
Automatic parallelization of irregular
applications q

E. Guti�errez, R. Asenjo, O. Plata *, E.L. Zapata

Department of Computer Architecture, University of M�alaga, P.O. Box 4114, E-29080 M�alaga, Spain

Received 6 December 1999; received in revised form 9 May 2000

Abstract

Parallel computers are present in a variety of ®elds, having reached a high degree of ar-

chitectural maturity. However, there is still a lack of convenient software support for imple-

menting e�cient parallel applications. This is specially true for the class of irregular

applications, whose computational constructs hardly ®t current parallel architectures. In fact,

contemporary automatic parallelizers produce, in general, poor parallel code from these ap-

plications. This paper discusses techniques and methods to help improve the quality of au-

tomatic parallel programs. We focus on two issues: parallelism detection and parallelism

implementation. The ®rst issue refers to the detection of speci®c irregular computation con-

structs or data access patterns. The second issue considers the case that some frequent con-

struct has been detected but has been sub-optimally parallelized. Both issues are dealt with in

depth and in the context of sparse computations (for the ®rst issue) and irregular histogram

reductions (for the second issue). Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Automatic parallelization; Irregular problems; Parallelism detection; Sparse matrix computa-

tions; Irregular reductions; Distributed shared-memory architectures

www.elsevier.com/locate/parco

Parallel Computing 26 (2000) 1709±1738

q This work was supported by the Ministry of Education and Science (CICYT) of Spain under project

TIC96-1125-C03 and the Esprit IV Working Group of the European Union under contract no. 29488

(Automatic Performance Analysis: Resources and Tools, APART).
* Corresponding author.

E-mail addresses: eladio@ac.uma.es (E. GutieÂrrez), asenjo@ac.uma.es (R. Asenjo), oscar@ac.uma.es

(O. Plata), ezapata@ac.uma.es (E.L. Zapata).

0167-8191/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (0 0) 0 0 0 5 2 - 1

1. Introduction and background

This decade is seeing the popularization of parallel computers. Nowadays, these
machines can be found in many di�erent ®elds, in industry, research, academic and
commercial places. The architecture of parallel computers has reached a high degree
of maturity, and many people agree that parallel computing is an e�ective tool for
solving a large variety of di�cult problems. However, developing e�cient parallel
applications for these machines is still a di�cult task.

One part of the problem is that parallel computers are architecturally complex.
Contemporary general-purpose multiprocessors may be classi®ed into two large
classes: private memory and shared-memory machines [12]. Private memory multi-
processors present a high-bandwidth, high/medium-latency communication net-
work, which is e�cient for large and infrequent messages. Hence, exploiting private
memory locality is important in order to minimize network communications. In
addition, as these machines lack from a global or shared memory, parallel tasks
should be provided with a simple and e�cient mechanism to locate data distributed
across processors' local memories. Shared-memory multiprocessors, on the other
hand, provide a global physical memory address space, which facilitates the location
of data. However, most of these machines implement a cache coherence protocol in
hardware, that takes charge of data communications among processors at the cache
block level. Exploiting cache locality, thus, is important in order to minimize cache
interventions and invalidations, and get e�ciency from these machines.

The second part of the problem is that there is some lack of convenient software
support for implementing applications e�ciently, that is, that produces parallel
software able to exploit the above complex architectural features. This is a general
situation that deserves to be analyzed in more detail. There is a large class of nu-
merical applications, called regular problems, that exhibit a regular structure.
Computationally, these problems are characterized by the following property.
Considering the usual case in which data are organized as arrays, if two di�erent
array elements are data dependent then there is typically some simple relationship
between the corresponding array indices, often a linear function analyzable by the
compiler. These applications are usually easy to parallelize, either manually or au-
tomatically, making e�cient use of the processor cycles and the memory hierarchy of
the current multiprocessor architectures.

Many important scienti®c/engineering applications, however, show an irregular
structure, and are known as irregular problems. These problems arise in sparse
matrix computations, computational ¯uid dynamics, image processing, molecular
dynamics simulations, galaxy simulations, climate modeling, optimization problems,
etc. [28] The dependence graph for these applications depends on the input data, and
so they exhibit an irregular and unpredictable run-time behavior, that does not ®t
directly to the architectural features of current multiprocessors. This makes that
writing an e�cient parallel program becomes a very di�cult task.

Much research e�ort has been (and is being) devoted during this decade (and the
previous one) to develop suitable programming tools for parallel computers [7,44].
Two important focuses of this research are in language and in compiler technologies.

1710 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

Advances in parallel language technology for numerical problems are mainly aimed
to enable users to program parallel computers using similar methods to those used in
conventional computers. Leaving message passing libraries (like MPI [40]) aside, two
standards have been established in recent years. On one hand, high-performance
Fortran (HPF) [23,27], that extends the Fortran language with a set of language
constructs following the data parallel programming model. This paradigm is based
on a single thread of control and a globally shared address space. Parallelism is
speci®ed through data distributions, which drive the generation of parallel tasks
following the owner compute rule. On the other hand, OpenMP [29], that extends C
and Fortran languages with task-parallel shared-memory language constructs. In
this model, parallelism is speci®ed by partitioning computations instead of data.

Research in compiler technology is associated, in a ®rst instance, to advances in
parallel language technology, as powerful translators are necessary to produce ef-
fective parallel machine codes from programs explicitly parallelized using, for in-
stance, the above mentioned standards. However, a step forward is given if the
compiler is capable of a full parallelization e�ort. It is clear that automatic paral-
lelizing compilers lead to smaller development times for writing a parallel program.
Basically, these parallelizers are source-to-source translators which are fed with a
sequential code which is subsequently restructured and extended with the necessary
directives, sentences and communication operations, to produce the parallel version.

There are a variety of automatic parallelizers available today, most of them being
developed as academic research projects, like Polaris [11,10], SUIF [21] and
PROMIS [39] (which takes much of the technology from the past Parafrase-2 project
[30]). There are also some commercial products [37,38].

Nowadays, most parallelizing compilers are able to generate e�cient parallel
codes from regular applications. However, the same cannot be said for irregular
codes or in presence of dynamic data structures. In general cases, these compilers
usually produce fully or partially parallel codes using techniques based on the in-
spector±executor model [32]. This model consists of the introduction of code to
analyze each data access at run-time and decide if the access is local or remote
(inspector). In the case of remote accesses, current location of remote data is de-
termined (localize) and stored locally by communication routines before the actual
computations are performed (executor).

Run-time support libraries were developed in order to simplify the implementa-
tion of inspectors and executors, like CHAOS/PARTI [31]. PILAR [24], a library
developed to provide basic support for the PARADIGM compiler [6], is an im-
proved implementation of the inspector/executor paradigm, as it can exploit the
certain regularities that many irregular applications exhibit.

Other run-time techniques were proposed recently, as that based on the specu-
lative execution of irregular loops in parallel [36,43]. Parallel execution of the loop
proceeds until a dependence violation is detected. In such case, the execution is in-
terrupted, the state is rolled back to the most recent safe state, the correct access
order is enforced and parallel execution is resumed.

