
Parsing String Generating Hypergraph

Grammars

Sebastian Seifert and Ingrid Fischer

Lehrstuhl für Informatik 2, Universität Erlangen–Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

Sebastian.T.Seifert@stud.informatik.uni-erlangen.de,

Ingrid.Fischer@informatik.uni-erlangen.de

Abstract. A string generating hypergraph grammar is a hyperedge
replacement grammar where the resulting language consists of string
graphs i.e. hypergraphs modeling strings. With the help of these gram-
mars, string languages like a

n

b
n

c
n can be modeled that can not be gener-

ated by context-free grammars for strings. They are well suited to model
discontinuous constituents in natural languages, i.e. constituents that
are interrupted by other constituents. For parsing context-free Chom-
sky grammars, the Earley parser is well known. In this paper, an Earley
parser for string generating hypergraph grammars is presented, leading
to a parser for natural languages that is able to handle discontinuities.

1 Discontinuous Constituents in German

One (of many) problems when parsing German are discontinuous constituents
[1]. Discontinuous constituents are constituents which are separated by one or
more other constituents and still belong together on a semantic or syntactic level.
An example1 for a discontinuous constituent is

(1) Er hat schnell gearbeitet.
He has fast worked.
He (has) worked fast.

The verb phrase hat gearbeitet ((has) worked)2 is distributed; the finite verb part,
the auxiliary verb hat (has), is always in the second position in a German declar-
ative sentence. The infinite verb part, the past participle gearbeitet (worked), is
usually in the last position of a declarative sentence, only a few exceptions like
relative clauses or appositions can be put after the infinite verb part. Another
(more complicated) German example of discontinuous constituents is

1 The German examples are first translated word by word into English to explain the
German sentence structure and then reordered into a correct English sentence.

2 The present perfect in German can be translated either in present perfect or in past
tense in English.



2

Fig. 1. The phrase structure tree for the German sentence Er hat schnell gearbeitet.
(He (has) worked fast.)

(2) Kleine grüne Autos habe ich keine gesehen die mir gefallen hätten.
Small green cars have I none seen that me pleased would have.
I did not see any small green cars that would have pleased me.

Here, the noun phrase keine kleinen grünen Autos, die mir gefallen hätten (any
small green cars that would have pleased me) is distributed in three parts3. There
are also discontinuous conjunctions as in

(3) Weder Max noch Lisa haben die Aufgabe verstanden.
Neither Max nor Lisa have the task understood.
Neither Max nor Lisa understood the task.

In this example, the discontinuity of weder . . . noch is also present in the English
translation neither . . . nor.

It is typical for all the above examples that the syntactical or semantical
connection between the two parts of the discontinuous constituent cannot be
expressed with general context–free Chomsky grammars. One would wish for
a phrase structure tree as shown in Figure 1 for example (1). Of course it is
possible to construct a weakly equivalent context–free Chomsky grammar to
parse such a sentence, but it must contain some work-around for the discon-
tinuous constituent like attaching one part of the discontinuous constituent in
another production than the other. The main advantage of context-free string
generating hypergraph grammars lies in their possibility to describe discontinu-
ous constituents in a context–free formalism. A more detailed description can be
found in [3]. It is desireable to have a parser based on this representation formal-
ism for discontinuous constituents. With the help of a parser, larger grammar
descriptions can be developed and tested. An often used parser for context–free
Chomsky grammars is the Earley parser [4]. The main goal of this paper is to
describe an Earley parser for context–free string generating hypergraph gram-
mars. Therefore, first a short introduction into this type of grammars is given
and their application in natural language modeling is shown. Related work is
shortly described. Finally the modified Earley parser is described in detail.

3 This syntactic phenomenon is also called split topicalization [2].



3

Fig. 2. The hypergraph representing a
2
b
2
c
2

2 String Generating Hypergraph Grammars

Hypergraph grammars have been studied extensively in the last decades. In-
troductions and applications can be found in [5], [6]. A subset of hypergraph
grammars, context–free string generating hypergraph grammars, are described
in detail in [7], [8], [5]. In this section, only an overview of the most important
definitions is given.

