
Self-Stabilization as a Foundation for Autonomic Computing∗

(Position Paper)

Olga Brukman, Shlomi Dolev, Yinnon Haviv, Reuven Yagel†

Department of Computer Science, Ben-Gurion University,
Beer-Sheva, 84105, Israel

{brukman,dolev,haviv,yagel}@cs.bgu.ac.il.

Abstract

This position paper advocates the use of the well de-
fined and provable self-stabilization property of a sys-
tem, to achieve the goals of the self-* paradigms and au-
tonomic computing. Several recent results starting from
hardware concerns, continuing with the operating sys-
tem, and ending in the applications, are integrated: the
self-stabilizing microprocessor, with the self-stabilizing
operating system, the self-stabilization preserving com-
piler, and the self-stabilizing autonomic recoverer for
applications.
Keywords: self-stabilizing systems, autonomic com-
puting, liveness, safety, automatic recovery, self-
healing.

1 Introduction

The interest in robust systems has increased dramat-
ically in recent years. New terms such as self-healing,
self-repair, autonomic computing, automatic recovery,
and self-stabilization are used to describe the current
computing challenges [5, 6, 14, 22]. The challenge is
to create new techniques and technologies for design-
ing software for critical systems that will be able to
recover automatically from a failure. The examples of
systems that require automatic recovery include flight
control systems, web servers that support e-commerce,
and on-going core system components such as operat-
ing systems.
Self-Stabilization. Self-stabilization is an elegant ap-
proach to designing fault tolerant systems [6]. A self-
stabilizing system is designed to start in any possi-

∗Partially supported by the Lynn and William Frankel Center

for Computer Sciences, IBM faculty award, Ministry of Science,

Rafael, and the Rita Altura trust chair in computer sciences.
†Also at: Rafael 3M, POB 2205, Haifa, Israel.

ble configuration where system components (proces-
sors, processes, communication links, communication
buffers) are in an arbitrary state. The idea is to explore
the state space of the system, simply by considering any
possible content of memory and proving that from ev-
ery state the system eventually converges to the desired
behavior. In other words, given a specification, we will
say that an algorithm is a self-stabilizing algorithm for
the given specification if: there exists a set of config-
urations, called safe configurations, that being in one
of them ensures that the executions that follow respect
the specification. In addition, the set of safe configura-
tions is closed, i.e., being in a safe configuration ensures
transition to a safe configuration. Starting from any
configuration, a self-stabilizing algorithm must reach a
safe configuration in a finite time. Thus the execution
sequence may have a (finite) prefix in which the system
configurations are not safe, but eventually a safe con-
figuration is reached. Self-stabilizing algorithms can
be combined such that the output of the first stabiliz-
ing algorithm serves the second stabilizing algorithm
as an input to form a single self-stabilizing algorithm.
For example, self-stabilizing program that executes on
top of a self-stabilizing processor, converges to a safe
configuration only after the microprocessor would have
converged to its desired behavior.
Self-Stabilization as a Tool for Autonomic Sys-
tems. We claim that critical systems need to be self-
stabilizing. Otherwise, once the type and amount of
failures the system was designed to cope with, or the
assumptions concerning the interaction (input/output
allowed sequences) with the outside environment are
violated, the system may enter a state from which it
will never recover. The self-stabilization property cap-
tures the desire to recover automatically from any (un-
expected) state. The self-stabilizing system converges
to a legal execution once faults stop occurring. The
concept of self-stabilization addresses the automatic
failure detection and automatic recovery facet of the



autonomic computing grand challenge.
The microprocessor may fail to execute the sequence

due to soft errors (also called single event upset). Soft
errors are voltage changes caused by cosmic rays or
other disturbances. They can change the output value
of a gate in a digital circuit. The error is propagated to
the operating system processes and to application level
processes, which may cause a system failure or illegal
execution by the system. The probability of a soft error
increases when the feature size decreases, the voltage
decreases and the micro-cycle time is shortened. Some
calculations of rates of soft errors were presented in
[21]. A high-end router with 10 GB of SRAM and an
soft error rate of 600 failures in time per megabit can
experience an error every 170 hours. A computer with
2 GB of memory on an airplane at altitude of 1100
kilometers has a soft-error rate of 100,000 failures in
time per megabit, which implies a potential error every
5 hours.