Techniques like the above are general enough to be applied to virtually any ir-
regular application. However, due in part to their generality, the e�ciency obtained

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1711

from the automatically parallelized codes is, in general, poor. Better performance
could be obtained if techniques are developed and optimized for special cases of
frequent computation structures and/or data access patterns [42,3,25]. The problem
is two-fold. First (parallelism detection), the parallelizer must be able to detect such
computation/data constructs and, this way, take advantage of some important code
and problem properties. Second (parallelism implementation), some of the techniques
used to parallelize currently detected constructs are too general or sub-optimal, and
thus must be optimized. The ®nal objective consists of generating automatically
competitive (high-quality) parallel code, regarding equivalent manually parallelized
versions.

In this paper, we take Polaris as the base parallelizer, due to the excellent results it
achieves for a great deal of codes from both the SPEC and Perfect Club benchmarks.
However, as many other compilers, Polaris can hardly parallelize any irregular code
e�ciently. In this paper, we present some of the weakest points of Polaris regarding
this issue and propose some techniques to alleviate these de®ciencies. As it is com-
monly done in these cases, we have compared our hand-parallelized versions of some
irregular codes with the corresponding Polaris version to ®nd out what should be
improved.

The next section discusses the ®rst issue, parallelism detection, in the context of
sparse computations. A direct method for solving sparse linear systems has been
chosen as a case study, as it presents most of the complexities associated to sparse
codes, that is, the presence of dynamic compressed data structures. This example
code allows us to determine the weakness of contemporary parallelizers like Polaris
to produce e�ective parallel code from sparse programs. However, we will see that a
small number of techniques to detect speci®c computational constructs is enough to
generate a high-quality parallel output.

Section 3 is devoted to the second issue, parallelism implementation. In this case,
we have selected an irregular (histogram) reduction as the case study. This kind of
computation constructs is detected and parallelized by contemporary parallelizers,
like Polaris. The problem here, in contrast, lies in the parallel output. Polaris uses
array expansion to implement this parallelization, a simple and general technique.
However, array expansion was designed for small scale shared-memory multipro-
cessors. The memory overhead it exhibits is too expensive for large machines. We
will discuss a di�erent implementation for such reductions that is free of such sca-
lability problem.

2. Parallelism detection: Sparse matrix computations

When using a direct method for solving a large sparse system of linear equations
[15,18], the coe�cient sparse matrix is transformed, or factorized, an operation that
may change the ®ll of the matrix. The compact representation of the matrix must
take into consideration this fact. Also, row and/or column permutations of the co-
e�cient matrix (pivoting) are usually accomplished in order to assure numerical

1712 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

stability and reduce ®ll-in (preserve sparsity rate). All these features make direct
methods hard to parallelize e�ciently.

In this section we take the sparse LU factorization as a representative transfor-
mation which is used in many sparse direct methods. The next section brie¯y in-
troduces the LU factorization and presents a general Fortran code for the sparse
LU. In Section 2.2 we compare the hand-parallelized and the automatic-parallelized
(Polaris) versions of the above serial code. An analysis of the resulting parallel codes
allows us to determine the weak points of Polaris when dealing with this class of
codes, and to propose some techniques (Section 2.3) in order to increase the e�-
ciency of the Polaris output code. The same techniques can be used for other sparse
irregular codes, as we discuss in Section 2.4.

2.1. Sparse LU factorization

The LU factorization is used for the conversion of a general system of linear
equations to triangular form via Gauss transformations [18]. The factorization of a
coe�cient n-by-n matrix matrix A results in two n-by-n matrices, L (lower triangular)
and U (upper triangular), and two permutation vectors p and q such that
Apiqj

� �LU�ij.
There are di�erent strategies to compute the LU factorization [13]. The approach

followed in this section corresponds to the right-looking (or sub-matrix based) ge-
neric method. We discarded the left-looking approach due to its lack of parallelism
[1]. The algorithmic structure of this method is sketched in Fig. 1 (in-place factor-
ization of the matrix A). In the outer iteration k, a pivot is chosen, column and row
permutations may be performed so that the pivot occupies the �k; k� matrix position,
and, ®nally, the sub-matrix de®ned by the pivot is updated (that is, entries
�k � 1 : n; k : n� of A).

In the case of a sparse coe�cient matrix, it is usual to represent it by a compressed
format. These formats do not store zero entries of the matrix, with the aim of saving

Fig. 1. Right-looking LU algorithm.

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1713

both memory and computation overhead. One of the most used formats of this kind
is the compressed column storage (CCS) [8]. This format represents a sparse matrix
A as a set of three vectors. The ®rst vector stores the non-zero values of the matrix
(®ll-ins), the second one stores the row indices of the entries in the ®rst vector, and
the third one stores the locations in the ®rst vector that starts a column of A. Fig. 2
shows the CCS representation of a sample matrix A. Array A stores the non-zero
matrix entries, R stores the row indices and CPTR1, the pointers to the beginning of
each column. An additional pointer array, CPTR2, used during computation to point
to the pivot row, is also present.

Taking again the algorithmic structure presented in Fig. 1, the ®ll-in which may
take place during the update of the reduced sub-matrix (A�k � 1 : n; k � 1 : n�) can be
managed by moving columns in the CCS data structure. In order to minimize the
memory tra�c due to this column movement, a previous analysis stage may be
carried out. This analysis phase reorders the matrix A, selecting the pivots which
ensure the numerical stability and preserve the sparsity. It also selects the outer it-
eration k at which it is worthwhile to switch from a sparse code to a dense one (when
the reduced sub-matrix is, for instance, 15% dense [14,5]). After this analysis stage,
the factorize stage comprises a sparse phase followed by the switch to a dense fac-
torization stage, based on level 2 (or 3 for block-cyclic distribution) BLAS. To
further reduce the column movement, the sparse LU code is designed to be not in-
place. At the end of the factorization, hence, the output matrix LU appears stored in
a CCS data structure, as depicted in Fig. 3. Here, FPTR2 points to the pivots of
matrix LU.

We can, now, brie¯y describe the sparse LU algorithm. The main problem we
need to solve is how to manage the new entries which appear during factorization

Fig. 2. CCS representation of matrix A.

Fig. 3. CCS representation of matrix LU.

1714 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

(®ll-in). Due to the compressed data structure, during the update we have to move
each column of the reduced sub-matrix to other memory zone in which the column
can ®t. To make a long story short, for each outer iteration k, we copy the pivot
column, k, to the CCS data structure representing LU (arrays FACT, FR and
FPTR1), after dividing it by the pivot. Fig. 4 shows this piece of code. The remaining
columns are updated and moved from one half of the arrays A and R to the other
half, properly updating the CPTR1 and CPTR2 pointer arrays, as shown in the code
of Fig. 5. After the ®rst IterSwitch iterations, the code switches to a dense factor-
ization code for the remaining nÿ IterSwitch iterations.

2.2. Hand-coded and automatic parallelization

The previously described code is easy to parallelize by hand. All loops but the
outermost one, k, are parallel. Summarizing, to run over a P � Q processor mesh, the
hand-parallel algorithm just needs [1]:
· An e�cient and uniform distribution of the sparse coe�cient matrix, like the BCS

distribution scheme [4,2,42]. This scheme is a cyclic distribution of the compressed
representation of the sparse matrix. First, the compressed data are expanded to the
full matrix form. Then, the full matrix is cyclically distributed on the processors, as
if it were a dense matrix. Finally, the sparse local matrices are stored using the
CCS compact format (independently one for another). Both row index and col-
umn pointers are local. When changing the data structure (from CCS to a dense
array) prior to the dense factorization, the dense array remains automatically

Fig. 4. Sparse F77 LU factorization (normalization of the pivot column).

