
Figure 1. Conventional SW time advance methods

A Mixed Timing System-level Embedded Software Modelling and Simulation
Approach

Ke Yu, Neil C. Audsley
Dept. of Computer Science, University of York

York, UK
Email: {ke, neil}@cs.york.ac.uk

Abstract—System-level software modelling and simulation

have become important techniques for real-time embedded
system early design space exploration. However, the timing
accuracy issues have not been solved well in current methods,
which produce unrealistic results or large simulation
overheads. In this paper, we propose a mixed timing modelling
and simulation approach to decouple conventionally inter-
dependent software timing modelling and simulation into two
separate phases. This approach enables (1) mixed software
timing information granularities and annotation methods at
the modelling stage for performance and accuracy trade-off (2)
good software preemption and hardware interrupt handling
timing accuracy at the simulation stage without sacrificing
simulation performance (3) varying system run-time status
observability and simulation speed for efficiency trade-off.
Experiments demonstrate that our approach has flexible
simulation performance trade-offs and good simulation timing
accuracy. The measured results indicate that hardware
interruption and software preemption problems are also solved
by our approach.

I. INTRODUCTION
In recent years, Systems-on-Chip (SoC) has become the

state-of-the-art platform for embedded systems, and provides
a powerful computation capability for handling complicated
real-time concurrent events. Due to ever-increasing
complexity, embedded software design has emerged as “the
most critical challenge of SoC productivity” [1].

System-level cycle-approximate modelling and
simulation, which are based on System Level Design
Languages (SLDL) (e.g., SystemC [2] and SpecC [3]), have
been proposed as key enablers for validating software (SW)
designs early in embedded systems design flow, when the
hardware (HW) design is unfinished. Conventionally, there
are two major directions of methods: abstract SW modelling
and simulation [4] [5] [6] [7] and native SW modelling and
simulation [8] [9] [10]. The former simulates coarse-grained
timing task models with an abstract RTOS model at very
high levels. The latter applies to real SW with relatively
accurate time annotations and often uses a real RTOS.

However, there are still some challenges in current
methods, which affect the simulation capability, accuracy
and performance. An often referred weakness is the
“annotation-dependent SW time advance approach” [5] [7]
that results in problems in HW/SW synchronization.
Referring to Figure 1(A), in a cycle-approximate SW
simulation, a SW model executes its function codes on the
host in zero target time. The SLDL uninterruptible “wait-for-

delay” time advance mechanism is usually used to simulate
SW target-platform delay annotations. Once a “wait(delay)”
function is invoked, SW time will be progressed by the value
of “delay” without interruption. As a result, the SW model
cannot be interrupted (namely preempted) during its delay
period, when an interrupt event is raised by a HW model.
The interrupt service routine (ISR) is able to start only if the
current delay period is finished. We can observe the wrongly
postponed til in Figure 1(A). Under such circumstances, both
SW task switch and HW/SW synchronisation only happen at
boundaries of delay annotations. The preemption latency and
the interrupt latency are unrealistically restricted by the
length of delay annotations. This SW time advance method
makes it hard to model a preemptive real-time system or a
real interrupt handling procedure. The intuitive but halfway
solutions tackle this problem by using more “wait”
statements with fine-grained “delays” to advance SW time[8]
(Figure 1(B)), or by inserting some pseudo synchronization
points [11], which frequently detect interrupts and exchange
SW/HW simulators’ clock information. However, the
accuracy is limitedly enhanced at the cost of modelling
(more annotation and synchronization) and simulation
overheads (frequent simulation engine context switch).

In this paper, we propose a mixed timing system-level
SW modelling and simulation approach to address the above
problem. The central idea is to decouple the conventionally

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.9

191

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.9

191

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.9

191

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.9

191

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.9

193

2009 International Conference on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.9

193

interdependent SW timing modelling and timing simulation
jobs into two separate steps. It bears high flexibility in SW
modelling and good timing accuracy in SW simulation with
low simulation overheads. Specifically, the timing modelling
step refers to annotating target platform execution cost
(delays) for SW models; whilst the timing simulation step
refers to managing (advance and stop) these delays at
runtime. Differing from solutions above, in our approach, the
SW simulation time advance is completely independent from
modelling annotations. In addition, the low preemption
latency and interrupt latency are achieved without losing
simulation performance.

Furthermore, to assist SW modelling and simulation, we
build an abstract transaction-level-modelling (TLM) HW
model that includes the CPU, memory, bus, and peripheral
modules. This is because although cycle-accurate HW
models are not essential for system-level SW modelling,
limited TLM HW modelling is still beneficial. Since some
RTOS services’ functional and timing modelling accuracy is
hardware-dependent, such as the context switch service and
interrupt handling. The existence of HW models makes the
simulation more likely to resemble a full embedded system.
Specifically, the CPU model (called the Live CPU Model
hereafter) is essential in our mixed timing approach, because
it plays a live role in managing SW time advance, just like a
real CPU executing SW instructions.