A labeled directed hyperedge is a labeled edge that is not only connected
to one source and one target node as an ordinary graph edge, but to

– a sequence of arbitrary length of source nodes 〈s1, s2, . . . , sn〉 and
– a sequence of arbitrary length of target nodes 〈t1, t2, . . . , tm〉 with n, m ≥ 0.

The points where the hyperedge is connected to hypergraph nodes are called
tentacles. The type (m, n) of a hyperedge consists of the number of source
tentacles m and the number of target tentacles n.

A hypergraph (E, V, s, t, l, b, f) consists of

– a finite set of hyperedges E

– a finite set of nodes V

– a source function s : E → V ∗ assigning a sequence of source nodes to each
edge

– a target function t : E → V ∗ assigning a sequence of target nodes to each
edge

– a labeling function l : E → A assigning a label from a given alphabet A to
each edge; the label of an edge determines its type

– a sequence of external source nodes b

– a sequence of external target nodes f

A hypergraph has the type (m, n) if it has m external source nodes and n

external target nodes. A hypergraph H with nodes {v0, v1, . . . , vn} and edges
{e1, . . . , en} is called a string graph, if s(ei) = vi−1 and t(ei) = vi, i = 1 . . . n.
The node v0 is the only external source node and vn is the only external target
node. This string hypergraph is a hypergraph based representation of a normal
string. The letters (or words) of the string are the labels of the hyperedges. The
letters labeling the hyperedges must be ordered in the string graph in the same
way as in the underlying string. The hypergraph representation of the string
a2b2c2 is show in Figure 2.

A hyperedge replacement rule consists of a left hand side edge that is
replaced by the hypergraph on the right hand side of the rule. Hyperedge and
hypergraph must have the same type. In Figure 3 the hyperedge replacement
rules generating the string language anbncn are shown.



4

Fig. 3. Hyperedge replacement rules to generate the string language a
n

b
n

c
n.

Fig. 4. The derivation of a
3
b
3
c
3 using the grammar given in Fig. 3.

When replacing a hyperedge with a graph as given in a production, the edge
is first removed from its original host graph. In the resulting hole, the right
hand side graph of the production is inserted except for its external nodes. The
attaching nodes of the tentacles of the removed hyperedge are used instead: the
ith source or target node of the removed edge replaces the ith external source
or target node of the right hand side hypergraph. The derivation for a3b3c3

is given in Figure 4 using the productions given in Figure 3. In Figure 5 the
corresponding derivation tree is shown.

A context–free hyperedge replacement grammar G = (T, N, P, S) con-
sists of

– a finite set of terminal edge labels T

– a finite set of nonterminal edge labels N

– a finite set of productions P where each production has one hyperedge la-
beled with a nonterminal label on its left hand side

– a starting hyperedge labeled S.

The productions given in Figure 3 are part of a hypergraph grammar with ter-
minal symbols {a, b, c}, nonterminal symbols {A, S} and start symbol S.

A context–free hyperedge replacement grammar is a string generating
grammar if the language generated by the grammar consists only of string
graphs. This is the case in Figure 3. anbncn cannot be generated by a context–
free Chomsky grammar.

Please note that for the rest of this paper we assume that the string gen-
erating hypergraph grammars are reduced, cycle–free and ǫ–free [9]. There are



5

Fig. 5. The derivation tree for the derivation given in Fig. 4. The dotted lines mark
the nodes must be matched.

Fig. 6. hyperedge replacement productions for Er hat schnell gearbeitet. (He (has)
worked fast.)

no unconnected nodes. If a hyperedge replacement grammar generates a string
language, the start symbol must have one source and target tentacle. Each node
is connected to at most one source tentacle and one target tentacle; otherwise
no string language will be generated [10].

In the next section, a natural language example for context–free string gen-
erating hyperedge replacement grammars is provided.

3 A Natural Language Example

The productions shown in Figure 6 are necessary to generate example (1) Er
hat schnell gearbeitet. (He (has) worked fast.). Most of them resemble the usual
grammar productions used in Chomsky grammars for natural languages. S →
NP VP splits a sentence S into a noun phrase (NP) and a verbal phrase (VP).
In our example, the noun phrase becomes the personal pronoun er (he). The
verbal phrase has two parts, an adverb Adv and the verb V. This is the most
interesting rule, since the use of hypergraphs becomes evident. With their help, it
is possible to split the verb V into two parts. The two parts are separated by the
adverb. On the right hand side of the corresponding rule, the hyperedge labeled
V modeling the verb has two source nodes and two target nodes. Figuratively



6

spoken, one enters the verbal phrase through b1, leaves it for the adverb through
f1, reenters for the second half of the verbal phrase through b2, and leaves again
through f2. Finally, the verb has to be derived into its two halves, the auxiliary
hat (has) and the past participle gearbeitet (worked). Adv is derived into schnell
(fast).