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1715

distributed in a dense cyclic fashion. That way, the switch wastes a negligible
amount of time.

· Two communication stages. The ®rst one broadcasts the pivot row by columns of
the mesh. The second one broadcasts the pivot column by rows of the mesh.

· The cutting down of the iteration space of the parallel loops to just traverse the
local coe�cients of the local matrices.

Table 1 presents the experimental performance of the described hand-parallel LU
code obtained on a Cray T3D, for some of the Harwell±Boeing [16] sparse matrices.
The message passing interface is provided by the SHMEM library (speci®cally, the
function shmem_put) [9].

Fig. 5. Sparse F77 LU factorization (update of the reduced sub-matrix).

1716 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

The same sequential sparse LU code (see Figs. 4 and 5) was parallelized using the
Polaris automatic parallelizer, with no intervention of the user. In this case, as the
Polaris output code contained shared-memory directives, the experiments were
conducted on a 16-processor SGI power challenge. Results for a Harwell±Boeing
matrix are presented in Table 2. Note ®rst the overhead introduced by the compiler
in the parallel execution time (comparing the sequential code with the parallel one
executed in a single node), and second that the execution time increases (instead of
decreasing) with the number of processors.

There are a number of reasons that justify the above disappointing result. For this
irregular code, Polaris only exploits the trivial parallelism of loops 20, 30 and 40
(Fig. 4), by avoiding the induction variable EYE and transforming the loop in its
closed form. In Fig. 6 we show, as an example, the Polaris output for the loop 40.

It is not di�cult to imagine that the bookkeeping introduced in this parallel
version of the loop 40 is greater than the speed-up achieved just traversing one sparse
column. Actually the most time consuming loop in the code is loop 50, which cannot
be parallelized by Polaris. Despite this, inside loop 50, Polaris detects a histogram
irregular reduction [33], loop 80 that writes array W(). Due to the existence of a
subscripted subscript in this reduction, Polaris decides to use array expansion to
safely parallelize it. However, the subscript array FR(I), in the range F1:F2 of the
index I, contains the row indices of a column of the coe�cient matrix, and thus is a
permutation array (there are no repeated entries in this section of the array). So,
considering this information, loop 80 is a fully parallel loop, and should not su�er
from the array expansion overhead. We will return to this implementation in the
section about irregular reductions.

In any case, even if we manually parallelize loop 80 and the other loops conser-
vatively serialized by Polaris (loops 60, 70, 90 and 95), it is very di�cult to obtain
good e�ciency. Basically these loops traverse column sections, which do not present
enough work to justify their parallelization. The alternative is to parallelize the most
time consuming loop, loop 50, which takes care of the reduced sub-matrix update.

Table 2

Time (s) of the Polaris parallel LU code for di�erent processor counts in a SGI power challenge

Matrix Sequential 1 2 4 8 16

[2pt] LNS 3937 77.14 179.41 350.66 425.49 492.75 710.01

Table 1

Time (s), speed-up and e�ciency of the hand-parallel F77 LU code for di�erent Cray T3D mesh sizes

Matrix Time (s) Speed-up E�ciency (%)

Seq. 2� 2 4� 4 8� 8 2� 2 4� 4 8� 8 2� 2 4� 4 8� 8

STEAM2 2.33 0.77 0.34 0.21 3.02 6.85 11.09 75.64 42.83 17.33

JPWH 991 3.73 1.30 0.55 0.34 2.86 6.78 10.97 71.73 42.38 17.14

SHERMAN1 2.18 0.88 0.42 0.26 2.47 5.19 8.38 61.93 32.44 13.10

SHERMAN2 36.22 8.84 2.58 1.02 3.99 14.38 35.50 99.75 87.74 55.48

LNS 3937 157.48 44.20 12.17 4.24 3.56 12.94 37.14 89.07 80.87 58.03

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1717

All columns in this reduced sub-matrix can be processed independently, but Polaris
considers that variables A, R, CPTR1, W and SHIFT may present dependences.
Conservatively, Polaris marks loop 50 as sequential. The problem is complex because
arrays A and R are accessed by the SHIFT induction variable, which is conditionally
incremented (depending on the ®ll-in) in loop 90.

We will discuss next what should be done to automatically determine that this
loop can be executed in parallel.

2.3. Sparse-code parallelization techniques

In order to automatically parallelize loop 50 we need to complete two tasks. First
we have to detect that the loop iterations are independent (that is, free of loop-
carried true dependences), and second, we need to generate the parallel code by
breaking the remaining false dependencies with the proper privatization techniques.
Let us discuss in detail both issues.

2.3.1. Parallelism detection: Dependence test
Clearly, inside loop 50 (with index J), the reads in variables A and R are indexed

by I, which traverses a column from CPTR1(J) to CPTR1(J+1)-1. On the other
hand, writes in these variables are indexed with the induction variable SHIFT.
Hence, two conditions must be ful®lled to prove that this loop is parallel:
1. The range of SHIFT must not overlap in di�erent J iterations (no output depen-

dences).
2. The range of SHIFT must not overlap the range of I, (CPTR1(J)±

CPTR1(J+1)-1), in any J iteration (no ¯ow or anti-dependences).
The ®rst condition can be proved with the following symbolic analysis: always A and
R are written, variable SHIFT is incremented, and therefore it is impossible to write
twice in the same position. A more complex analysis can be done by proving that

Fig. 6. Polaris parallel version of the loop 40 of Fig. 4.

1718 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

SHIFT is monotonically increasing (loop 60 executes at least one iteration due to
initial values set in loop 20).

To prove the second condition, we need a run-time test since SHIFT and CPTR1

are not known at compile time. This run-time test, shown in Fig. 7, should prove that
· the lowest index for reading array A, min_i, is greater than the greater index for

writing A, max_shift, and,
· the greater index for reading array A, max_i, is smaller than the lowest index for

writing A, min_shift.
As a ®rst approach, the minimum and maximum values of I can be obtained by
traversing the n ± k last components of array CPTR1. A wiser option consists of
noticing that CPTR1 is monotonically increasing, since it is updated with SHIFT,
which ful®lls this condition. In such a case, we get min_i�CPTR1(K+1) and
max_i�CPTR1(N+1)-1. On the other hand, it is clear that min_shift�
SHIFT, but max_shift should be estimated for the worst case, that is,
max_shift� SHIFT+(N-K)*(F2-F1+1)+max_i-min_i.

2.3.2. Parallelization: Automatic privatization
Once we know there are no dependencies, we have to face the generation of the

parallel code, that is, to allow the parallel processing of separate sets of matrix
columns. However, there are scalar (C1, C2, AMUL, SHIFT) and array (W, A, R)
variables which should be privatized in order to process in parallel each set of col-
umns, by breaking remaining loop-carried output and anti-dependences.

Scalar variables C1, C2, and AMUL are easily detected as privatizable. A more
complex situation arises for array W. The access pattern to W is schematically pre-
sented in Fig. 8. From this pattern, W is privatizable if its values are the same at the
beginning of each iteration. Actually, W is at the beginning a zero array, and remains
so after each j iteration if values in arrays R and FR are between 1 and n. In order to
check the range of values in these arrays we have to test before entering in the
outermost loop that values in R are between 1 and n. Then, the following symbolic
analysis su�ces. FR is copied from R before entering loop 50, and R(SHIFT) is
copied from R(i) in this loop, except in loop 90, where R(SHIFT)�I with I in
1:N. Therefore the range in R and FR is (1:N).