Current technology considers soft errors in mem-
ory circuits by adding redundancy in the form of er-
ror correcting codes. Recent studies have shown that
the probability of soft errors in the logic circuit will
increase in less than a decade to the current probabil-
ity for it in memory. Thus, error correcting schemes
for the memory circuits only will not be sufficient, as
other processor components can be affected as well.

Current designs of microprocessors do not incorpo-
rate the self-stabilization property [11]. Even a fully
verified processor may fail due to a soft error. Cur-
rent industrial solution is simply adding some phys-
ical protection against radiation, which provides pro-
tection only up until certain level of radiation. This is a
bold example of the need for a self-stabilizing processor
where all combinations of bit values are considered.

An operating system is an essential part of most
computer systems. The operating system manages the
hardware resources, and forms an abstract (virtual)
machine that is convenient to program for by higher
level application developers. The operating system
running on top of a non-self-stabilizing processor may
fail due to soft errors experienced by the processor.

The self-stabilizing algorithm designer assumes that
the program is translated into a self-stabilizing ma-
chine code and is executed by a processor using op-
erating system services. However, the machine code
produced by existing compilers for a self-stabilizing al-
gorithm does not preserve self-stabilization properties
[9].

The program execution is truly self-stabilizing only
if the underlying execution platform is self-stabilizing,
i.e., a processor and an operating system are self-
stabilizing and a compiler is stabilization preserving.

We present new concepts for a stack of tools
that provide a software platform for executing self-
stabilizing programs: a self-stabilizing processor [7], a
self-stabilizing operating-system [11, 12, 13, 25], and
a self-stabilization preserving compiler [9]. An elegant
composition technique of self-stabilizing algorithms [6]
is used to show that once the underling microprocessor
stabilizes the self-stabilizing operating system (which
can be started in any arbitrary state) stabilizes, then
the self-stabilizing applications that implement the al-
gorithms stabilize.

We suggest a novel approach for designing a soft-
ware platform for autonomic computing based on the
concept of self-stabilization. The approach is differ-
ent from the a common “monitor–analyze faults–inject
alternations” approach of autonomic computing. Self-
stabilization can be applied to support stateless and
stateful systems. For stateful systems, the system may
record its full state (application state, operating sys-
tem level variables) into non-volatile memory. Then,
the recovery action which will be proven to take place
from an arbitrary state will recover the system using
the last legal snapshot of the system state. The self-
stabilization platform may yield (a tolerable) computa-
tion overhead, but it provides an opportunity to create
an extremely robust software.

We observe that writing a full self-stabilizing appli-
cation is very difficult. We know that usually soft-
ware works correctly after restart, but accumulates
bugs and becomes faulty. We present complementary
tools – a self-stabilizing autonomic recoverer [3] and re-
covery oriented programming [2] for such applications.
The self-stabilizing autonomic recoverer is a middle-
ware that relies on the existence of a self-stabilizing
processor and a self-stabilizing operating-system, and
uses restart as a working tool to achieve long periods
of legal execution for the application. In the recovery
oriented programming approach we suggest to “inject”
code snippets into the system code at compile time.
The snippets will monitor the important system prop-
erties and initiate recovery upon properties unsatisfia-
bility.

Next we detail the concepts used in the design we
proposed for each layer. The final outcome of the lay-
ers composition is a self-stabilizing infrastructure for
executing self-stabilizing applications.

2 Self-Stabilizing Microprocessor

A microprocessor execution is legal if the processor
repeatedly executes fetch-decode-execute cycle. A mi-
croprocessor is self-stabilizing if and only if every exe-
cution that starts in an arbitrary configuration reaches



a safe configuration in a finite number of pulses, i.e.,
reaches the configuration after which its execution is
legal. In [7] we present a method for verifying the self-
stabilization property of an existing processor and a
method for adding self-stabilization property to the ex-
isting processor.
Verifying Self-Stabilization. A microprocessor can
be modeled as a finite state automata. The micro-
processor repeatedly executes fetch-decode-execute se-
quence, thus it has cycles in the automata description.
The microprocessor automata has a different cycle for
each instruction type it is able to execute. Our goal
is to prove that every cycle in the microprocessor au-
tomata includes a fetch-decode instructions and proper
execution of a machine command pointed to by the pro-
gram counter.

