ Nk has been
built in G3.

At this point the parsing can proceed in the same way by using suitable productions
generated during the various iterations of the construction algorithm.

3.2) It may also happen that, during the parsing, a reduction involving more than two
consecutive�’s, of the type. . . → ⋖�i=̇�i+1=̇ . . . =̇�i+k⋗ (with no ⋖,⋗ in between)
becomes necessary, with

. . . → ⋖�i=̇�i+1=̇ . . . =̇�i+k⋗
∗
⇒ xj .xj+1 . . . xj+ℎ

wherej ≥ i, ℎ ≥ k.
For the sake of simplicity assume that such a reduction occurs right after thesecond phase
(the reasoning applies identically to other cases): this means that�i

∗
⇒ xi−1,s.xi,p, etc.

Thus the construction ofG3 has built the productionNk → �i,s.�i+1,p defined as above
(notice:�i+1,p coincides with�i+1 since�i+1 does not contain any⋖,⋗; not the same for
�i,s).

At a subsequent iterationI > 3, grammarGI contains the further productionNs →
�i,s.�i+1,p.�i+2,p (again�i+2,p coincides with�i+2) and so on, until producingNt →
⋖�i=̇�i+1=̇ . . . =̇�i+k⋗. Since at every iteration new productions are generated and since
k is bounded by the hypothesis that there is no circularity in the=̇ relation, the production
Nt → ⋖�i=̇�i+1=̇ . . . =̇�i+k⋗ has certainly been generated by the construction ofĜ.
Thus, the parsing ofx can proceed until the full derivation has been built bottom up.⊓⊔