Regarding arrays A and R, we notice that they are written indexed with SHIFT,
which is conditionally incremented in loop 90. In such a case, we cannot transform

Fig. 7. Run-time test before execution of loop 50 in Fig. 5.

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1719

the induction variable in its closed form to determine at which position each column
has to be written before writing the previous one. Here again, we have to privatize
the writings in local arrays pA and pR, indexed by the private variable pSHIFT.
After the local update process, we need a subsequent copy out step to download
parallel local arrays into global ones.

2.3.3. Evaluation of the automatic parallel code
The techniques described previously are not yet implemented in Polaris. However,

we have generated what can be seen as the output of a parallelizing compiler im-
plementing those techniques. Fig. 9 shows such output parallel code (loop 50 is the
only shown). In this code, local variables are privatized by the local() clause in
the DOACROSS directive. However, pSHIFT is privatized by expansion, depending
on the number of processors (obtained through calling to mp_numthreads()),
because pSHIFT value should live after the parallel loop. Notice that false sharing is
avoided in the access to this privatized variable.

In [3], we reported a speed-up of 3.84 for this code in a SGI challenge multi-
processor with four 150 MHz R4400 processors, taking the Harwell±Boeing matrix
LNS3937 as input. More recent results are presented in Table 3 for the same input
matrix and a SGI power challenge with 16 R10000 processors. The ®rst column in
this table contains the time of the sequential code with no modi®cation. In the next
columns we see the speed-up and e�ciency for di�erent processor counts. For 16
processors, e�ciency decreases due to load imbalance. This is because columns are
block distributed to simplify the copy out stage, and therefore the last processors are
more heavily loaded due to the greater ®ll-in in the right-lower corner of the matrix.
Also, notice the overhead introduced by the parallel code (comparing the sequential
time with the parallel time in one processor), basically explained by the amount of
time consumed in the copy out stage.

Fig. 8. Access pattern to W in loop 50 (Fig. 5).

1720 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

2.4. Summary of parallelizing techniques

In general, codes that process sparse matrices present some degree of parallelism
when traversing rows or columns of the matrix. For instance, we have analyzed

Fig. 9. Automatic parallel code for loop 50.

Table 3

Performance of the automatic parallelized code in a SGI power challenge for the HB matrix LNS3937

Sequential 1 2 4 8 16

Time (s) 77 138 67 31 18 15

speed-up ± 0.56 1.15 2.48 4.28 5.13

E�ciency ± 56% 57% 62% 53% 32%

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1721

numerical codes like sparse matrix addition, multiplication, transposition, and
sparse QR transformation, among others, ®nding that some of the previously de-
scribed techniques for the LU are also applicable for them. Actually, the sparse LU
factorization code is a good case study as it exhibits many of the paradigms we have
to face when parallelizing dynamic sparse algorithms (in which the ®ll pattern
changes during computation).

It is really tough to design a compiler able to detect that a sequential code is
actually processing a sparse matrix. However, our approach is to teach the compiler
to detect some simple code patterns, usually related to the processing of sparse
matrices in CCS or CRS format. For instance, all the sparse codes mentioned in the
previous paragraph contain a section with the pattern presented in Fig. 10.

In this data access pattern, bracket arrays are optional, and dots represent any
valid F77 sentence. When this pattern is present in a code we can assume (with a low
probability of error) that this code is dealing with a CRS/CCS compact data
structure. In such a case, the compiler can trigger a special compiler pass in order to
prove certain properties of these data structures: array PTR is monotonic non-
decreasing; IND is a permutation array in the range PTR(I):PTR(I+1)-1; and
values in IND vector are in the range (1:n), where n� n is the size of the sparse
matrix. If such properties can be proved, it may be possible to exploit the parallelism
inherent to traversing di�erent rows or columns. The corresponding semi-automatic
approach may consist of just instructing the compiler that it is dealing with a CRS/
CCS data structure, via an HPF directive, for instance [42].

Summarizing, to prove these properties we next describe four techniques that can
be valid for many of the sparse codes using CRS/CCS compact representations (and
also for other codes with similar properties). In addition, and due to the generality of
the pattern presented in Fig. 10, each technique will be triggered by a more speci®c
pattern (described for each case).

2.4.1. Monotonicity of loop bound arrays
In Fig. 11, the computational pattern is shown which identi®es when this tech-

nique should be used. It is clear that all writes in VAL are independent for each it-
eration I if array PTR is monotonically non-decreasing. More formally, the
following expression should be ful®lled:\n

i�1

�PTR�I� : PTR�I � 1� ÿ 1� � ;: �1�

Fig. 10. General sparse CCS/CRS pattern.

1722 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

To prove that a vector, PTR, is non-decreasing in the range (1:n) we distinguish
two cases:
· If PTR is not modi®ed during execution, we just need to place a loop after PTR

initialization (or during initialization) to check that PTR(I)6PTR(I+1) for
I�1,n.

· However, if vector PTR is modi®ed during execution, a symbolic analysis is needed
to check the variables from which PTR is written. In some cases (as we saw for the
LU), the compiler can prove that the condition is true at the beginning of the pro-
gram and that it is an invariant property through the program (Polaris has been
recently extended with a property checker [26] to deal with similar cases).

2.4.2. Non-overlapping of induction variables
Fig. 12 presents two patterns in which an array is indexed via an induction

variable inside a loop. To determine if loop I is parallel we consider two situations:
· If the loop can be transformed to a closed form, standard dependence tests are

taken into account. Last value techniques should be applied if K lives after the
loop [33].

· When this is not possible (may be because positive_value is not known at
compile time) a range test is needed to prove that the range of K does not overlap
with the range of I.

Due to the complexity of this second case, we focus on a particular case presented in
loop J of Fig. 12, considering that it is possible to estimate an upper bound of
positive_value for all iterations. In such a case, to execute loop J in parallel we
have to:
1. Find maximum and minimum values of I for the J range. This can be done by

traversing array PTR at run-time, or in a cheaper way, if we can prove the monot-
onicity of PTR by the previous technique.

2. Determine the minimum value of induction variable K and obtain the equation
which estimates the upper bound of K.

3. Apply the run-time test which proves that �minI > maxK� ^ �maxI < minK�

Fig. 12. Computational pattern to trigger the non-overlapping test.

Fig. 11. Computational pattern to trigger the monotonicity test.

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1723

2.4.3. Permutation vector detection
This test should be applied in cases in which the compiler ®nds a pattern similar to

the one presented in Fig. 10, and previous techniques were not successful (see
Fig. 13). If loop I cannot be parallelized by previous techniques, we can try to
parallelize loop J. This is possible if we prove that IND is a permutation array in the
range PTR(I):PTR(I+1)-1. We cover to cases:
· If array IND is written just once during initialization, we only need to prove this

condition, at run time, after the initialization.
· In other cases, when array IND is modi®ed in other program points, a symbolic

analysis is needed to prove that values written in IND are di�erent in the range
PTR(I):PTR(I+1)-1, for all I.

2.4.4. Privatization technique extension
As discussed in Section 2.3.2, privatization is a powerful technique to break loop-

carried output and anti-dependences. At the same time, it is also a di�cult method to
use in a general case. We consider here the two cases discussed in the previous
Section 2.3.2: privatization of work arrays and privatization of arrays accessed via
induction variables.