4 Related Work

There are a lot of occurences of discontinuous constituents in natural languages
like parenthical placement, right node raising, relative clause extraposition, scram-
pling and heavy NP shift. It is not possible to ignore these phenomena or to al-
ways use a work–around. A formalism is needed that can handle these problems.
The most famous German treebank, the Negra corpus [11] and the largest En-
glish treebank, the Penstate treebank [12], contain notations for discontinuous
constituents. Several proposals have been made on how to extend context–free
grammars. Chomsky himself suggested transformations that move constituents
around in addition to grammars [13]. Transformations should help to eliminate
the need for discontinuous constituents. Other formalisms like Lexical Functional
Grammar [14] have a context–free backbone extended with feature structures.
Unification of feature structures after parsing ensures that discontinuous con-
stituents that belong together are found. This is called functional uncertainty.
Nevertheless, discontinuous constituents have to be split into seperate parts
within the context-free backbone. An overview on discontinuous constituents
in HPSG (Head–Driven Phrase Structure Grammar) using a similar mechanism
can be found in [15]. Other approaches based on phrase structure grammars
separate word order from the necessary constituents [16]. These ideas have been
extended in [17] where the discontinuous phrase structure grammar is formally
defined. As an extension for Definite Clause Grammars, Static Discontinuity
Grammars are presented in [18]. In this approach, several rules can be applied
in parallel. There may be gaps between the phrases generated by the rules. This
way, several rules can handle one discontinuous constituent in parallel. Com-
pared to all these approaches, string generating hypergraph grammars have one
advantage: the discontinuous constituent is modelled with one symbol! The only
implemented parser for general hypergraph grammars is described in [19]. This
parser is similar to the Cocke–Kasami–Younger parser [16] for general context–
free Chomsky grammars and embedded into Diagen, a diagram editor generator.

5 Earley–Parsing

The Earley parser for general context–free string grammars was first presented
in [4] and is now widely used and has been extended in several ways [9] within
natural language processing. It implements a top–down search, avoiding back-
tracking by storing all intermediate results only once.

When parsing with string grammars, positions at the beginning of the string,
between the letters and at the end of the string to be parsed are numbered. When



7

Fig. 7. Two examples for “dotted” rules using a grammar rule shown in Fig. 3.

parsing aabbcc seven positions are necessary, ranging from 0 to 6. From position
0 to position 1 the first a can be found, from 1 to 2 the second a, etc. The
last letter c lies between 5 and 6. This numbering scheme is easily transferred
onto string hypergraphs; the nodes in the hypergraph are numbered from 0 to 6
as done at the bottom of Fig. 2. These position numbers are necessary for the
main data structure of the Earley algorithm, the chart. When parsing a string
s0s1 . . . sn−1 consisting of n letters, the chart is a (n + 1)× (n + 1) table. In our
running example we have a 7 × 7 table.

In this table, sets of chart entries are stored. Entries are never removed
from the chart and are immutable after creation. A chart entry at position (i, j)
in the chart contains information about the partial derivation trees for parsing
the substring si . . . sj−1. This information consists of the currently used grammar
production and information about the progress made in completing the subtree
given by this production. For string grammars, chart entries are visualized by
so called dotted rules, where the dot marks the parsing progress. If the dot is
at the end of the rule’s right hand side, the chart entry is finished or inactive,
else, it is active, i.e. ready to accept a terminal or an inactive chart entry. This
concept can easily be transferred to hypergraphs. Two dotted hypergraph rules
are shown in Fig. 7. The node larger than the others symbolizes the dot. It
marks what parts of the right hand side of the rule have already been found. On
the left side of Fig. 7, nothing has been found yet, as the dot is at a external
source node of the graph. On the right side, a has already been found, the next
symbol that has to be found is A. If the dot, also called the current node, is one
of the external target nodes, the edge is inactive, otherwise it is active. Both
rules shown in Fig. 7 are active.

