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Abstract—System-level software modelling and simulation 

have become important techniques for real-time embedded 
system early design space exploration. However, the timing 
accuracy issues have not been solved well in current methods, 
which produce unrealistic results or large simulation 
overheads. In this paper, we propose a mixed timing modelling 
and simulation approach to decouple conventionally inter-
dependent software timing modelling and simulation into two 
separate phases. This approach enables (1) mixed software 
timing information granularities and annotation methods at 
the modelling stage for performance and accuracy trade-off (2) 
good software preemption and hardware interrupt handling 
timing accuracy at the simulation stage without sacrificing 
simulation performance (3) varying system run-time status 
observability and simulation speed for efficiency trade-off. 
Experiments demonstrate that our approach has flexible 
simulation performance trade-offs and good simulation timing 
accuracy. The measured results indicate that hardware 
interruption and software preemption problems are also solved 
by our approach. 

I. INTRODUCTION  
In recent years, Systems-on-Chip (SoC) has become the 

state-of-the-art platform for embedded systems, and provides 
a powerful computation capability for handling complicated 
real-time concurrent events. Due to ever-increasing 
complexity, embedded software design has emerged as “the 
most critical challenge of SoC productivity” [1].  

System-level cycle-approximate modelling and 
simulation, which are based on System Level Design 
Languages (SLDL)  (e.g., SystemC [2] and SpecC [3]), have 
been proposed as key enablers for validating software (SW) 
designs early in embedded systems design flow, when the 
hardware (HW) design is unfinished. Conventionally, there 
are two major directions of methods: abstract SW modelling 
and simulation [4] [5] [6] [7] and native SW modelling and 
simulation [8] [9] [10]. The former simulates coarse-grained 
timing task models with an abstract RTOS model at very 
high levels. The latter applies to real SW with relatively 
accurate time annotations and often uses a real RTOS. 

However, there are still some challenges in current 
methods, which affect the simulation capability, accuracy 
and performance. An often referred weakness is the 
“annotation-dependent SW time advance approach” [5] [7] 
that results in problems in HW/SW synchronization. 
Referring to Figure 1(A), in a cycle-approximate SW 
simulation, a SW model executes its function codes on the 
host in zero target time. The SLDL uninterruptible “wait-for-

delay” time advance mechanism is usually used to simulate 
SW target-platform delay annotations. Once a “wait(delay)” 
function is invoked, SW time will be progressed by the value 
of “delay” without interruption. As a result, the SW model 
cannot be interrupted (namely preempted) during its delay 
period, when an interrupt event is raised by a HW model. 
The interrupt service routine (ISR) is able to start only if the 
current delay period is finished. We can observe the wrongly 
postponed til in Figure 1(A). Under such circumstances, both 
SW task switch and HW/SW synchronisation only happen at 
boundaries of delay annotations. The preemption latency and 
the interrupt latency are unrealistically restricted by the 
length of delay annotations. This SW time advance method 
makes it hard to model a preemptive real-time system or a 
real interrupt handling procedure. The intuitive but halfway 
solutions tackle this problem by using more “wait” 
statements with fine-grained “delays” to advance SW time[8] 
(Figure 1(B)), or by inserting some pseudo synchronization 
points [11], which frequently detect interrupts and exchange 
SW/HW simulators’ clock information. However, the 
accuracy is limitedly enhanced at the cost of modelling 
(more annotation and synchronization) and simulation 
overheads (frequent simulation engine context switch).  

In this paper, we propose a mixed timing system-level 
SW modelling and simulation approach to address the above 
problem. The central idea is to decouple the conventionally 
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interdependent SW timing modelling and timing simulation 
jobs into two separate steps. It bears high flexibility in SW 
modelling and good timing accuracy in SW simulation with 
low simulation overheads. Specifically, the timing modelling 
step refers to annotating target platform execution cost 
(delays) for SW models; whilst the timing simulation step 
refers to managing (advance and stop) these delays at 
runtime. Differing from solutions above, in our approach, the 
SW simulation time advance is completely independent from 
modelling annotations. In addition, the low preemption 
latency and interrupt latency are achieved without losing 
simulation performance. 