Our modelling and simulation work is implemented with
the SystemC SLDL [2] and TLM concept [11]. Since they
both are advocated as promising industrial system-level
design tools, their popularity ensures our approach will be
applied by other embedded systems designers.

The paper is organized as follows. Section II surveys
related work. Section III introduces the mixed timing
modelling and simulation approach. Section IV describes the
abstract HW model and in particular the Live CPU Model.
Several experiments are shown in Section V to demonstrate
the benefits of our approach. Section VI concludes this
paper.

II. RELATED WORK
A large body of research has been undertaken in the area

of system-level real-time embedded SW modelling and
simulation. In terms of different timing accuracy and
usability, there are two main types: coarse-grained timing
abstract SW modelling and simulation, and fine-grained
timing native SW modelling and simulation. Although
instruction set simulation (ISS) based SW simulation is a
widely used cycle-accurate method, it is not quite suitable for
early design phases due to its slow simulation speed and high
requirement on SW completeness.

The coarse-grained timing abstract SW modelling and
simulation focus on very early design phases, such as system
specification, system analysis and SW/HW partitioning
stages. This usually models SW applications as a collection
of tasks with loose timing properties (e.g., period, deadline,
worst-case execution time). An abstract and generic RTOS
model is usually built to supply basic scheduling and task
management services. The SW timing information is either
annotated by estimation or randomised by some statistical

theories, e.g., the uniform distribution in [12] and the
Gumbel probability density in [5]. The advantage of this
method is the fast simulation speed, since applications and
RTOS are highly abstract models. The drawback of this
method is low timing accuracy (coarse time annotations for
applications and inadequate consideration of RTOS timing
overheads) and incomplete modelling capability (lack of
SW/HW interaction modelling). The native SW modelling
and simulation generally model application tasks with
functional codes, and port a real RTOS instance. Its timing
accuracy is improved, because SW times are annotated at a
fine granularity (e.g., block level, source line level, and
assembly line level). Its simulation speed is not comparable
with abstract simulation, but is still faster than ISS, as
reported in [10].

The ARTS project presents abstract SystemC-based SW
modelling in [4] and uses it for high-level MPSoC design
space exploration in [12]. It abstracts a real-time embedded
system through three sub-models: the task graph model, the
scheduler model, and the link communication model. It does
not model task functionality and lacks RTOS overheads
modelling. A similar method is introduced in [6], but this
focuses on quickly evaluating different scheduling policies in
simulation.

The UCI CECS group introduces SpecC-based abstract
RTOS modelling for TLM modelling refinement flow in [7]
[13]. It uses an annotation-dependent SW time advance
approach. Thus its simulation timing accuracy is not
satisfied. A remedy approach “Result Oriented Modelling
(ROM)” is presented in [14], which can virtually interrupt
the “wait-for-delay” statement by recording preemption
information in a task control block. However, it still relies on
the SLDL uninterruptible “wait-for-delay” function. So the
preempted task may wake up at a wrong time point after its
“delay” period is finished. This results in unexpected
simulation engine context switch and consequential
processing overheads. Our approach is comparable to it, but
differs in the following ways: 1) we use a “wait-for-event”
mechanism to ensure the preempted task only wakes up on
receiving an event at a correct time point. A simulation
speed-up, because of less processing overheads on incorrect
wake-ups, can be expected; 2) the ROM combines all
interrupt service routines’ time delays, which have happened
during an ongoing “delay” duration, in order to launch a new
“delay”. But our method processes each ISR’s time delay at
its respective arrival. Our simulation has the advantage of
better similarity with the real execution.

In [15] [16], Posadas et al. propose a POSIX compliant
SystemC-based SW modelling approach. Their method
belongs to the aforementioned fine-grained annotation
technique. Reference [9] presents a timed RTOS simulation
tool for a proprietary Texas Instrument DSP/BIOS RTOS. It
proposes an event time-stamp prediction method for interrupt
modelling, which has the tight requirement that application
tasks should report their future synchronization time to the
RTOS kernel. Consequently, its usability is restricted. A
synchronization time-point prediction method is presented in
[17], which also needs to statically analyse SW codes to
estimate the next synchronization point.

192192192192194194

Figure 2. Separating timing accuracy issues of modelling and simulation

III. MIXED TIMING MODELLING AND SIMULATION
APPROACH

In a system-level SW simulation context, modelling
means a process to describe functional and timing
characteristics of target computing components in high level
languages. The results are models for simulation purposes.
Simulation refers to executing these models on the host PC,
in order to validate and analyse functional and timing
behaviour of an under-design system. Deep in the consensus
of embedded system design is the notion that timing
accuracy is a first-class factor for determining the accuracy
of modelling and simulation. Our mixed timing approach
divides this timing accuracy problem into two aspects: the
timing accuracy of modelling and the timing accuracy of
simulation. Multiple timing granularities and techniques can
be applied to them respectively. Figure 2 illustrates the key
concept of this approach by an example, in which varying
time annotation granularities in modelling do not interfere
with SW time advance responsiveness in simulation. This
approach has the following specific features:

1) This approach can utilise multiple-grained SW timing
information and annotation methods for various sub-models
at the modelling stage. It allows the user to build mixed
timing models with varying timing scenarios for modelling
performance and accuracy trade-off. This idea is comparable
to “variable timing synchronization granularities” in [8] and
“mixed untimed and timed models” in [11]. But the approach
in [8] aims to solve the HW/SW synchronization overhead
problem by trading off multiple synchronization granularities.
It increases simulation speed but loses synchronization
accuracy or vice versa. The approach in [11] mainly applies
to the HW modelling area.