The classical Earley algorithm consists of three steps that alternate until the
possibilities to apply one of them are exhausted. These steps are called shift,
predict and complete. The algorithm processes one terminal of the input string
from left to right at a time by applying the shift operation. shift extends
all active chart entries ending at the position of the new terminal symbol and
expect this terminal symbol (it follows their dot). The extended chart entries are
added to the chart. complete performs the analogous operation for inactive chart
entries. Since an inactive chart entry represents a complete derivation subtree,
active chart entries that expect the left hand side symbol of the inactive entry can
be extended, advancing the dot by one position. predict is applied whenever an
active entry is inserted into the chart. If the inserted entry expects a nonterminal



8

symbol, predict inserts new chart entries starting at the active entry’s ending
position and carrying the expected symbol on their rule’s left hand side. If these
prediction entries become inactive during parsing, the prediction was correct and
they will be used to complete the chart entry for which they were predicted.
A successful parse has been found when a chart entry with the grammar’s start
symbol S at its rule’s left hand side has been inserted into position (0, n) (where
n is the length of the input string).

Our variant of the Earley algorithm consists of modifications of these three
main steps (procedure names differ slightly to avoid misunderstandings), and is
thus very similar to the classical Earley algorithm. The main difference lies in the
role of inactive chart entries. In the classical algorithm, an inactive chart entry is
always finished, i.e. all right hand side symbols have been matched to a part of
the input string. In our algorithm, a chart entry becomes inactive when the cur-
rent node dot reaches an external target node of the right hand side hypergraph.
While this inactive chart entry will already be used for the complete step, the
chart entry is not necessarily finished, as there may be several external source
and target nodes. predict will insert continuation entries, active entries that
restart the parsing of an inactive entry through another external source node, if
it encounters a nonterminal hyperedge over which the dot already has stepped
before.

In our extension of the Earley algorithm, a chart entry e consists of the
following information:

– rule(e), the hypergraph rule that is used
– currentnode(e), the dot inside the rule’s right hand side
– entrynode(e), one of the external source nodes of the rule
– from(e), the index of the first symbol of the input string that is covered by

this chart entry.
– to(e), the index of the last covered symbol of the input string plus one
– predecessor(e)4, the active chart entry extended to create e, or null
– continuation–of(e)5, an inactive chart entry that has been continued by

this edge or one of its predecessors, or null
– parts(e,h), for any hyperedge h that is part of the rule’s right hand side,

either a chart entry describing a derivation of this edge, or null

The entry node is the external source node used to “enter” the hypergraph
during parsing. In Fig. 7 the entry node is both times b1. Both from and to are
integers between 0 . . . n where n is the length of the input string. The substring
ranging from sfrom to sto−1

has been matched to a path in the hypergraph

between the entry node and the current node. E.g. the chart entry from 3 to 5
encompasses s3s4 of the string to be parsed.

parts(e,h) is defined for hyperedges h that are part of the right hand side
hypergraph of rule(e) and for which some derivation has been found during the

4 Actually, only either parts or predecessor is necessary for the algorithm. We use parts
for algorithmic purposes, but include predecessor for the visualization of the chart.

5 ’of’ refers to the function’s value, not its parameter.



9

parsing process up to now. Its value is the terminal or the chart entry represent-
ing the derivation of this edge. It is set during the complete step.

We will now introduce an Earley–style algorithm for parsing strings generated
by a hypergraph grammar with the properties mentioned at the end of section 2.
While we explain the algorithm in detail, a running example will be provided in
Figures 8 to 14. The example visualizes all chart entries created when parsing
aabbcc with the grammar given in Fig. 3. The chart entries are numbered for
convenience. For each chart entry e, first from(e) and to(e) is given, followed by
rule(e) and entrynode(e). currentnode(e) is given indirectly by drawing this node
larger than the others. The current node is set to the entry node of the right
hand side in the example. The brackets () following each terminal or nonterminal
edge h represent parts(e,h). These brackets are empty in Fig. 8 if no parts have
been found yet. The last three columns are useful to visualize how a chart entry
is created: continuation-of points to the inactive chart entry of which the current
entry is a continuation entry. predecessor points to the active chart entry from
which the current entry has been grown in the complete step. In the last column,
the operation that created the chart entry is stated.