Furthermore, to assist SW modelling and simulation, we 
build an abstract transaction-level-modelling (TLM) HW 
model that includes the CPU, memory, bus, and peripheral 
modules. This is because although cycle-accurate HW 
models are not essential for system-level SW modelling, 
limited TLM HW modelling is still beneficial. Since some 
RTOS services’ functional and timing modelling accuracy is 
hardware-dependent, such as the context switch service and 
interrupt handling. The existence of HW models makes the 
simulation more likely to resemble a full embedded system. 
Specifically, the CPU model (called the Live CPU Model 
hereafter) is essential in our mixed timing approach, because 
it plays a live role in managing SW time advance, just like a 
real CPU executing SW instructions. 

Our modelling and simulation work is implemented with 
the SystemC SLDL [2] and TLM concept [11]. Since they 
both are advocated as promising industrial system-level 
design tools, their popularity ensures our approach will be 
applied by other embedded systems designers. 

The paper is organized as follows. Section II surveys 
related work. Section III introduces the mixed timing 
modelling and simulation approach. Section IV describes the 
abstract HW model and in particular the Live CPU Model. 
Several experiments are shown in Section V to demonstrate 
the benefits of our approach. Section VI concludes this 
paper. 

II. RELATED WORK 
A large body of research has been undertaken in the area 

of system-level real-time embedded SW modelling and 
simulation. In terms of different timing accuracy and 
usability, there are two main types: coarse-grained timing 
abstract SW modelling and simulation, and fine-grained 
timing native SW modelling and simulation. Although 
instruction set simulation (ISS) based SW simulation is a 
widely used cycle-accurate method, it is not quite suitable for 
early design phases due to its slow simulation speed and high 
requirement on SW completeness.  

The coarse-grained timing abstract SW modelling and 
simulation focus on very early design phases, such as system 
specification, system analysis and SW/HW partitioning 
stages. This usually models SW applications as a collection 
of tasks with loose timing properties (e.g., period, deadline, 
worst-case execution time). An abstract and generic RTOS 
model is usually built to supply basic scheduling and task 
management services. The SW timing information is either 
annotated by estimation or randomised by some statistical 

theories, e.g., the uniform distribution in [12] and the 
Gumbel probability density in [5]. The advantage of this 
method is the fast simulation speed, since applications and 
RTOS are highly abstract models. The drawback of this 
method is low timing accuracy (coarse time annotations for 
applications and inadequate consideration of RTOS timing 
overheads) and incomplete modelling capability (lack of 
SW/HW interaction modelling). The native SW modelling 
and simulation generally model application tasks with 
functional codes, and port a real RTOS instance. Its timing 
accuracy is improved, because SW times are annotated at a 
fine granularity (e.g., block level, source line level, and 
assembly line level). Its simulation speed is not comparable 
with abstract simulation, but is still faster than ISS, as 
reported in [10]. 

The ARTS project presents abstract SystemC-based SW 
modelling in [4] and uses it for high-level MPSoC design 
space exploration in [12]. It abstracts a real-time embedded 
system through three sub-models: the task graph model, the 
scheduler model, and the link communication model. It does 
not model task functionality and lacks RTOS overheads 
modelling. A similar method is introduced in [6], but this 
focuses on quickly evaluating different scheduling policies in 
simulation. 