Regarding the detection of a working array, as W in Fig. 8, the problem may be
solved as done in Section 2.3.2. However, there are more complex situations like, for
example, in sparse matrix addition and multiplication codes. General run-time tests
using shadow arrays [35] solve these cases but they are expensive, so more speci®c
and cheaper solutions should be developed.

On the other hand, the privatization of arrays accessed by induction variables,
which cannot be transformed to its closed form, is an easier problem. The automatic
generation of the copy out operation does not present too much trouble either, as it
can be seen as a particular reduction case [33].

3. Parallelism implementation: Irregular reductions

Irregular reduction operations are frequently found in the core of many large
scienti®c and engineering applications. Fig. 14 shows simple examples of reduction
loops (histogram reduction [34]), with a single reduction vector, A� �, updated
through single or multiple subscript arrays, f1� �, f2� �. Due to the loop-variant
nature of the subscript array/s, loop-carried dependences may be present at run-time
(if it is not a permutation array). It is usual that this reduction loop is executed many

Fig. 13. Computational pattern to trigger the permutation vector test.

1724 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

times in an iterative process. The subscript array/s may be static (unmodi®ed) during
all the computation, or may change, usually slowly, through the iterative process.

In a shared memory context, academic parallelizers like Polaris and SUIF rec-
ognize irregular reductions and parallelize them using the replicated bu�er or the
array expansion techniques. The ®rst method replicates the reduction array on all the
processors. Each processor computes a portion of the reduction on its private bu�er.
Later a global reduction is obtained by combining all partial reductions, using
synchronization to ensure mutual exclusion [20]. Array expansion, on the other
hand, expands the reduction vector by the number of threads participating in the
computation. This approach does not need any synchronization to obtain the global
reduction, performing in general better than the replicated bu�er method. However,
both techniques have scalability problems due to the high-memory overhead they
exhibit.

The next sections will discuss array expansion as one of the state-of-the-art au-
tomatic parallelizing techniques to deal with irregular reductions, showing one of its
main drawbacks, scalability. As an alternative, we present a new method to paral-
lelize irregular reductions on distributed shared-memory machines, whose e�ciency
and scalability overcome that of array expansion (and other current available
techniques). The mapping of computations is based on the con¯ict-free write dis-
tribution of the reduction vector across the processors. The proposed method could
replace array expansion in the implementation of parallel irregular reductions in
compilers like Polaris.

3.1. Array expansion

Array expansion is a powerful and simple technique to parallelize irregular re-
ductions. Fig. 15 shows the parallel code for the single reduction loop in Fig. 14, as
obtained by the Polaris compiler (actually, a simpli®ed and slightly optimized
version is presented), that is, using the array expansion technique. A private copy
of the full reduction vector �A� �� is used for each processor. This is accomplished
by expanding such vector by the number of threads participating in the compu-
tation. The parallel computation is organized around three phases. In phase 1,
each processor initializes its own copy of the reduction array �Atmp� ��. In phase

Fig. 14. A single (a) and a multiple (b) irregular histogram reduction.

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1725

2, each processor works in parallel on the reduction loop, updating its private copy
of the reduction array. Partial reductions are hence computed. Finally, in phase 3,
global reduction values are calculated by combining the private copies Atmp� � on
the global reduction array. With this arrangement, all loop-carried dependences
that may exist in the loop due to possible replicated values in the subscript array
f� � are ful®lled.

Array expansion introduces two sources of overhead. Memory overhead due to
the private copies of the reduction vector, and computing overhead due to the ini-
tialization of such bu�ers and the ®nal combining of them on the global reduction
array (phases 1 and 3 in Fig. 15). These features introduce hard scalability problems
in the technique. In fact, array expansion works very well for small shared-memory
multiprocessors. However, the same cannot be said if the programmer is interested in
solving a large problem on a medium-size or large-scale distributed shared-memory
machine.

3.2. Data write a�nity with loop-index prefetching

Array expansion is based on the domain decomposition of the histogram re-
duction loop (that is, the decomposition of the [1 : fDim] domain). This way, and due
to the irregular data access pattern to the reduction vector through f� �, private

Fig. 15. Parallelization of the single reduction of Fig. 14 using array expansion.

1726 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

copies of such vector are needed. Such private bu�ers can be avoided (and the
corresponding initialization and ®nal combination) if the domain decomposition of
the loop is substituted for a data decomposition of the reduction vector. The re-
duction vector may be, for instance, block distributed across the local memories of
the distributed shared-memory multiprocessor. Afterwards, the computations of the
histogram loop are arranged in such a way that each processor only computes those
iterations that update reduction vector elements that the processor owns. Note that
the data distribution of the reduction vector may be carried out at compile time
(using some compiler or language directive), or at run-time, as a consequence of the
arrangement of the loop iterations (that generates particular memory reference
patterns).

A simple form to implement this computation arrangement is called data a�liated
loop in [25]. Each processor traverses all the iterations in the reduction loop (that is,
the �1 : fDim� domain) and checks whether the reduction vector element referenced in
the current iteration has been assigned to it. In such case, the iteration is executed;
otherwise, the iteration is skipped. That is, the reduction in the histogram loop is
guarded by a condition.

The above implementation is not e�cient for large iteration domains. A better
approach consists of exploiting data write a�nity (DWA) on the reduction vector
with the help of a loop-index prefetching (LIP) data structure (DWA±LIP technique).
The LIP structure keeps track of the set of iterations that write each one of the
blocks of the reduction vector. By using such prefetching structure, private bu�ers
are avoided. A similar idea, LOCALOCALWRITERITE, was proposed recently [22], which is a
data a�nity based compiler and run-time parallelization technique based on the
owner compute rule. However, LOCALOCALWRITERITE is not general, as it cannot deal in a
uniform and e�ective way with general multiple reductions.

A simple implementation of a LIP link structure was discussed previously [19].
Here, however, we will explain a more general and e�cient implementation. In order
to present that, we need some notation. Let us consider a general multiple reduction
loop, with many subscript arrays, f1� �; f2� �; f3� �; . . . Let b be the block number
function for vector A� �, b�k� � b�k ÿ 1�T=ADimc � 1, where k is an integer number
in the range �1 : ADim� and T is the total number of cooperating threads in the
system. That is, a block of number r is owned by thread r. Given iteration i of
the reduction loop, we de®ne Bmin (Bmax) as the minimum (maximum) number of
all blocks written in such iteration, Bmin�i� � minfb�f 1�i��; b�f 2�i��; . . .g,
Bmax�i� � maxfb�f 1�i��; b�f 2�i��; . . .g. The di�erence between both limits is then
DB�i� � Bmax�i� ÿ Bmin�i�.

In order to exploit parallelism from the reduction loop, the iterations are sorted
into sets characterized by the pair (Bmin;DB). Those sets of iterations of the form
(Bmin; 0) are data ¯ow independent and thus can be executed in parallel. In general,
two sets of iterations, (b1; db1) and (b2; db2), are data ¯ow independent if the
writing areas in the reduction vector are non-overlapping, that is b1 � db1 < b2.
Fig. 16(a) depicts a graphical example, for a system with six threads running in
parallel executing a reduction loop with two subscript arrays. Iteration i belongs to
the set �2; 1�, while j is in the set �4; 1�. Hence, arrays f1� � and f2� � write in

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1727

blocks 2 or 3 of the reduction vector in iteration i, while write in blocks 4 or 5 in
iteration j. As a consequence, both iterations can be safely executed in parallel by
two di�erent threads.