2) It preserves high SW preemption and HW interrupt
handling timing accuracy within a certain bound at the
simulation stage. The simulation performance is also
increased, compared to conventional simulation approaches.
This is because our SW time advance method is annotation-
independent and does not rely on uninterruptible SLDL
“wait-for-delay” mechanism. In implementation, the Live
CPU Model supervises SW simulation delays and monitors
external HW interrupts at the same time. If excluding

possible interrupt disabled cases, such as critical sections, the
Live CPU Model can preempt current SW execution
(stopping its delay period in practice) as soon as an interrupt
is caught, just like the real CPU execution.

3) It offers varying system simulation similarity and run-
time information observability. By configuring the Live CPU
Simulation Engine with different time advance modes, the
users can make trade-offs between the simulation similarity,
the information observability and the simulation performance.
This is in contrast to the above-mentioned ROM approach
which only maintains simulation correctness at state-
changing boundaries and cannot show intermediate
simulation results to the user.

In the following, our approach is described in detail with
regard to modelling and simulation aspects, respectively.

A. Timing accuracy of modelling
In our approach, timing accuracy of modelling relates to

various jobs of adding time delays for computing models
accurately, including:

1) Assigning sub-models with time annotations
Since we focus on the “timing” behaviour of real-time

embedded SW, every SW sub-model that requires the target
CPU computation resource needs to be annotated with
corresponding target execution time information. In other
words, CPU computation costs are represented in this way.
Every HW model that can perform individual computation
also needs to be annotated with delays. Every action
inducing HW inter-module communication will also be
annotated with corresponding communication delays.

2) Using varying timing information sources
Akin to other system-level SW simulation, we utilise

common profiling techniques “ISS-based measurement” and
“RTOS benchmark”, to acquire accurate SW timing
information. In the ISS-based approach, we firstly compile
high-level source codes for a given processor architecture,
and then run them on a cycle-accurate ISS (e.g., the KEIL
ARM ISS) in order to measure their execution time cost.
RTOS benchmarks can be obtained from vendor’s
documents. Additionally, coarse-grained SW timing
information can be generated from system specifications and
time budget estimates.

3) Applying multiple annotation granularities
Let us firstly recall two possible situations in early

embedded systems design phases. Firstly, various
applications, RTOS, and HW modules may have different
development progress. This means that various components
may have varying available function codes and timing
information for use in modelling and simulation. Secondly,
simulation users may focus on different sub-models in
diverse circumstances. For example, computation modelling
and communication modelling are two distinct working
directions in TLM simulation. It is not only infeasible but
also costly to build all sub-models with the same timing
level. Hence, a mixed timing modelling method is more
efficient for early design space exploration.

In fact, the “multiple timing granularities” method or the
similar “multiple timing accuracy levels” concept has been
discussed previously. In [18], three timing degrees for TLM

193193193193195195

computation and communication models are defined: un-
timed, approximate-timed, and cycle-timed. Reference [8]
proposes multiple timing synchronization granularities: time
period, source line-by-line, function-by-function, and
instruction-level. Our approach defines several appropriate
granularities for system-level SW modelling. For source-
code-available SW applications, we apply source code line-
level, function-level, and task-level annotations (Refer to
Figure 2). For abstract SW models, we apply: function-level
and task-level time budget estimates. For abstract RTOS
modelling, since these “abstract and generic” sub-models are
not the same as the implementation codes for a target system,
it is meaningless to use an accurate profiling technique to
produce fine-grained timing information. Therefore, we
annotate each sub-model with a function-level delay, which
represents the “simulated” RTOS service’s timing overheads.

4) Annotating timing information on models
In our approach, the target timing information is

annotated on models in two ways:
1) Static annotation is widely used in native SW

simulation [10] [14]. The delay annotation is statically
inserted after each SW segment (the segment length
depending on the selected timing annotation granularity). It
has the advantage of low simulation run-time overheads and
high accuracy based on real measurement, but it requires
huge preliminary profiling work.

2) For abstract SW models that are not suitable for
profiling, we use the dynamic annotation approach. If a
model contains several blocks (e.g., functions or loops), then
it uses a block’s base execution time estimate “ti0” with its
actual simulation count “ni” to calculate the SW model’s
total simulation delay td: ∑=

blocks
iid ntt *0 .This dynamic

annotation approach is more practical than annotating a
constant delay to every execution instance of a SW model
regardless of its actual simulation trace.