The UCI CECS group introduces SpecC-based abstract 
RTOS modelling for TLM modelling refinement flow in [7] 
[13]. It uses an annotation-dependent SW time advance 
approach. Thus its simulation timing accuracy is not 
satisfied. A remedy approach “Result Oriented Modelling 
(ROM)” is presented in [14], which can virtually interrupt 
the “wait-for-delay” statement by recording preemption 
information in a task control block. However, it still relies on 
the SLDL uninterruptible “wait-for-delay” function. So the 
preempted task may wake up at a wrong time point after its 
“delay” period is finished. This results in unexpected 
simulation engine context switch and consequential 
processing overheads. Our approach is comparable to it, but 
differs in the following ways: 1) we use a “wait-for-event” 
mechanism to ensure the preempted task only wakes up on 
receiving an event at a correct time point. A simulation 
speed-up, because of less processing overheads on incorrect 
wake-ups, can be expected; 2) the ROM combines all 
interrupt service routines’ time delays, which have happened 
during an ongoing “delay” duration, in order to launch a new 
“delay”. But our method processes each ISR’s time delay at 
its respective arrival. Our simulation has the advantage of 
better similarity with the real execution. 

In [15] [16], Posadas et al. propose a POSIX compliant 
SystemC-based SW modelling approach. Their method 
belongs to the aforementioned fine-grained annotation 
technique. Reference [9] presents a timed RTOS simulation 
tool for a proprietary Texas Instrument DSP/BIOS RTOS. It 
proposes an event time-stamp prediction method for interrupt 
modelling, which has the tight requirement that application 
tasks should report their future synchronization time to the 
RTOS kernel. Consequently, its usability is restricted. A 
synchronization time-point prediction method is presented in 
[17], which also needs to statically analyse SW codes to 
estimate the next synchronization point.  
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Figure 2. Separating timing accuracy issues of modelling and simulation 

III. MIXED TIMING MODELLING AND SIMULATION 
APPROACH  

In a system-level SW simulation context, modelling 
means a process to describe functional and timing 
characteristics of target computing components in high level 
languages. The results are models for simulation purposes. 
Simulation refers to executing these models on the host PC, 
in order to validate and analyse functional and timing 
behaviour of an under-design system. Deep in the consensus 
of embedded system design is the notion that timing 
accuracy is a first-class factor for determining the accuracy 
of modelling and simulation. Our mixed timing approach 
divides this timing accuracy problem into two aspects: the 
timing accuracy of modelling and the timing accuracy of 
simulation. Multiple timing granularities and techniques can 
be applied to them respectively. Figure 2 illustrates the key 
concept of this approach by an example, in which varying 
time annotation granularities in modelling do not interfere 
with SW time advance responsiveness in simulation. This 
approach has the following specific features: 

1) This approach can utilise multiple-grained SW timing 
information and annotation methods for various sub-models 
at the modelling stage. It allows the user to build mixed 
timing models with varying timing scenarios for modelling 
performance and accuracy trade-off. This idea is comparable 
to “variable timing synchronization granularities” in [8] and 
“mixed untimed and timed models” in [11]. But the approach 
in [8] aims to solve the HW/SW synchronization overhead 
problem by trading off multiple synchronization granularities. 
It increases simulation speed but loses synchronization 
accuracy or vice versa. The approach in [11] mainly applies 
to the HW modelling area. 

2) It preserves high SW preemption and HW interrupt 
handling timing accuracy within a certain bound at the 
simulation stage. The simulation performance is also 
increased, compared to conventional simulation approaches. 
This is because our SW time advance method is annotation-
independent and does not rely on uninterruptible SLDL 
“wait-for-delay” mechanism. In implementation, the Live 
CPU Model supervises SW simulation delays and monitors 
external HW interrupts at the same time. If excluding 

possible interrupt disabled cases, such as critical sections, the 
Live CPU Model can preempt current SW execution 
(stopping its delay period in practice) as soon as an interrupt 
is caught, just like the real CPU execution. 

3) It offers varying system simulation similarity and run-
time information observability. By configuring the Live CPU 
Simulation Engine with different time advance modes, the 
users can make trade-offs between the simulation similarity, 
the information observability and the simulation performance. 
This is in contrast to the above-mentioned ROM approach 
which only maintains simulation correctness at state-
changing boundaries and cannot show intermediate 
simulation results to the user. 