An explicit generation of a microprocessor transi-
tion graph is computationally expensive, both in space
and in time. We make an abstraction of the transition
graph by using only few relevant variables to represent
the automata state.

In this work we examine a micro-code controlled pro-
cessor. A node in the automata is defined by a value
of (control variables, e.g.,) the micro-code program
counter and a value of the internal micro-registers.
Correct values of these variables are essential for the le-
gal execution of the assembler instructions. We use the
method described above to verify that the micro-code
controlled processor Mic-1 presented in [26] (Chapter
4) is a self-stabilizing microprocessor.
Adding Self-Stabilization. One can ensure that a
fetch-decode-execute sequence is eventually executed
by using an upper bound on the number of clock
pulses that may occur between every two successive
executions of a fetch-decode-execute sequence. We as-
sume that every processor repeatedly executes a fetch-
decode-execute sequence when it is started from a
predefined state (e.g., an initial state defined by the
manufacturer). Thus, one can use a watchdog circuit
that will detect that the processor has not executed a
fetch-decode-execute sequence in the last t clock pulses,
where t is the given upper bound. In case a timeout
takes place, the watchdog resets the microprocessor to
the predefined (initial) state.

We design the watchdog circuit to be self-stabilizing
so it will be resilient to soft errors. One can imple-
ment the watchdog as a counter that is decremented
in every clock pulse, using an exact number of bits
needed to count the upper bound on the number of
pulses between two successive fetches. We assume that
the watchdog counter can be initialized to any possi-
ble value (due to a soft error), therefore, causing an
immature reset of the microprocessor in the worst case

[8].

3 Self-Stabilizing Operating System

One approach in designing self-stabilizing operat-
ing systems is to consider an existing operating sys-
tem (e.g., Microsoft Windows, Linux) as a black-box
and add components to monitor its activity and take
actions accordingly, such that automatic recovery is
achieved. We call this approach the black-box based
approach. The other extreme approach is to write a
self-stabilizing operating system from scratch. We call
this approach the tailored solution approach.
Black Box [11]. We assume that an operating sys-
tem code is correct, but it may reach a state that was
not expected, namely corrupted variables values (due
to memory leaks, unexpected IO sequence from the
environment, etc.). A primitive solution for achiev-
ing fault-free programs is to design the system to re-
peatedly access a fixed read only memory device (e.g.,
compact disk) and reload the executable code from it.
The reloading procedure is hardwired in rom and is
operated using watchdog and nmi (Non-Maskable In-
terrupt) mechanisms.
Tailored Approach. An operating system kernel
usually contains basic mechanisms for managing hard-
ware resources. Classical Von-Neumann machine in-
cludes a processor, a memory device and external i/o
devices. The tailored operating system is built (like
many other systems) as a kernel that manages these
three main resources. The usual efficiency concerns
which operating systems must address, are augmented
with stabilization requirements. In [11] we investi-
gated scheduling issues. In [12] memory management
schemes were addressed, and in [13] device drivers are
handled.
Scheduling [11]. The system is composed of vari-
ous processes which are executing each in turn. The
process loading, executing and scheduling part of the
operating system usually forms the lowest and the most
basic level. Two main requirements of the scheduler are
fairness and stabilization preservation. Fairness means
that in every infinite execution every running process is
guaranteed to get a chance to run. Stabilization preser-
vation means ensuring that the scheduler preserves the
self-stabilization property of a process in spite of the
fact that other processes are executed as well (e.g., the
scheduler ensures that one process will not corrupt the
variables of another process).

The scheduler is the key to executing all other pro-
cesses, therefore, its correct starting and execution
must be guaranteed. The watchdog and non-mask-
able interrupts mechanisms ensure periodically execut-



ing the scheduler. Additionally, the state of the sched-
uler must be validated for correctness. The scheduler
uses a process table for scheduling management. This
information must be correct in an on-going execution,
and must adapt to different scenarios, e.g., starting
applications to handle external inputs. Stabilization
preservation is achieved by means of monitoring pro-
cesses and program code restrictions.
Memory Management [12]. We deal with two im-
portant requirements to the tasks of memory manage-
ment. The first requirement is the eventual memory hi-
erarchy consistency. Memory hierarchies and caching
are key ideas in memory management. The memory
manger must provide eventual consistency of the var-
ious memory levels. The second requirement is the
stabilization preservation requirement. It means that
stabilization proof for a single process p is automat-
ically carried to the case of multiprocessing in spite
the fact that context switches occur and the fact that
the memory is actually shared. Namely, the actions of
other processes will not damage the stabilization prop-
erty of the process p.