B. Timing accuracy of simulation
Timing accuracy of simulation is reflected by accuracy of

two basic actions: SW time advance and interrupt handling.
Further, timing accuracy of SW time advance depends on
two actions’ timing resolutions: the SW delay progress
resolution and the SW delay preemption resolution. The
former refers to the minimum step to progress a SW delay,
and the latter refers to the latency to stop a delay. Interrupt
handling timing accuracy is mainly revealed by the interrupt
latency, which is the time from asserting a HW interrupt
signal until beginning to a SW interrupt handler.

1) Timing accuracy issues in simulation
In the SLDL based system-level simulation, every

functional simulation model (including applications, RTOS
and HW models) is executed on the host PC. The whole
execution is managed by the background SLDL engine (it is
the SystemC simulation engine in our context). This
execution cannot represent any target timing behaviour (i.e.,
it is zero-target-time execution), since it is executed on the
host. Consequently, the target execution delays need to be
annotated on these functional simulation models. The Live
CPU Model executes these simulation delays, in order to

mimic target execution timing overheads. Compared with a
real CPU as an instruction execution engine, our Live CPU
Model can be seen as a “time delay” execution engine.

After a SW model is dispatched by an RTOS scheduler
and its functional codes are finished in zero-target-time, the
SW delay information will be passed to the Live CPU Model.
Then, the Live CPU Model begins to execute SW delay.
Specific delay length depends on the information input. We
call it the “variable-step” time advance method, because an
actual time delay step is not fixed. It is worthwhile indicating
that the concerned SW delay progress resolution is only
restricted by SystemC’s resolution that has 1picosecond
default value. When the Live CPU Model decides to
terminate current SW delay, it sends the termination event to
the SW model immediately. Consequently, the latency to
stop delay time, i.e., SW delay preemption resolution, is also
zero-time. Because the Live CPU model senses external
interrupt request when carrying out SW delay, interrupt
handling can also begin immediately. The theoretical
minimum interrupt latency is zero-time in simulation, and
the worst-case interrupt latency is bounded by the longest
interrupt disabled time. This accurate simulation mechanism
is the same as the real CPU execution. The exact
implementation will be introduced in the following section.

Simulation-related timing accuracy issues are thus
relaxed from delay annotations in modelling. This is because
delay annotations are “executed by the Live CPU Model” in
an interruptible way rather than are directly used in un-
preemptable “wait-for-delay” functions. Figure 2 depicts the
separate timing modelling and simulation. An IRQ example
shows the high HW/SW synchronization accuracy, no matter
what timing annotation granularity is applied.

2) Simulation similarity and speed trade-off
Reference [14] proposes that it is unnecessary to mimic

intermediate states in simulation, and only essential to
generate correct results at state-changing boundaries. High
simulation performance is thus the primary goal. Our above
mentioned variable-step time advance technique also
generally subscribes to this point of view. For example, if a
SW time delay is given as 10ms, assuming the delay duration
is not interrupted, the Live CPU Model will execute 10ms
time delay in one delay duration. The system simulation
clock jumps from t to t+10ms in a single step along the time
line. The decrement of the execution budget is not simulated
step-by-step and hence cannot be observed by the simulation
user. From the perspective of simulation result validity at
specified synchronization points, there is no problem.

However, from the perspective of debugging real-time
embedded SW and tracing system-wide variables status, the
simulation users may not be satisfied by observing limited or
outdated information at an observation point. We thus
propose the “fixed-step” time advance method to update
system-wide variables more frequently than to do it only at
state-changing points. In the fixed-step mode, the Live CPU
Model runs periodically to handle run-time changing
variables, e.g., timers, time delay values, execution budgets
etc. The Live CPU Model can blend “variable-step” and
“fixed-step” methods in simulation in order to trade off
simulation similarity with simulation speed.

194194194194196196

Delay
Fetching

Delay
Decoding

Delay
Advancing

Delay
Reg.store

t s

 t0 t1

…... …...
Target

Simulation
Time Line

planned delay:
t ms

CPU engine
starts a delay
and plan to
send an event
after this delay.

 A SW code
block executes in
zero-target-time.
 Load context.
 SW waits for an
event from CPU.

Update DR with
remaining delay:

(t-(t1-t0)) s

CPU engine
stops a delay.
Send the event
or cancel it?
Update delay
context.