In the following, our approach is described in detail with 
regard to modelling and simulation aspects, respectively. 

A. Timing accuracy of modelling 
In our approach, timing accuracy of modelling relates to 

various jobs of adding time delays for computing models 
accurately, including: 

1) Assigning sub-models with  time  annotations 
Since we focus on the “timing” behaviour of real-time 

embedded SW, every SW sub-model that requires the target 
CPU computation resource needs to be annotated with 
corresponding target execution time information. In other 
words, CPU computation costs are represented in this way. 
Every HW model that can perform individual computation 
also needs to be annotated with delays. Every action 
inducing HW inter-module communication will also be 
annotated with corresponding communication delays. 

2) Using varying  timing information sources 
Akin to other system-level SW simulation, we utilise 

common profiling techniques “ISS-based measurement” and 
“RTOS benchmark”, to acquire accurate SW timing 
information. In the ISS-based approach, we firstly compile 
high-level source codes for a given processor architecture, 
and then run them on a cycle-accurate ISS (e.g., the KEIL 
ARM ISS) in order to measure their execution time cost. 
RTOS benchmarks can be obtained from vendor’s 
documents. Additionally, coarse-grained SW timing 
information can be generated from system specifications and 
time budget estimates. 

3) Applying multiple annotation granularities 
Let us firstly recall two possible situations in early 

embedded systems design phases. Firstly, various 
applications, RTOS, and HW modules may have different 
development progress. This means that various components 
may have varying available function codes and timing 
information for use in modelling and simulation. Secondly, 
simulation users may focus on different sub-models in 
diverse circumstances. For example, computation modelling 
and communication modelling are two distinct working 
directions in TLM simulation. It is not only infeasible but 
also costly to build all sub-models with the same timing 
level. Hence, a mixed timing modelling method is more 
efficient for early design space exploration. 

In fact, the “multiple timing granularities” method or the 
similar “multiple timing accuracy levels” concept has been 
discussed previously. In  [18], three timing degrees for TLM 
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computation and communication models are defined: un-
timed, approximate-timed, and cycle-timed. Reference [8] 
proposes multiple timing synchronization granularities: time 
period, source line-by-line, function-by-function, and 
instruction-level. Our approach defines several appropriate 
granularities for system-level SW modelling. For source-
code-available SW applications, we apply source code line-
level, function-level, and task-level annotations (Refer to 
Figure 2). For abstract SW models, we apply: function-level 
and task-level time budget estimates. For abstract RTOS 
modelling, since these “abstract and generic” sub-models are 
not the same as the implementation codes for a target system, 
it is meaningless to use an accurate profiling technique to 
produce fine-grained timing information. Therefore, we 
annotate each sub-model with a function-level delay, which 
represents the “simulated” RTOS service’s timing overheads. 

4) Annotating timing information on models 
In our approach, the target timing information is 

annotated on models in two ways: 
1) Static annotation is widely used in native SW 

simulation [10] [14]. The delay annotation is statically 
inserted after each SW segment (the segment length 
depending on the selected timing annotation granularity). It 
has the advantage of low simulation run-time overheads and 
high accuracy based on real measurement, but it requires 
huge preliminary profiling work. 

2) For abstract SW models that are not suitable for 
profiling, we use the dynamic annotation approach. If a 
model contains several blocks (e.g., functions or loops), then 
it uses a block’s base execution time estimate “ti0” with its 
actual simulation count “ni” to calculate the SW model’s 
total simulation delay td: ∑=

blocks
iid ntt *0 .This dynamic 

annotation approach is more practical than annotating a 
constant delay to every execution instance of a SW model 
regardless of its actual simulation trace. 