We suggest three basic design solutions that follow
the evolution of memory management techniques. The
first approach allocates the entire available memory to
the running process, thus, ensuring exclusion of mem-
ory access. Since each process switch requires expen-
sive disk operations, this method is inefficient. The sec-
ond solution partitions the memory among several run-
ning processes and exclusive access is achieved through
segmentation and stabilization preservation of the seg-
ment partitioning algorithm. Both solutions constrain
program to reference addresses in the physical mem-
ory only (or even in the partition size) and allow static
use of memory only. The last solution uses lease based
dynamic schemes, in which the application must re-
new memory leases in order to ensure the correct op-
eration of a self-stabilizing garbage collector. The dy-
namic memory manager repeatedly checks for memory
portions allocated to a process for which the lease ex-
pired, and returns every such memory portion to the
available memory pool for reallocation.
Device Drivers [13]. Device drivers are programs
which are practically an essential part of any operating
system. They serve as an adaptation layer by manag-
ing the various operation and communication details
of i/o devices. They also serve as a translation layer
providing consistent and more abstract interface for
other programs and the hardware device resources (and
sometimes they also add extra services not provided by
the hardware devices). Device drivers are known to be
a major cause of operating system failures [24].

We define two requirements which should be satis-

fied in order for the protocol between the operating
system and an i/o device to be self-stabilizing. The
first requirement (the ping-pong requirement) states
that in an infinite system execution, in which there are
infinitely many i/o requests, the os driver and the de-
vice controller are infinitely often exchanging requests
and replies. The second requirement is about progress
and it states that eventually every i/o request is exe-
cuted completely and correctly according to some pro-
tocol specification (e.g., the ata protocol for storage
devices). A device driver and device controller can
be viewed as a master and a slave working together
according to some protocol to achieve their mission.
Thus, the device driver acting as a master can check
that the slave is following, e.g. the ata protocol, cor-
rectly.

We suggest two solutions. In the first solution the
device controller is not required to be self-stabilizing,
and the device driver leases some (usually enough)
time to the device controller to complete its tasks. In
the second solution we relax the timing constraints by
assuming that the device controller itself is also self-
stabilizing. Therefore, we only need to guarantee that
the execution is carried out by both parties according
to the protocol. This is achieved by the device driver
performing consistency checks according to its current
state.
Tailored OS Implementation [25]. Prototype im-
plementations for the various parts presented above,
using the Intel Pentium processor architecture [16] were
composed. For each part mentioned above we imple-
mented the mechanisms for satisfying the needed re-
quirements. We have also provided detailed proofs of
the mechanism correctness The implementation is in
Assembly language, using the processor opcodes. The
methodology we use for building such critical systems
is to examine, with extra care, every instruction while
assuming an arbitrary initial state. This is achieved
by writing the code directly according to the machine
semantics (not relying on current compilers to preserve
our requirements), together with line by line examina-
tion. This style is sometimes tedious, but is essential
to demonstrate the way one should ensure the correct-
ness of a program from any arbitrary initial state. Such
a method is especially important when dealing with
such a basic component as an operating system kernel.
Higher level components and applications can then be
composed in ways discussed in Section 5.

Our proofs and prototypes show that it is possible
to design a self-stabilizing operating system kernel.



4 Self-Stabilization Preserving Com-

piler

Self-stabilizing algorithms are expressed using
guarded commands [5] or pseudo-code. Proof of self-
stabilizing algorithms requires the examination of the
entire state space and is based on the behavior of the
program starting from an arbitrary state. Thus the
designer prefers a language in which the state space
and the program behavior in every state are explic-
itly defined. The proof of self-stabilization for algo-
rithms stated in general purpose languages such as
C++ or Java is complicated because the program con-
text (stack) is hardwired in the language semantics.