The main procedure, parse, returns all possible derivation trees for a given
string of terminals and the start symbol S.6

procedure parse:

returns: trees, a set of derivation trees

parameters: S, a nonterminal label

input, a string of terminal symbols

trees := {}

for all rules r where label(left-hand-side(r)) = S

p := initial-prediction(r)

if p is not in chart[0, 0]

insert p into chart[0, 0]

predict-for(p)

for i = 0 .. length(input)-1

shift(i, input[i])

for all inactive entries e in chart[0, length(input)]

if label(left-hand-side(rule(e))) = S

insert generate-tree(e) into trees

return trees

Since we are using a top–down parsing approach, it is necessary to recursively
predict the leftmost parts of possible derivation trees, starting with the start
symbol S, and using the procedure predict-for (detailed below).

initial-prediction(r) creates a chart entry from 0 to 0 using rule r. Its
current node is set to the only possible entry node, since S is of the type (1, 1).
parts is null. In Fig. 8, two entries are inserted for the two S rules of the grammar.
predecessor and continuation-of are null.

The main part of parsing happens in the shift–loop: one terminal symbol at
a time is used to complete existing, active chart entries. Further predictions and

6 The indentation of the pseudo-code marks the end of loops and alternatives.



10

Fig. 8. Chart entries for strings ending at node 0 when parsing aabbcc.

completions are performed recursively, as detailed below in the procedure shift.
Finally, each derivation tree we found during a successful parse is represented
by a chart entry with the label S from 0 to n. The corresponding derivation tree
is trivially built by recursion on the entry’s parts.

Next, the function predict-for is explained:

procedure predict-for:

returns: nothing

parameters: e, an active chart entry

h := hyperedge following currentnode(e)

if label(h) is terminal label, abort

if parts(e,h) is defined

// we have reached a hyperedge that has already been traversed

c := generate-continuation(parts(e,h),e)

if c is not in chart[to(e), to(e)]

insert c into chart[to(e), to(e)]

predict-for(c)

else

for all rules r where label(left-hand-side(r)) = label(h)

c := generate-prediction(e,r)

if c is not in chart[to(e), to(e)]

insert c into chart[to(e), to(e)]

predict-for(c)

predict-for inserts prediction entries for an active chart entry e that
expects a nonterminal symbol. What e expects to parse next is determined by
looking at the hyperedge h following the dot. In the case of a terminal, no
prediction is necessary, since the entry will be completed if the matching terminal
is shifted.

If h has not been used for parsing before (parts(e,h) = null), we proceed
analogous to the classical Earley algorithm:



11

Fig. 9. Chart entries for strings ending at node 1 when parsing aabbcc.

The function generate-prediction returns a new active chart entry c that
may become the root of a possible derivation tree of the hyperedge following
currentnode(e), using the rule r. No part of it has yet been matched to the
input string. c starts and ends at to(e), rule(c) := r, currentnode(c) is set to
the begin node that corresponds to currentnode(e), using the unique mapping
between a hyperedge’s nodes and its replacement hypergraph’s nodes. parts(c,x)
is undefined for all hyperedges x. predecessor and continuation-of are null. This
entry is inserted into the chart.

In Fig. 9, two such prediction entries are shown. In chart entry 3, after having
shifted over the first a in the input string, the hyperedge following the current
node is labeled A. Two chart entries must be predicted for the two rules with
left hand side A.

A phenomenon that is new compared to parsing with context-free Chomsky
grammars (e.g. the classical Earley algorithm) is that multiple, separate sub-
strings may form a derivation of the same nonterminal symbol. In order to cope
with this, we introduce the concept of a continuation chart entry. When,
during parsing, the current node reaches a hyperedge of the right hand side hy-
pergraph to which a portion of the input string has already been matched, we



12

Fig. 10. Chart entries for strings ending at node 2 when parsing aabbcc.

predict an active chart entry that is consistent with the last chart entry that
represented this nonterminal. generate-continuation returns such a contin-
uation entry that represents an already partially matched possible derivation
of h. This nonterminal hyperedge has already been “entered” once through a
source node and has been “left” again through a target node. Now this hyper-
edge is “reentered” through another source node. The chart entry c returned
by generate-continuation(p,e) starts and ends at to(e), rule(c) := rule(p), ∀x

parts(c,x) := parts(p,x), predecessor(c) := null, c is a continuation of p. cur-
rentnode(c) is determined the same way as above.