IRQ

SW Interrupt handler

Various types
of delay input

A

B

C
D

E

Regis
ters

time advance start
time advance stop

Zero-target-time SW
execution

Figure 4. SW simulation controlled by the Live CPU simulation engine

IV. ABSTRACT TLM HARDWARE MODELLING
To undertake accurate system-level embedded SW

modelling and simulation it is necessary to model and
simulate the underlying hardware architecture. Because
many RTOS services are hardware-dependent, such as
context switch, interrupt service, and timer service, it could
be difficult to model HW/SW interactions accurately without
support from a hardware model on which SW are assumed to
run. Moreover, one-sided SW modelling is against the
system-level embedded systems HW/SW co-design
principle. Many studies have suggested using transaction
level models for high-level system modelling and simulation.
We also build an embedded system abstract TLM HW model
to assist mixed timing SW modelling and simulation. Figure
3 depicts its structure and the HW/SW interactions. It
includes several types of HW modules: the clock generator
module, the Live CPU module, the bus module, the memory
module, the peripheral and device module. The HW resource
(e.g., processor, bus and memory block) sharing and
contention can be taken into account for accurate SW
modelling and simulation. SystemC-TLM communication
methods and an abstract bus offer intra- and inter-
communication for the modules. The bus model is developed
from a standard example in SystemC distribution [2]. It
supports blocking and non-blocking communication between
prioritised master modules (CPU) and slave modules
(memory, devices, and peripheral). In this paper, we only
focus on the Live CPU model, which is the core of our
hardware modelling and vital for SW simulation.

We decompose the Live CPU Model into three essential
components for SW simulation: 1) the Live CPU Simulation
Engine taking charge of SW time advance 2) the Register Set
assisting context switch and flags setting 3) the Interrupt
Controller monitoring interrupts. By these sub-models, the
CPU model is actively involved in high-level SW simulation.

In the following, we introduce our SW time advance
mechanism based on the use of Live CPU Simulation Engine
by referring to Figure 4:

Step (A): a SW code block (no matter if it is an
application task, a function, a code line or an RTOS service)
executes in zero-target-time at time t0. From the perspective
of OS scheduling, the SW code block is at the running state,

i.e., in occupation of the CPU.
Step (B): After it is finished, the SW code block’s delay

context (delay information) is loaded into Live CPU Model’s
registers for a preparation of time advance. At the same time,
the SW code block keeps waiting for its exclusive SystemC
event (sc_event) that will be sent by the Live CPU
Simulation Engine in the future. This event represents the
“address of code block to run” in simulation and is stored in
the program counter (PC) of the Live CPU Model, just like
the use of PC in a real CPU.

Step(C): Inspired by the instruction execution mechanism
(fetching, decoding, and performing) of a real CPU, our Live
CPU Simulation Engine also takes corresponding steps to
execute a SW delay: 1) delay information fetching, 2) delay
information decoding, and 3) delay advancing. Depending on
different time annotation methods, the delay information
input can be fetched from various sources, including
simulation framework global variables, a SW task control
block, or the return value of a delay writing function.
Afterwards the engine decodes acquired delay information
into standard-form data t, i.e., a double float number with μs
unit. The decoded result t is stored in the delay register (DR)
of the Live CPU Model, which resembles the instruction
register in a real CPU.

Step (D): Finally, the “delay advancing” starts at time t0.
If the Live CPU Simulation Engine works in a pure variable-
step mode, it plans to consume the delay in a single advance
step and release the event in PC at time t0+t by SystemC
event timed notification mechanism. If the Live CPU
Simulation Engine is in a fixed-step mode, it runs
periodically to decrement and update the delay value in DR
until it is exhausted; then it releases the event in PC. If the
Live CPU Simulation Engine works in both variable-step
and fixed-step modes, it will do both.

Step (E): If there is no interruption or preemption during
this t time delay. Thus, at time t0+t, the value in the delay
register is exhausted and the projected event is released as
planned. The waiting SW code block gains CPU again to
continue execution. As well, an interrupt may happen during
the ongoing delay duration, such as the IRQ event at t1 in
Figure 4. Given that interrupts are not disabled, the Interrupt
Controller Model catches this IRQ immediately and invokes

Figure 3. TLM hardware model for SW simulation

195195195195197197

the Live CPU Simulation Engine to handle this IRQ. The
Engine firstly cancels the previously planned SystemC event;
then updates the delay register by calculating the remaining
value: t-(t1-t0); finally saves the value into SW context
control block. After that, a SW interrupt handler is called to
continue the IRQ handling process. This SW interrupt
handler executes its functions and gets time advance service
by repeating the above process. In this way, both SW time
advance and HW interruption is simulated accurately.

In conventional HW/SW co-simulation, individual clocks
are used for different HW and SW simulators respectively.
They need to compare the HW and SW simulators’ local
clocks for global time synchronisation, which bring
undesirable simulation overheads. However, there is only
one unified HW/SW clock in our simulation and this is
synchronous to the SystemC simulation clock. The SW
models do not need a local clock for timed advance. The
Live CPU Simulation Engine uniformly and serially carries
out SW time advance jobs. This approach offers good timing
accuracy in simulation, whilst it brings two additional
advantages: firstly, the Live CPU Engine’s execution
mechanism is similar to a real CPU and is thus
straightforward to understand; secondly, it generates a CPU
simulation trace similar to a real execution.