The realization of self-stabilizing algorithms requires
conversion of high-level descriptions (algorithms) into
programs written in a machine language. Unfortu-
nately, existing compilers do not preserve the stabi-
lization property. In fact, the code generated by ex-
isting compilers for a simple for loop may run practi-
cally infinitely when started from an arbitrary state:
the loop counter has a corrupted value such that the
termination predicate of the loop will never be sat-
isfied [9]. Moreover, the stack used by the compiled
self-stabilizing program may become corrupted. The
compiled program should be able to recover from such
corrupted state.

Another aspect of creating a stabilization preserv-
ing compiler concerns the runtime mechanisms, e.g.,
the heap. The code generated by the stabilization pre-
serving compiler should be able to recover from any
arbitrary state of these mechanisms. In order to avoid
the need to prove that the machine code produced
by the compiler is self-stabilizing we designed a self-
stabilization preserving compiler.

In our work [9] we identify languages best suited for
describing self-stabilizing algorithms. These are state
based languages, such as guarded commands [5], IO
automata [19], ASM [17], etc.. Then, we describe a
sufficient condition for a compiler to preserve the stabi-
lization property. We say that the generated program
eventually behaves as the original program if the fol-
lowing condition holds. The generated program may
start in an arbitrary configuration and will reach a
safe configuration in a bounded number of steps. After
reaching the safe configuration the program eventually
behaves as the original program.

We present our design for a compiler that preserves
the eventually behaves as property, i.e., it is a self-
stabilization preserving compiler. We implemented a
self-stabilization preserving compiler that transforms
programs written in a language similar to the abstract
state machine (ASM) language [17] into IJVM pro-

grams [15]. The existence of a self-stabilization pre-
serving compiler allows the designer to focus on the
algorithm in its abstract form and leave the machine-
level implementation details to the compiler to deal
with.

5 Self-Stabilizing Autonomic Recov-

erer for Applications

Complex systems cannot be fully verified as ver-
ification of large systems may require an unreason-
able amount of time and space. Such systems usu-
ally contain flaws – software bugs. The software in-
dustry tests software products extensively to eliminate
flaws as much as possible. Software is tested by ex-
ecuting a large, but bounded and non-exhaustive, set
of input/output with bounded length scenarios start-
ing from a predefined initial state. Faulty, undesired
and unplanned behavior may occur due to scenarios
that were not tested prior to releasing the software,
and may be hard to reproduce.

On the other hand, a consumer of critical systems
would like to have a warranty that the system will
operate as it should. It is not always enough to be
reimbursed when the software does not operate prop-
erly. Software malfunctions may cause damage that
can outweigh the software cost. Keeping all this in
mind, a consumer of a critical system would like to
have a warranty that such a system will operate prop-
erly. Consumer requirements may be categorized into
safety requirements that ensure that nothing bad hap-
pens, and liveness requirements that ensure that even-
tually something good happens [1].

Up to now, the research into self-stabilizing systems
and systems that perceive faults as Byzantine behav-
ior has not been able to cope with the fact that soft-
ware packages contain bugs with very high probabil-
ity. In particular, both self-stabilization and Byzan-
tine theory limit the number of Byzantine processors
that can be handled [10]. Usually software packages
function as required for a long period of time after be-
ing started from their initial state. This initial correct
behavior can be attributed to the testing done by the
software manufacturer, which starts the software from
the initial state and which considers bounded-length
executions. Systems administrators and users occa-
sionally restart such software as a way of coping with
failure. In the case of existing large software systems,
self-stabilization and Byzantine theory may be well in-
corporated with restartability. Restarting a program
is analogous to rejuvenating of the program code and
the program state, while common software rejuvena-
tion mainly releases resources the program is using.



Our Approach. We suggest generic self-stabilizing
schemes for monitoring processes to ensure customer
requirements [3]. The automatic recoverer can be suc-
cessfully used for applications that have the restartabil-
ity property, i.e., once restarted they operate correctly
for long enough period to do a sufficient work. We
present an architecture of a system that monitors and
initiates recovery of subsystems automatically in a hi-
erarchical manner. This approach enables us to enforce
recovery (e.g., restart) of only one of the subsystems,
while the other subsystems are not affected.