B. Timing accuracy of simulation 
Timing accuracy of simulation is reflected by accuracy of 

two basic actions: SW time advance and interrupt handling. 
Further, timing accuracy of SW time advance depends on 
two actions’ timing resolutions: the SW delay progress 
resolution and the SW delay preemption resolution. The 
former refers to the minimum step to progress a SW delay, 
and the latter refers to the latency to stop a delay. Interrupt 
handling timing accuracy is mainly revealed by the interrupt 
latency, which is the time from asserting a HW interrupt 
signal until beginning to a SW interrupt handler. 

1) Timing accuracy issues in simulation 
In the SLDL based system-level simulation, every 

functional simulation model (including applications, RTOS 
and HW models) is executed on the host PC. The whole 
execution is managed by the background SLDL engine (it is 
the SystemC simulation engine in our context). This 
execution cannot represent any target timing behaviour (i.e., 
it is zero-target-time execution), since it is executed on the 
host. Consequently, the target execution delays need to be 
annotated on these functional simulation models. The Live 
CPU Model executes these simulation delays, in order to 

mimic target execution timing overheads. Compared with a 
real CPU as an instruction execution engine, our Live CPU 
Model can be seen as a “time delay” execution engine.  

After a SW model is dispatched by an RTOS scheduler 
and its functional codes are finished in zero-target-time, the 
SW delay information will be passed to the Live CPU Model. 
Then, the Live CPU Model begins to execute SW delay. 
Specific delay length depends on the information input. We 
call it the “variable-step” time advance method, because an 
actual time delay step is not fixed. It is worthwhile indicating 
that the concerned SW delay progress resolution is only 
restricted by SystemC’s resolution that has 1picosecond 
default value. When the Live CPU Model decides to 
terminate current SW delay, it sends the termination event to 
the SW model immediately. Consequently, the latency to 
stop delay time, i.e., SW delay preemption resolution, is also 
zero-time. Because the Live CPU model senses external 
interrupt request when carrying out SW delay, interrupt 
handling can also begin immediately. The theoretical 
minimum interrupt latency is zero-time in simulation, and 
the worst-case interrupt latency is bounded by the longest 
interrupt disabled time. This accurate simulation mechanism 
is the same as the real CPU execution. The exact 
implementation will be introduced in the following section.  

Simulation-related timing accuracy issues are thus 
relaxed from delay annotations in modelling. This is because 
delay annotations are “executed by the Live CPU Model” in 
an interruptible way rather than are directly used in un-
preemptable “wait-for-delay” functions. Figure 2 depicts the 
separate timing modelling and simulation. An IRQ example 
shows the high HW/SW synchronization accuracy, no matter 
what timing annotation granularity is applied. 

2) Simulation similarity and speed trade-off 
Reference [14] proposes that it is unnecessary to mimic 

intermediate states in simulation, and only essential to 
generate correct results at state-changing boundaries. High 
simulation performance is thus the primary goal. Our above 
mentioned variable-step time advance technique also 
generally subscribes to this point of view. For example, if a 
SW time delay is given as 10ms, assuming the delay duration 
is not interrupted, the Live CPU Model will execute 10ms 
time delay in one delay duration. The system simulation 
clock jumps from t to t+10ms in a single step along the time 
line. The decrement of the execution budget is not simulated 
step-by-step and hence cannot be observed by the simulation 
user. From the perspective of simulation result validity at 
specified synchronization points, there is no problem. 