The classi®cation of iterations into those sets really represents a reordering
of their execution. Fig. 16(b) shows a data structure for storing the above sets
of reduction iterations, that represents an implementation of the LIP structure.
A three-array linked list structure is used, init� �, count� � and next� �, where
the ®rst two are triangular matrices. The entry init�i; j� contains the ®rst it-
eration in the set �Bmin � i;DB � j�, while count�i; j� contains the total number
of iterations in the same set. Array next� � contains links to the rest of iter-
ations of the set, starting from next�init�i; j��. Note that in the case of a single
reduction loop, all entries in both matrices init� � and count� � are null except
for the ®rst column.

Fig. 17(a) shows the parallel version of a multiple reduction loop (as shown in
Fig. 14 but with multiple subscript arrays) using the DWA±LIP approach taking
into account the sets �Bmin;DB� of reduction iterations. The procedure is as follows.
All sets �Bmin; 0�, referenced by the entries in the ®rst column of init� �, are executed
in parallel. Afterwards, all sets referenced by the even entries in the second column,
which are all data ¯ow independent, are executed in parallel, followed by the sets
referenced by the odd entries. This scheme is continued in the third and following
columns. Part (b) of this ®gure shows a simple code to compute the LIP linked list
structure. This code contains a histogram reduction on the matrix count� �. As the
size of this matrix is given by the number of threads computing the code, array
expansion may be chosen to parallelize this computation with no signi®cant memory
overhead.

Fig. 16. Example graphical depiction of how two sets of iterations of a multiple reduction loop can be

safely executed in parallel (a), and a data structure implementation for storing such sets (LIP) (b) (6

threads and 2 subscript arrays are assumed).

1728 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

Fig. 17. Parallel multiple histogram reduction using data write a�nity on the reduction vector with LIP

(a), and the computation of the prefetching arrays (b).

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1729

3.3. Analysis

The DWA with LIP is an e�cient technique to extract and exploit parallelism
from irregular histogram reductions. Consider the general case of a multiple irreg-
ular reduction (Fig. 14 shows particular cases with one and two subscript arrays).
Considering a total of T threads cooperating in the parallel execution of the re-
duction loop, the parallel execution time may be written as

Tpar � Titer

Nit0

T

�
� Nit1

dT=2e �
Nit2

dT =3e � � � �
�
; �2�

where Titer is the (average) execution time of an iteration and Nitk is the total number
of iterations considering all the sets with DB � k (that is, the total sum of all entries
in column k of array count� � in the LIP structure). This simpli®ed expression
considers that the number of iterations is uniformly distributed along each column of
array init� �. Similarly, the sequential execution time of the same loop is

Tseq � Titer Nit0� � Nit1 � Nit2 � � � � �: �3�
Real applications usually exhibit locality properties in the input domain, which is
re¯ected in the fact that values Nitk rapidly decrease as k increases. For such ap-
plications Tpar � TiterNit0=T and thus speed-up of the parallel code is near optimum
(unless there is a signi®cant non-uniform distribution of iterations writing the dif-
ferent blocks of the reduction vector). A similar conclusion is obtained when only a
single irregular reduction appears in the application code, as Nitk � 0 for k � 1; 2; . . .

Regarding memory scalability, as no private bu�ering is needed (as in array ex-
pansion), the memory overhead is relatively small and not linearly depending on the
number of threads. In general, the extra memory needed to store the LIP data
structure has a complexity of O�fDim� 2T 2�, where fDim is the total number of
iterations in the reduction loop �fDim �PT

k�0 Nitk� (see Fig. 14). Frequently,
O�fDim� 2T 2� � O�fDim�. Comparatively, the memory overhead complexity for
array expansion is O�ADim � T �, which increases linearly with the number of threads.

3.4. Performance evaluation

We have also experimentally evaluated the DWA±LIP parallelization technique
on two benchmark codes. The ®rst code is EULER, from the motivating applica-
tions suite of HPF-2 [17], which solves the di�erential Euler equations on an irreg-
ular mesh. We have selected one of the loops computing an irregular reduction inside
a time-step loop (see Fig. 18). The basic operation on this code is the computation of
physical magnitudes (such as forces) corresponding to the nodes described by a
mesh. The magnitudes are computed over the mesh edges, each one de®ned by two
nodes. Therefore two subscript arrays are needed to compute the magnitudes of each
edge [3,22]. This reduction loop is interesting from the parallelization point of view
because it contains subscripted reads and writes. In order to avoid side e�ects dif-
ferent from the irregular reductions, all experiments presented in this section only
consider one of the reduction loops included in the EULER code. Speci®cally, the

1730 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

loop shown in Fig. 18, which corresponds to a single static loop with reductions
using two subscript arrays.

The second code we consider in this section is a simple 2D short-range molecular
dynamics simulation [41]. This application simulates an ensemble of particles subject
to a Lennard±Jones short-range potential. To integrate the equations of motion of
the particles, a ®nite-di�erence leapfrog algorithm on a Nos�e±Hoover thermostat
dynamics is used. The core of the code, force contributions calculation, is sketched in
Fig. 19. To speed-up such calculations an array of pairs of interactive particles is
built, neigh� �, every THop time steps. During this strip of time iterations, the
neighbor list is reused, introducing a write indirection during force computation. At
the end of the strip, the neighbor list is updated with the help of a link-cell. Hence,
this piece of code represents a single loop with a single subscript array inside. The
interesting point here is that the reduction loop is dynamic, as the subscript array is
updated periodically.

The experiments have been conducted on a SGI Origin2000 multiprocessor, with
32 250 MHz R10000 processors, a main memory of 8192 MB, and a second-level
cache of 4 MB for each processor. The OpenMP shared-memory directives have
been used to carry out the parallelization of the loops. The array expansion parallel
code used for comparison purposes was obtained using the Polaris compiler. All
parallel codes (the DWA±LIP based loops and the Polaris output) were compiled
using the SGI MIPSpro Fortran77 compiler (with optimization level O2). The
maximum optimization level (O3) was not applied because the MIPSpro compiler
does not optimize at all the parallel codes when such level is speci®ed.

Fig. 18. A loop with multiple irregular reductions from the EULER code.

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1731

In the case of the EULER kernel, the parallelization performance has been tested
on two irregular meshes of di�erent sizes, one with 891 Knodes and the other with
1161 Knodes. Both meshes have a connectivity (numEdges=numNodes) of 8. Two
versions of each mesh have been tested: colored and sorted. In the ®rst version, an
edge-coloring algorithm has been applied, and the edges of the same color are placed
consecutively in the indirection array. In this case, a low locality in accesses to the
reduction array would be expected. In the second version, the list of edges has been
sorted, and therefore a higher locality would be found in the accesses to the re-
duction vector. The input data to the MD code were generated in a di�erent way.
Two sets of pairs positions±velocities, of size 40 and 640 K, were generated repre-
senting a uniform realistic ensemble of simple particles in a liquid state.

We show in Fig. 20 the experimental performance of the parallel EULER
benchmark code for the colored and sorted versions of the input mesh of size 1161
Knodes. Part (a) of the ®gure shows the execution time (5 iterations of the time-step
loop) of both methods, the array expansion and the proposed DWA±LIP. These
times exclude the calculation of the LIP data structure, as this is done only once
before entering into the reduction loop (static case). Part (b) shows speed-ups with
respect to the sequential code, which was also compiled with optimization level O2
(sequential time is 103.5 and 15.3 s. for the colored and sorted meshes, respectively,
for the same 5 iterations of the time-step loop). The DWA±LIP method obtains a
signi®cant performance improvement because it exploits e�ciently locality when

Fig. 19. A loop with multiple irregular reductions from the MD code.