Each critical process and each subsystem of criti-
cal processes (a group of processes united by a mu-
tual goal) will have a dedicated monitor process. The
monitor will check whether the critical process exists
and satisfies its specification. Specifications are predi-
cates on the process input/output variables and a his-
tory log of recorded process related information accu-
mulated during the process execution. Specifications
are classified into liveness and safety specifications. If
the monitored critical process crashes, or fails to sat-
isfy one of the requirements, the monitor will initiate
some recovery action. A recovery action does not al-
ternate program behavior. A recovery action can be
restarting a process, rescheduling, waiting, etc.. The
existence of such monitoring processes will be guaran-
teed by the operating system. The operating system
must have some special features to support our system:
it has to be self-stabilizing, and must have a dedicated
process responsible for the existence of the monitoring
processes. This functionality has to be part of the oper-
ating systems kernel. Monitoring processes will detect
a process state by recording its input/output sequence
using new monitoring technologies, such as introspec-
tion solutions provided by runtime reflection tools or
by means of recording the OS system calls. This ap-
proach is also applicable to the legacy off-the-shelf soft-
ware packages.

Assuming that a monitored process is a finite state
machine, our scheme ensures that critical processes and
subsystems satisfy their specifications: they are alive
and, moreover, progress towards the accomplishment of
their mission. The suggested additional layer is thin (a
property which will allow a full correctness proof of its
code) and is self-stabilizing in order to ensure eventual
recovery.

In [3] we have designed an autonomic recoverer, a
thin fully-verified self-stabilizing middleware that en-
sures safety and liveness properties of a monitored sys-
tem. We consider a monitored system to be a collec-
tion of black box components where inter-component
dependencies can be expressed by a directed acyclic hi-
erarchical graph. We provide a detailed example with a

full correctness proof of an autonomic recoverer usage
to ensure the correct execution of the mutual exclu-
sion algorithm for a bounded number of processes. We
also present a prototype for a printers server in which
the line printer daemon is monitored in order to ensure
recovery of printer systems.

In [2] we have also suggested an alternative ap-
proach, recovery oriented programming. Recovery ori-
ented programming treats software as a transparent
box. Recovery tuples that include important proper-
ties to monitor, recovery actions, history log snapshot
instructions, etc. as part of the program. The pro-
gram code is augmented with automatically generated
portions of code for event-driven monitoring and some
additional processes are created by the framework for
external monitoring. The additional code is generated
based on the supplied recovery tuples. Their code is
generated automatically too. Combined, event-driven
monitoring and external monitoring provide full mon-
itoring of safety and liveness even in the presence of
transient faults.

6 Conclusions

The usage and usefulness of self-stabilizing systems
in critical and remote systems, cannot be overempha-
sized. We have presented a stack of self-stabilizing
building blocks (the processor, the operating system,
the stabilization preserving compiler) that combined
constitute a self-stabilizing software platform. The self-
stabilizing software platform is essential for executing
self-stabilizing systems. It also can be used as super ro-
bust software platform that can be used to run ordinary
(not self-stabilizing) programs using autonomic recov-
erer. This paper demonstrates how self-stabilization
can be used to create truly robust systems with very
high availability.

References

[1] B. Alpern and F. B. Schneider. “Defining Liveness”.
Information Processing Letters, vol. 21(4), pp. 181-
185, 1985.

[2] O. Brukman, S. Dolev. “Recovery Oriented Pro-
gramming”. 8th International Symposium on Sta-
bilization, Safety, and Security of Distributed Sys-
tems (SSS’06), pp. 152-168, Dallas, Texas, USA,
November 2006.

[3] O. Brukman, S. Dolev, and E. Kolodner. “Self-
Stabilizing Autonomic Recoverer for Eventual



Byzantine Software”. IEEE International Confer-
ence on Software-Science, Technology & Engineer-
ing (SwSTE’03), pp. 20-29, Herzelia, Israel, 2003.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, D. Engler.
“An empirical study of operating systems errors”.
Proceedings of the 18th ACM Symposium on Op-
erating Systems Principles (SOSP’01), pp. 73-88,
Banff, Canada, 2001.

[5] E. W. Dijkstra, “Self-stabilizing systems in spite of
distributed control”. Communication of the ACM,
vol. 17, pp. 643-644, 1974.

[6] S. Dolev. “Self-stabilization”. The MIT press,
March 2000.

[7] S. Dolev, Y. Haviv. “Self-Stabilizing Microproces-
sor - Analyzing and Overcoming Soft-Errors”. 17th
International Conference on Architecture of Com-
puting Systems (ARCS04), pp. 31-46, 2004. Also in
IEEE Trans. Computers, vol. 55(4), pp. 385-399,
2006.