In addition to above-mentioned program counter and
delay register, the Live CPU Model contains other
conceptual general-purpose registers as well as some special-
purpose status registers to assist SW simulation. These
registers stores SW delay information and system status
information. When a context switch is invoked, current CPU
general-purpose registers’ contents (storing SW delay
information) are saved in the pre-empted task control block
(TCB); and the newly dispatched task’s TCB context is
loaded into these registers. By default, we configure and
name the register set by partial reference to ARM processor
register scheme [19]. Simulation users can tailor the register
set according to different presumed CPU models.

It is acknowledged that the interrupt latency, interrupt
response time, and interrupt recovery time are some keen-
interested timing properties of a real-time embedded system.
The Interrupt Controller Model provides a good foundation
to model the usual HW/SW cooperative interrupt handling
mechanism, which usually has three bottom-up layers: the
HW interrupt controller, the RTOS interrupt handler, and
ISRs. The Interrupt Controller Model always watches several
sc_ports, which are connected with IRQ lines (some
SystemC signal channels). In order to deal with multiple
simultaneous interrupts from various devices and bound the
interrupt latency, the interrupt controller can prioritise, mask
or disable interrupt sources by setting corresponding register
bits. When a hardware device raises an IRQ by asserting a
signal on its interrupt request line, the Interrupt Controller
Model can catch the signal immediately and calls the Live
CPU Simulation Engine to stop the current delay process. At
the same time, it sets the PC with an event belonged to a SW
interrupt handler. Subsequently, depending on a specific
interrupt handling scheme, either a vectored ISR or an RTOS
kernel-level interrupt handler function will begin.

V. EXPERIMENTAL RESULTS
In this section, we take several experiments to

demonstrate the benefits of our mixed timing RTOS
modelling and simulation approach. All simulations are
performed with SystemC v2.2 on a 2.2GHz PC. Host
simulation times are measured by Windows high-resolution
(μs level) QueryPerformanceCounter() function which can
retrieve the hardware cycle counter.

A. Simulation Engine Modes Comparison
To demonstrate the flexible simulation performance

trade-off ability and the good SW time advance accuracy of
the mixed timing method, we evaluate multiple time advance
methods supported by our method. The focus is to evaluate
the relationship among simulation speed, simulation
observability, and SW time advance accuracy under different
configurations of the Live CPU Simulation Engine. The
applications consist of eight tasks (four periodic tasks and
four sporadic tasks) with task-level delay annotations. We
apply a time-driven and event-driven combined scheduling
mechanism with the round-robin algorithm. Eight interrupt
sources are included in the simulation and fires randomly to
trigger sporadic tasks. The simulation runs 1000ms target
time that allows a task to repeat at least 20 jobs.

Live CPU Simulation Engine Mode A: This uses a fixed-
step time advance approach, which runs every microsecond
to advance 1μs SW time. It is similar to the fin-grained time
period synchronization approach in [8]. This can achieve 1μs
SW time advance resolution.

Live CPU Simulation Engine Mode B: This is a dual-
grained fixed-step time advance approach. When a SW
annotation slice is greater than 1ms, the engine runs every
millisecond to progress SW time by a fixed value 1ms. Once
the annotation slice falls below 1ms, then the engine runs
every microsecond to advance remaining SW time by a fixed
value 1μs. It can achieve 1μs SW time advance resolution.

Live CPU Simulation Engine Mode C: The Engine uses a
mixed fixed-step and variable-step time advance mode. It
progresses a full delay annotation slice in an interruptible
variable-length step, and it runs every millisecond to update
simulation status information. The SW time advance
resolution is only restricted by the timing resolution of
SystemC simulation engine.

Live CPU Simulation Engine Mode D: This is a pure
variable-step time advance mode. The engine progresses the
SW annotation slice in an interruptible variable-length step.
The SW time advance resolution is only restricted by the
timing resolution of SystemC simulation engine.

In order to compare the simulation speed of our proposed
approach with the simulation speed of a conventional ISS,
the same applications are run using KEIL µVision ARM ISS
for duration of 1000ms. The target processor is set as a NXP
LPC2378 running at 40MHZ. We port a µC/OS-II RTOS on
this ISS to manage tasks.

The obtained results are shown in Figure 5. Compared
with the ISS simulation, unsurprisingly, our approach obtains
drastic performance improvement. The results also indicate
that the fixed-step time advance approach generally costs

196196196196198198

much more simulation time than variable-step approach:
Engine D achieves a considerable speed-up (up to 676 times)
to that achieved by the fine-grained (1μs) fixed-step Engine
A, when they both have a 1μs time SW time advance
resolution. This is because the fixed-step approach
progresses simulation time and updates status variables more
frequently than the variable-step approach: the running count
of Engine A is 484 times of Engine D’s.

The Engines B and C are two compromise methods when
compared with the fine-grained fixed-step Engine A and the
pure variable-step Engine D. The measured simulation
results show that the Engine C can still save more simulation
time than Engine B (6.8 times speed-up). For its moderate
simulation overhead and system information tracing ability,
Engine C’s combined fixed-step and variable-step mode is
thus acclaimed in our simulation approach.