In Fig. 13, the chart entry 15 is predicted from the chart entry 14. In chart
entry 14 the hyperedge A is reentered through its second source node. A(11)
states that this hyperedge has been handled before in chart entry 11, whose
continuation will now be predicted.

Next, shift and complete-with are explained:

procedure shift:

returns: nothing

parameters: position, a non-negative integer

t, a terminal symbol

for all active chart entries where to(e) = position

h := hyperedge following currentnode(e)



13

Fig. 11. Chart entries for strings ending at node 3 when parsing aabbcc.

Fig. 12. Chart entries for strings ending at node 4 when parsing aabbcc.

if(label(h) = t)

insert completion(e,t) into chart[from(e), to(e)+1]

if completion(e,t) is inactive

complete-with(completion(e,t))

else

predict-for(completion(e,t))

procedure complete-with:

returns: nothing

parameters: ia, an inactive chart entry

for all active entries e where to(e) = from(ia)

if expects(e,ia)

insert completion(e,ia) into chart[from(ia), to(ia)]

if completion(e,ia) is inactive

complete-with(completion(e,ia))

else

predict-for(completion(e,ia))

shift and complete-with perform similar operations: they try to extend
active chart entries with a new part. If this completion is possible (see below),
the resulting chart entry represents a larger part of the input string and is
inserted into the chart.



14

Fig. 13. Chart entries for strings ending at node 5 when parsing aabbcc.

Fig. 14. Chart entries for strings ending at node 6 when parsing aabbcc.

If the completed entry is inactive, other chart entries can be completed with
it. If it is active (expecting more input), we insert prediction entries.

The function expects(e,ia) is extended compared to the original Earley
algorithm. expects(e,ia) determines if a given inactive edge ia will be accepted
for completion of e. Please note that parsing of an inactive edge is not necessarily
finished; an edge is inactive if the current node, the dot, has reached a target node
of the rule. If the label or type of the left hand side of ia’s rule differs from e’s
expected nonterminal edge label or type, expects(e,ia) is false. If the node used
to enter ia, entrynode(ia), does not correspond to currentnode(e), expects(e,ia)
is false. And if ia is a continuation chart entry, but the inactive entry that has
been continued does not match parts(e,h), ia represents a different derivation of
the hyperedge than the one we assumed the last time it was traversed; therefore,
expects(e,ia) is false. It is true otherwise.

The function completion(e,x) creates a new chart entry, either by accepting
a terminal symbol x, or by accepting an inactive edge x into the partial derivation
tree. Let h be the hyperedge following the current node inside e. The new chart



15

entry c := completion(e,x) is identical to e, except for the following modifications:
The substring of the input covered by c reaches from the start of the active entry
e, from(e), to the end of the inactive entry x, to(x), or to to(e)+1 for a terminal
label x. predecessor(c) is set to e. parts(c,h) is set to x, i.e. c’s derivation consists
of the same subtrees as e’s except for the new part x. If x is a continuation
edge, parts(e,h) is already defined; the change of definition is intended, since all
information held by parts(e,h) is also held by x. Furthermore, the current node
pointer is advanced over h, using currentnode(x) to determine the correct target
node of h, unless x is a terminal symbol. This is possible because of the unique
mapping between the source and target nodes of h and the source and target
nodes of the replacement hypergraph.

In Fig. 9, the shift over the first a of the string to be parsed is shown.
The dot moves over the hyperedge labeled a, the entrynode is still 1 and the
predecessor is the first chart entry. In Fig. 11, a complete-with is shown. In
chart entry 12, the hyperedge labeled A is completed the first time. The inactive
chart entry 11 is taken by the active chart entry 3.