1732 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

writing in the reduction array. This fact explains a superlinear and sustained speed-
up.

Fig. 21 shows the parallel e�ciencies for the colored (a) and sorted (b) meshes
using the DWA±LIP and array expansion methods. For each class, we present re-
sults for two di�erent mesh sizes. The sequential times for the small colored and
sorted meshes of sizes 891 Knodes are 51.8 and 11.8 s, respectively. While our
DWA±LIP method has good scalability for both orderings of the mesh, the array
expansion technique exhibits an anomaly for the colored mesh. Due to the memory
overhead of the expanded arrays as well as the low locality presented in the mesh, the
e�ciency decreases as the mesh size grows.

Fig. 20. Parallel execution times (a) and speed-ups (b) for the parallel EULER code using the DWA±LIP

and array expansion methods.

Fig. 21. Parallel e�ciencies for the colored (a) and sorted (b) meshes using DWA±LIP and array ex-

pansion.

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1733

The sequential time costs of computing the LIP data structure for both mesh sizes
are 2.3 (small mesh) and 3.0 s (large mesh). These times are a small fraction of the
total reduction time, which can be further reduced by parallelizing the code. In the
case of static meshes, the whole program su�ers this computing overhead only once,
at the beginning of the execution. In the dynamic case, the prefetching must be re-
computed periodically. In many realistic situations, however, this updating process is
not frequent. For instance, in the code MD it is common to recompute the neighbor
list every 10 time steps or so. Then, the prefetching cost is a small fraction of the total
time consumed in the reduction iterations executed between two consecutive up-
datings.

In the EULER code, array expansion has a signi®cant memory overhead due to
the replication of the reduction vector in all the processors (O�Q � numNodes � T �,
where Q is the number of reduction vectors). The DWA±LIP method also has
memory overhead due to the prefetching array (O�numEdges� T 2� � O�numEdges�).
In the EULER reduction loop, Q � 3 and numEdges � 8 � numNodes. Hence, the
memory overhead of array expansion is larger than that of the DWA±LIP method
when the number of threads is greater than 3. In the EULER code, there are re-
duction loops with Q � 5, where the situation is even worse for the array expansion.

The performance obtained in the case of the dynamic irregular reduction code
MD is shown in Fig. 22. The experiments were conducted with two di�erent input
particle sets, one with 40 K particles and the other with 640 K particles. In addition,
some input parameters of the simulations were also changed. For 40 K particles, the
size of the link-cell was set to 13.0 units, while the cuto� distance was set to 5.5 units.
With these numbers, the neighbor list was really big, having each particle a total of
around 169 neighbors (an uniform particle distribution was considered). On the
other hand, for 640 K particles, the above parameters were set to 2.9 and 2.5 units,
respectively. Now the connectivity is much lower, giving a total of about 8 neighbors

Fig. 22. Parallel execution times (a) and speed-ups (b) for the parallel MD code using the DWA±LIP and

array expansion methods.

1734 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

per each particle. In any case, the size of the simulation box was 250:0� 250:0 units,
the number of time steps executed was 40 and the neighbor list was updated every 10
time steps. Speed-ups were measured with respect to the sequential version of the
code (sequential time was 31 and 49 s for the small and big problems, respectively).
Note that DWA±LIP performs much better than array expansion when the size of
the problem is big enough. This is an important property, taking into account the
better scalability behavior of DWA±LIP. The sequential execution times for the
calculation of the LIP data structure were 11 (40 K particles) and 8.5 s (640 K
particles).

In general, array expansion has less memory overhead and, sometimes, performs
better than DWA±LIP only in very small multiprocessors, and with small problem
domains. However, the presented experimental results show that the DWA±LIP
method has signi®cant better performance and scalability than array expansion for
many realistic situations. The good parallel behavior of DWA±LIP is justi®ed by the
fact that, in general, realistic problem domains exhibit short-range relations between
data points.

4. Conclusions

In the last few years it has been shown that parallel computing is a powerful tool
to solve large and complex computational problems. Automatic parallelization fa-
cilitates the development of parallel software by enabling programmers to use fa-
miliar programming languages, like C or Fortran, typically used in numerical
applications. However, the current state of the technology is not able to obtain ef-
®cient parallel code for a large class of scienti®c/engineering problems, known as
irregular applications.

In this paper we have identi®ed and proposed solutions to some of the issues
responsible for this poor performance. New compilation techniques have to be in-
corporated into parallelizers in order to detect (and further parallelize) speci®c
computation constructs and data access patterns, that appear frequently in (and
identify) classes of numerical codes, like, for example, sparse codes. And new opti-
mized parallelization techniques must also be developed in order to obtain high-
quality parallel code for speci®c and frequent computational constructs, like, for
example, irregular reductions.

Acknowledgements

We gratefully thank David Padua, at the Department of Computer Science,
University of Illinois at Urbana-Champaign, for providing us the Polaris compiler,
and also Yuan Lin, for the kind help and collaboration, as well as Sùren Toxvaerd,
at the Department of Chemistry, University of Copenhagen, for providing us the
example short-range molecular dynamics program. We also thank the CIEMAT

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1735

(Centro de Investigaciones Energ�eticas, Medioambientales y Tecnol�ogicas), Spain,
for giving us access to their Cray T3E multiprocessor, and the Centro de Super-
computaci�on Complutense at Madrid for providing us access to their SGI Ori-
gin2000 system.

References

[1] R. Asenjo, LU factorization of sparse matrices on multiprocessors, Ph.D. Dissertation, University of

M�alaga, Department of Computer Architecture, December 1997).

[2] R. Asenjo, G. Bandera, G.P. Trabado, O. Plata, E.L. Zapata, Iterative and direct sparse solvers on

parallel computers, Euroconference: Supercomputation in Non-linear and Disordered Systems:

Algorithms, Applications and Architectures, San Lorenzo de El Escorial, Madrid, Spain, September

1996, pp. 85±99.

[3] R. Asenjo, E. Guti�errez, Y. Lin, D. Padua, B. Pottengerg, E.L. Zapata, On the Automatic

Parallelization of Sparse and Irregular Fortran Codes, Technical Report 1512, University of Illinois at

Urbana-Champaign, CSRD, December 1996.

[4] R. Asenjo, L.F. Romero, M. Ujald�on, E.L. Zapata, Sparse block and cyclic data distributions for

matrix computations, Adv. Workshop in High Performance Computing: Technology, Methods and

Applications, Cetraro, Italy, June 1994, pp. 359±377.

[5] R. Asenjo, E.L. Zapata, Parallel pivots LU algorithm on the Cray T3E, in: Proceedings of the Fourth

International Conference of the ACPC, ACPC'99, Salzburg, Austria, February 1999, pp. 38±47.

[6] P. Banerjee, J.A. Chandy, M. Gupta, E.W. Hodges IV, J.G. Holm, A. Lain, D.J. Palermo,

S. Ramaswamy, E. Su, The PARADIGM compiler for distributed-memory multicomputers, IEEE

Computer, October 1995.

[7] U. Banerjee, R. Eigenmann, A. Nicolau, D.A. Padua, Automatic program parallelization,

Proceedings of the IEEE 81 (2) (1993) 264±287.