[8] S. Dolev, Y. Haviv. “Stabilization Enabling Tech-
nology”. 8th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems
(SSS’06), pp. 1-15, Dallas, Texas, USA, November
2006.

[9] S. Dolev, and Y. Haviv, M. Sagiv. “Self-
Stabilization Preserving Compiler”. 7th Inter-
national Symposium on Self-Stabilizing Systems
(SSS’05), pp. 81-95, Barcelona, Spain, October
2005.

[10] S. Dolev and J. L. Welch. “Self-Stabilizing
Clock Synchronization in the Presence of Byzantine
Faults”. Proc. of the Second Workshop on Self-
Stabilizing Systems (WSS’95), pp. 9.1-9.12, 1995.
Also in Proc. of the 14th Annual ACM Symp. on
Principles of Distributed Computing (PODC’95),
pp. 256, 1995, and in Journal of the ACM, vol.
51(5), pp. 780-799, September 2004.

[11] S. Dolev and R. Yagel. “Toward Self-Stabilizing
Operating Systems”. 2nd International Workshop
on Self-Adaptable and Autonomic Computing Sys-
tems (SAACS’04), pp. 684-688, Zaragoza, Spain,
2004.

[12] S. Dolev and R. Yagel. “Memory Management
for Self-Stabilizing Operating Systems”. Proceed-
ings of the 7th Symposium on Self Stabilizing Sys-
tems, Barcelona, Spain, October 2005. To appear
in Journal of Aerospace Computing, Information,
and Communication (JACIC), 2006.

[13] S. Dolev and R. Yagel. “Self-Stabilizing Device
Drivers”. 8th International Symposium on Stabi-
lization, Safety, and Security of Distributed Sys-
tems (SSS’06), pp. 276-289, Dallas, Texas, USA,
November 2006.

[14] IBM. Autonomic computing.
http://www.research.ibm.com/autonomic,
2001.

[15] IJVM. IJVM Assembly Language Specification.
http://www.ontko.com/mic1/jas.html, 1999.

[16] Intel. “The IA-32 Intel Architec-
ture Software Developer’s Manual”.
http://developer.intel.com/design/

pentium4/manuals/, 2006.

[17] Y. Gurevich, B. Rossman, W. Schulte. “Semantic
Essence of AsmL”. Microsoft Research Technical
Report MSR-TR-2004-27, March 2004.

[18] L. Lamport, R. Shostak, and M. Pease. “The
Byzantine Generals Problem”. ACM Trans. on
Programming Languages and Systems, vol. 4(3), pp.
382-401, 1982.

[19] N. Lynch. Distributed Algorithms. Morgan Kauf-
mann Publishers, 1996.

[20] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Rein-
hardt, T. Austin. “A Systematic Methodology to
Compute the Architectural Vulnerability Factors
for a High-Performance Microprocessor”. Proceed-
ings 36th Annual International Symposium on Mi-
croarchitecture (MICRO), 2003.

[21] R. Mastipuram, E. C. Wee. “Soft errors’ impact on
system reliability”. Voice of Electronics Engineer,
http://www.edn.com/article/CA454636.html, 2004

[22] D. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kici-
man, M. Merzbacher, D. Oppenheimer, N. Sastry,
W. Tetzlaff, J. Traupman, N. Treuhaft. “Recov-
ery Oriented Computing(ROC): Motivation, defi-
nition, techniques and case studies”. UC Berkeley
Computer Science Technical Report UCB/CSD-02-
1175, Berkeley, CA, March 2002.

[23] MṠwift. “Improving the Reliability of Commod-
ity Operating Systems”. Ph.D. Dissertation, Uni-
versity of Washington, Seattle, Washington, USA,
2005.



[24] M. M. Swift, B. N. Bershad, H. M. Levy. “Im-
proving the reliability of commodity operating sys-
tems”. ACM Transactions on Computer Systems
(TOCS), vol. 23(1), pp. 77-110, February 2005.

[25] SOS download page.
http://www.cs.bgu.ac.il/∼yagel/sos, 2006

[26] A. Tanenbaum. “Structured computer organiza-
tion”. Prentice-Hall, 1984.