The complexity of our algorithm is comparable to the underlying, classical
Earley algorithm, O(n3). The usage of more complicated data structures intro-
duces a constant penalty factor on space and time complexity in several places
(or a factor of O(k) where k is the maximum number of right hand side hy-
peredges in a grammar; but we regard k as a constant). Since the only point
in our algorithm where it distinctively differs from classical Earley, aside from
transferring its concepts onto string generating hypergraphs grammars, is the
prediction of continuation entries, and only one such continuation entry is in-
serted during prediction (instead of several prediction entries), the complexity
class of the algorithm itself does not increase [10].

6 Conclusion

String generating hypergraph grammars are a theoretical concept introduced in
[5]. Context–free hyperedge replacement can model string languages that are not
context–free in the usual Chomskian sense. In this paper an Earley–based parser
was presented for string generating hypergraph grammars. The major extensions
compared to the original Earley algorithm are the introduction of inactive chart
entries that can be activated again. This is the case when a hypergraph was
“entered” through one external source node, “left” through an external target
node and “reentered” again through a new external source node. The parser
described has been implemented in Java [10]. A German grammar and lexicon
is currently developed.

This parser can be extended in may ways as shown in [9]. First, it is in-
teresting to add an agenda and implement bottom–up parsing or parsing with
probabilities. For linguistic applications, it is useful to attribute hyperedges and
hypergraphs with feature structures that are combined with unification.



16

References

1. Trask, R.: A dictionary of Grammatical Terms in Linguistics. Roudledge, New
York, London (1993)

2. Nolda, A.: Gespaltene Topikalisierung im Deutschen. In: Bericht des III. Ost-
West-Kolloquiums für Sprachwissenschaft, Berlin, Germany (2000)

3. Fischer, I.: Modelling discontinuous constituents with hypergraph grammars. In
. L. Pfaltz, M. Nagl, B.B., ed.: Applications of Graph Transformation with Indus-
trial Relevance Proc. 2nd Intl. Workshop AGTIVE’03. Volume 3062 of Lecture
Notes in Computer Science., Charlottesville, USA,, Springer Verlag (to appear)

4. Earley, J.: An efficient context–free parsing algorithm. Communications of the
ACM 13 (1970) 94–102

5. Habel, A.: Hyperedge Replacement: Grammars and Languages. Volume 643 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin (1992)

6. Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars.
In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. I: Foundations. World Scientific (1997) 95–162

7. Engelfriet, J., Heyker, L.: The string generating power of context-free hypergraph
grammars. Journal of Computer and System Sciences 43 (1991) 328–360

8. Engelfriet, J., Heyker, L.: Context–free hypergraph grammars have the same term-
generating power as attribute grammars. Acta Informatica 29 (1992) 161–210

9. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall (2000)

10. Seifert, S.: Ein Earley–Parser für Zeichenketten generierende Hypergraphgram-
matiken. Studienarbeit, Lehrstuhl für Informatik 2, Universität Erlangen–
Nürnberg (2004)

11. Brants, T., Skut, W.: Automation of treebank annotation. In Powers, D.M.W., ed.:
Proceedings of the Joint Conference on New Methods in Language Processing and
Computational Natural Language Learning: NeMLaP3/CoNLL98. Association for
Computational Linguistics, Somerset, New Jersey (1998) 49–57

12. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of english: The penn treebank. Computational Linguistics 19 (1994) 313–
330

13. Chomsky, N.: Syntactic Structures. The Hague: Mouton (1957)
14. Kaplan, R.M., Maxwell, III, J.T.: An algorithm for functional uncertainty.

COLING-88 (1988) 297–302
15. Müller, S.: Continuous or discontinuous constituents? a comparison between syn-

tactic analyses for constituent order and their processing systems. Research on
Language and Computation, Special Issue on Linguistic Theory and Grammar
Implementation 2 (2004) 209–257

16. Naumann, S., Langer, H.: Parsing — Eine Einführung in die maschinelle Analyse
natürlicher Sprache. Leifäden und Monographen der Informatik. B.G. Teubner,
Stuttgart (1994)

17. Bunt, H.: Formal tools for the description and processing of discontinuous con-
stituents. In: Discontinuous Constituency. Mouton De Gruyter (1996)

18. Dahl, V., Popowich, F.: Parsing and generation with static discontinuity grammars.
New Generation Computers 8 (1990) 245–274

19. Minas, M.: Spezifikation und Generierung graphischer Diagrammeditoren. Shaker-
Verlag, Aachen (2001)