We also note that there is still 37% simulation time
difference between the Engine C and Engine D. This is
because the former runs about 1000 more times (once a
millisecond for a 1000ms duration) in its fixed-step mode;
and this higher Engine running count directly slows down
simulation performance. In order to reveal the correlation
between the step length and the simulation speed in fixed-
step mode, we test three other step granularities: 2ms, 5ms
and 10ms, which means the Live CPU Simulation Engine

runs every 2ms, 5ms, and 10ms respectively. The Figure 6
shows that the simulation time and engine running count are
steadily decreasing whilst the fixed-step granularity is
growing. This characteristic can be used to tune the Live
CPU Simulation Engine and thus to optimise the simulation
performance and simulation observability in different
situations.

In summary, the highly configurable Live CPU
Simulation Engine leaves adequate space for simulation
users to trade off simulation time and accuracy, depending
on their differing intents.

B. Interrupt Handling Simulation
In order to evaluate the preemption and interrupt

handling ability of our approach, we make an interrupt
experiment, which supports a timely, nested, prioritised, and
maskable interrupt handling mechanism with low and
bounded interrupt latency. It includes five IRQs (IRQ1-5)
and five associated ISRs (ISR1-5), which are assigned
ascending priorities (higher than any applications’ priority).

The Figure 7 shows a time-line segment of this
experiment. Initially, at t=7011μs, IRQ2 and IRQ3 happen
simultaneously. Since the Live CPU model controls SW time
advance and monitors IRQ lines, ongoing SW time advance
can be stopped as soon as possible, i.e., the IRQ is handled
immediately. The theoretical interrupt latency (til) is zero in
simulation. Note that, to make our model more practical, we
may also assign til with some tiny delays to mimic the case
that a CPU needs to finish current instruction execution
before it handles the interrupt. Because IRQ3’s priority is
higher than IRQ2’s, then the interrupt controller ignores
IRQ2 and begins to service IRQ3. Afterwards, RTOS
services (context_switch and interrupt_handler_enter) and
ISR3 execute sequentially. At t=7022μs, a higher-priority
IRQ4 happens and it then gets nested service by pre-empting
ISR3. The lower-priority IRQ1 that fires during ISR4
execution is ignored by the interrupt controller, as it has been
masked by the preceding interrupt handler. After the finish of
ISR4, the lower-priority IRQs that have taken placed are
handled successively.

In order to quantify timing accuracy of interrupt
handling, we measure the interrupt latency of these five
IRQs. Each IRQ randomly fires 500 times in 10 seconds

Figure 7. Interrupt handling experiment

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

Si
m

ul
at

io
n

Ti
m

e
(m

s)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

C
PU

 E
ng

in
e

R
un

ni
ng

 C
ou

nt
s

Simualtion time(ms) 31.285 25.758 22.177 20.697 19.697

CPU counts 3,062 2,601 2,294 2,187 2,064

Fixed-step
at 1ms &
Vari.-step

Fixed-step
at 2ms &
Vari.-step

Fixed-step
at 5ms &

Vari.-step

Fixed-step
at 10ms &
Vari.-step

Pure
Variable-

step

Figure 5. Comparison of different simulation engines

Figure 6. Comparison of simulation speed with varying fixed-step length

197197197197199199

simulation. The focus is to evaluate the experimental
interrupt latency with the theoretical results. In order to
eliminate varying RTOS critical section’s interference on
interrupt latency, we assume interrupts are always enabled
and the Live CPU Simulation Engine can stop SW execution
as soon as a higher-priority interrupt happens. Therefore, at
any simulation time point, the highest-priority IRQ’s
interrupt latency should always be zero, and all IRQs are
only able to be postponed by higher-priority ISRs. Therefore,
the theoretical maximum (worst-case) interrupt latency of an
IRQ can be computed as the sum of all higher-priority ISR
time cost: ∑=

priohigh
ISRil tt

_
max_ .

TABLE I. compares the measured maximum interrupt
latency with calculated theoretical results. As expected, in
most cases, when the happening IRQ is the highest-priority,
it is serviced without any delay (i.e., zero-time latency). In
case it is delayed by some other higher-priority ISRs, its
maximum interrupt latency does not exceed the theoretical
worst-case value either.

TABLE I. COMPARISON OF THEORETICAL AND EXPERIMENTAL
INTERRUPT LATENCY

 Zero-time
IRQ

Latency
Times

Delayed
IRQ

Latency
Times

ISR
time
cost
(μs)

Theoretical
Max IRQ
Latency

(μs)

Measured
Max IRQ
Latency

(μs)
IRQ5 500 0 500 0 0
IRQ4 441 59 10 500 494
IRQ3 440 60 10 510 488
IRQ2 448 52 10 520 502
IRQ1 444 56 10 530 488

VI. CONCLUSION AND FUTURE WORK
In this paper, we have presented a mixed timing system-

level cycle-approximate embedded software modelling and
simulation approach. By isolating the timing modelling
problem from the timing simulation problem, it can not only
integrate multiple-level timing models for the sake of
accuracy and efficiency at the modelling stage, but can also
achieve a good SW time advance and interrupt handling
accuracy at the simulation stage. The hardware TLM model
presents a clear and essential high-level HW architecture
abstraction for assisting SW simulation. Especially, the
HW/SW synchronization problem is tackled by the Live
CPU model, which incurs much less overhead than
conventional fine-grained annotation and synchronization
approach. Additionally, the Live CPU model supports
multiple execution modes, which could trade off the speed of
simulation with the observability of simulation process.
Through comparison with µVision ARM ISS simulator, the
proposed approach improves simulation performance up to
three orders of magnitude.