[8] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,

H. van der Vorst, Templates for the solution of linear systems: Building blocks for Iterative methods,

SIAM Press, USA, 1994.

[9] R. Barriuso, A. Knies, SHMEM User's Guide for Fortran, Rev. 2.2, Cray Research, Inc., August

1994.

[10] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe¯inger, T. Lawrence, J. Lee, D. Padua, Y. Paek,

B. Pottenger, L. Rauchwerger, P. Tu, Parallel programming with Polaris, IEEE Computer 29 (12)

(1996) 78±82.

[11] W. Blume, R. Eigenmann, J. Hoe¯inger, D. Padua, P. Petersen, L. Rauchwerger, P. Tu, Automatic

detection of parallelism: a grand challenge for high-performance computing, IEEE Parallel and

Distributed Technology 2 (3) (1994) 37±47.

[12] D.E. Culler, J.P. Singh, A. Gupta, Parallel Computer Architecture: A Hardware/Software Approach,

Morgan Kaufmann Publishers, Los Altos, CA, 1999.

[13] J.J. Dongarra, I.S. Du�, D.C. Sorensen, H.A. van der Vorst, Solving Linear Systems on Vector and

Shared Memory Computers, SIAM Press, USA, 1991.

[14] I.S. Du�, Sparse Numerical Linear Algebra: Direct Methods and Preconditioning, Technical Report

RAL-TR-96-047, Rutherford Appleton Lab., Chilton Didcot Oxon OX11 0QX, April 1996.

[15] I.S. Du�, A.M. Erisman, J.K. Reid, Direct Methods for Sparse Matrices, Oxford University Press,

New York, 1986.

[16] I.S. Du�, R.G. Grimes, J.G. Lewis, Users' Guide for the Harwell±Boeing Sparse Matrix Collection,

Research and Technology Div., Boeing Computer Services, Seattle, WA, 1992.

[17] I. Foster, R. Schreiber, P. Havlak, HPF-2, Scope of Activities and Motivating Applications,

Technical Report CRPC-TR94492, Rice University, November 1994.

[18] G.H. Golub, C.F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore,

MD, USA, 1991.

1736 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

[19] E. Guti�errez, O. Plata, E.L. Zapata, On automatic parallelization of irregular reductions on scalable

shared memory systems, in: Proceedings of the Fifth International Euro-Par Conference, Euro-

Par'99, Toulouse, France, August±September, 1999, pp. 422±429.

[20] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, M. Lam, Detecting coarse-grain parallelism using an

interprocedural parallelizing compiler, IEEE Supercomputing '95, San Diego, CA, December 1995.

[21] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, S.W. Liao, E. Bugnion, M.S. Lam,

Maximizing multiprocessor performance with the SUIF compiler, IEEE Computer 24 (12) (1996)

84±89.

[22] H. Han, C.-W. Tseng, Improving compiler and run-time support for irregular reductions, in:

Proceedings of the 11th Workshop on Languages and Compilers for Parallel Computing, Chapel Hill,

NC, August 1998.

[23] High Performance Fortran Language Speci®cation, Version 2.0, High Performance Fortran Forum,

1996.

[24] A. Lain, Compiler and run-time support for irregular computations, Ph.D. Dissertation, Department

of Computer Science, University of Illinois at Urbana-Champaign, May 1997.

[25] Y. Lin, D. Padua, On the automatic parallelization of sparse and irregular fortran programs, in:

Proceedings of the Fourth Workshop on Languages, Compilers and Runtime Systems for Scalable

Computers, LCR'98, Pittsburgh, PA, May 1998.

[26] Y. Lin, D. Padua, Demand-driven interprocedural array property analysis, in: Proceedings of the

International Workshop on Languages and Compilers for Parallel Computing, LCPC'99, San Diego,

CA, August 1999.

[27] P. Mehrotra, J.V. Rosendale, H. Zima, High performance fortran: history, status and future, Journal

of Parallel Computing 24 (3±4) (1998) 325±354.

[28] P. MehrotraJ. Saltz, R. Voigt, Unstructured Scienti®c Computation on Scalable Multiprocessors,

MIT Press, Cambridge, MA, 1992.

[29] OpenMP, A Proposed Industry Standard API for Shared Memory Programming, OpenMP

Architecture Review Board, 1997.

[30] C.D. Polychronopoulos, M.B. Girkar, M.R. Haghighat, C.L. Lee, B.P. Leung, D.A. Schouten, The

structure of parafrase-2: an advanced parallelizing compiler for C and Fortran, in: Proceedings of the

International Workshop on Languages and Compilers for Parallel Computing, LCPC '89, Urbana,

IL, August 1989, pp. 423±453.

[31] R. Ponnusamy, J. Saltz, A Manual for the CHAOS Runtime Library, Technical Report, UMIACS,

University of Maryland, May 1994.

[32] R. Ponnusamy, J. Saltz, A. Choudhary, S. Hwang, G. Fox, Runtime support and compilation

methods for user-speci®ed data distributions, IEEE Transactions on Parallel and Distributed Systems

6 (8) (1995) 815±831.

[33] B. Pottenger, Theory, techniques, and experiments in solving recurrences in computer programs,

Ph.D. Dissertation, University of Illinois at Urbana-Champaign, CSRD, May 1997.

[34] B. Pottenger, R. Eigenmann, Idiom recognition in the Polaris parallelizing compiler, in: Proceedings

of the Ninth ACM International Conference on Supercomputing, Barcelona, Spain, July 1995,

pp. 444±448.

[35] L. Rauchwerger, Run-time parallelization: a framework for parallel computation, Ph.D. Dissertation,

University of Illinois at Urbana-Champaign, CSRD, August 1995.

[36] L. Rauchwerger, D. Padua, The LRPD Test: Speculative run-time parallelization of loops with

privatization and reduction parallelization, SIGPLAN Conference on Programming Language

Design and Implementation (1995) 218±232.

[37] MIPSpro Fortran77 Programmer's Guide, Silicon Graphics Inc., SGI Inc., 1994.

[38] MIPSpro Automatic Parallelization, Silicon Graphics Inc., SGI Inc., 1998.

[39] H. Saito, N. Stavrakos, S. Carroll, C. Polychronopoulos, A. Nicolau, The Design of the PROMIS

Compiler, in: Proceedings of the Eighth International Conference on Compiler Construction,

Amsterdam, The Netherlands, March 1999.

[40] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete Reference, MIT

Press, Cambridge, MA, 1996.

E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738 1737

[41] S. Toxvaerd, Algorithms for canonical molecular dynamics simulations, Molecular Physics 72 (1)

(1991) 159±168.

[42] E.L. Zapata, O. Plata, R. Asenjo, G.P. Trabado, Data-parallel support for numerical irregular

problems, Journal of Parallel Computing 25 (13±14) (1999) 1971±1994.

[43] Y. Zhang, L. Rauchwerger, J. Torrellas, Speculative parallel execution of loops with cross-iteration

dependencies in DSM multiprocessors, in: Proceedings of the Fifth IEEE International Symposium

on High-Performance Computer Architecture, January 1999.

[44] H.P. Zima, B. Chapman, Compiling for distributed-memory systems, Proceedings of the IEEE 81 (2)

(1993) 264±287.

1738 E. Guti�errez et al. / Parallel Computing 26 (2000) 1709±1738