The remaining issue of our research is to implement the
mixed timing modelling and simulation approach in more
complex embedded SW simulation that includes a full
functional RTOS model. We also intend to apply it for

multiprocessor systems. Favourably, the modular hardware
TLM models have provided such potential.

REFERENCES
[1] A. A. Jerraya, S. Yoo, D. Verkest, and N. Wehn, Embedded Software

for SoC: Kluwer Academic Publishers, 2004.
[2] OSCI, "SystemC." http://www.systemc.org/.
[3] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC:

Specification Language and Methodology, 1st ed: Kluwer Academic
Pub, 2000.

[4] J. Madsen and M. Gonzalez, "Abstract RTOS Modelling in
SystemC," in NORCHIP Conference, 2002.

[5] P. Hastono, S. Klaus, and S. A. Huss, "Real-Time Operating System
Services for Realistic SystemC Simulation Models of Embedded
Systems," presented at The International Forum on Specification &
Design Languages (FDL'04) Lille, France, 2004.

[6] F. Hessel, V. M. d. Rosa, I. M. Reis, R. Planner, C. A. M. Marcon,
and A. A. Susin, "Abstract RTOS Modeling for Embedded Systems,"
in Proceedings of the 15th IEEE International Workshop on Rapid
System Prototyping (RSP'04): IEEE Computer Society, 2004.

[7] A. Gerstlauer, H. Yu, and D. D. Gajski, "RTOS Modeling for System
Level Design," in Proceedings of the conference on Design,
Automation and Test in Europe - Volume 1: IEEE Computer Society,
2003.

[8] I. Bacivarov, S. Yoo, and A. A. Jerraya, "Timed HW-SW
cosimulation using native execution of OS and application SW,"
presented at High-Level Design Validation and Test Workshop, 2002.
Seventh IEEE International, 2002.

[9] Z. He, A. Mok, and C. Peng, "Timed RTOS Modeling for Embedded
System Design," in Proceedings of the 11th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS'05), 2005,
pp. 448.

[10] I. Bacivarov, A. Bouchhima, S. Yoo, and A. A. Jerraya, "ChronoSym:
a new approach for fast and accurate SoC cosimulation,"
International Journal of Embedded Systems vol. 1, pp. 103 - 111
2005.

[11] F. Ghenassia, Transaction Level Modeling with SystemC: TLM
Concepts and Application for Embedded Systems: Springer, 2005.

[12] J. Madsen, K. Virk, and M. J. Gonzalez, "A SystemC-based Abstract
Real-Time Operating System for Multiprocessor Systems-on-Chips,"
in Multiprocessor Systems-on-Chips, The Morgan Kaufmann Series
in Systems on Silicon, A. A. Jerraya and W. Wolf, Eds. San Francisco,
CA: Morgan Kaufmann, 2005, pp. 284-311.

[13] H. Yu, A. Gerstlauer, and D. Gajski, "RTOS Scheduling in
Transaction Level Models," in Proceedings of the 1st
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. Newport Beach, CA, USA: ACM
Press, 2003.

[14] G. Schirner and R. Domer, "Introducing Preemptive Scheduling in
Abstract RTOS Models using Result Oriented Modeling," Design,
Automation and Test in Europe, 2008. DATE'08, pp. 122-127, 2008.

[15] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder,
"RTOS modeling in SystemC for real-time embedded SW simulation:
A POSIX model," Design Automation for Embedded Systems, vol. 10,
pp. 209-227, 2005.

[16] H. Posadas, E. Villar, F. Blasco, R. D. Ds, P. Tecnológico, and S.
Paterna, "Real-Time Operating System modeling in SystemC for
HW/SW co-simulation," presented at Proceedings of Conference on
Design of Circuits and Integrated Systems, IST, Lisbon, 2005.

[17] J. Jung, S. Yoo, and K. Choi, "Fast cycle-approximate MPSoC
simulation based on synchronization time-point prediction," Design
Automation for Embedded Systems, vol. 11, pp. 223-247, 2007.

[18] L. Cai and D. Gajski, "Transaction level modeling: an overview," in
Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. Newport Beach,
CA, USA: ACM Press, 2003.

[19] A. N. Sloss, D. Symes, and C. Wright, ARM System Developer's
Guide: Designing and Optimizing System Software: Morgan
Kaufmann, 2004.

198198198198200200