However, from the perspective of debugging real-time 
embedded SW and tracing system-wide variables status, the 
simulation users may not be satisfied by observing limited or 
outdated information at an observation point. We thus 
propose the “fixed-step” time advance method to update 
system-wide variables more frequently than to do it only at 
state-changing points. In the fixed-step mode, the Live CPU 
Model runs periodically to handle run-time changing 
variables, e.g., timers, time delay values, execution budgets 
etc. The Live CPU Model can blend “variable-step” and 
“fixed-step” methods in simulation in order to trade off 
simulation similarity with simulation speed.  
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IV. ABSTRACT TLM HARDWARE MODELLING 
To undertake accurate system-level embedded SW 

modelling and simulation it is necessary to model and 
simulate the underlying hardware architecture. Because 
many RTOS services are hardware-dependent, such as 
context switch, interrupt service, and timer service, it could 
be difficult to model HW/SW interactions accurately without 
support from a hardware model on which SW are assumed to 
run. Moreover, one-sided SW modelling is against the 
system-level embedded systems HW/SW co-design 
principle. Many studies have suggested using transaction 
level models for high-level system modelling and simulation. 
We also build an embedded system abstract TLM HW model 
to assist mixed timing SW modelling and simulation. Figure 
3 depicts its structure and the HW/SW interactions. It 
includes several types of HW modules: the clock generator 
module, the Live CPU module, the bus module, the memory 
module, the peripheral and device module. The HW resource 
(e.g., processor, bus and memory block) sharing and 
contention can be taken into account for accurate SW 
modelling and simulation. SystemC-TLM communication 
methods and an abstract bus offer intra- and inter-
communication for the modules. The bus model is developed 
from a standard example in SystemC distribution [2]. It 
supports blocking and non-blocking communication between 
prioritised master modules (CPU) and slave modules 
(memory, devices, and peripheral). In this paper, we only 
focus on the Live CPU model, which is the core of our 
hardware modelling and vital for SW simulation. 

We decompose the Live CPU Model into three essential 
components for SW simulation: 1) the Live CPU Simulation 
Engine taking charge of SW time advance 2) the Register Set 
assisting context switch and flags setting 3) the Interrupt 
Controller monitoring interrupts. By these sub-models, the 
CPU model is actively involved in high-level SW simulation.  

In the following, we introduce our SW time advance 
mechanism based on the use of Live CPU Simulation Engine 
by referring to Figure 4: 

Step (A): a SW code block (no matter if it is an 
application task, a function, a code line or an RTOS service) 
executes in zero-target-time at time t0. From the perspective 
of OS scheduling, the SW code block is at the running state, 

i.e., in occupation of the CPU.  
Step (B): After it is finished, the SW code block’s delay 

context (delay information) is loaded into Live CPU Model’s 
registers for a preparation of time advance. At the same time, 
the SW code block keeps waiting for its exclusive SystemC 
event (sc_event) that will be sent by the Live CPU 
Simulation Engine in the future. This event represents the 
“address of code block to run” in simulation and is stored in 
the program counter (PC) of the Live CPU Model, just like 
the use of PC in a real CPU. 

Step(C): Inspired by the instruction execution mechanism 
(fetching, decoding, and performing) of a real CPU, our Live 
CPU Simulation Engine also takes corresponding steps to 
execute a SW delay: 1) delay information fetching, 2) delay 
information decoding, and 3) delay advancing. Depending on 
different time annotation methods, the delay information 
input can be fetched from various sources, including 
simulation framework global variables, a SW task control 
block, or the return value of a delay writing function. 
Afterwards the engine decodes acquired delay information 
into standard-form data t, i.e., a double float number with μs 
unit. The decoded result t is stored in the delay register (DR) 
of the Live CPU Model, which resembles the instruction 
register in a real CPU. 

Step (D): Finally, the “delay advancing” starts at time t0. 
If the Live CPU Simulation Engine works in a pure variable-
step mode, it plans to consume the delay in a single advance 
step and release the event in PC at time t0+t by SystemC 
event timed notification mechanism. If the Live CPU 
Simulation Engine is in a fixed-step mode, it runs 
periodically to decrement and update the delay value in DR 
until it is exhausted; then it releases the event in PC. If the 
Live CPU Simulation Engine works in both variable-step 
and fixed-step modes, it will do both. 

Step (E): If there is no interruption or preemption during 
this t time delay. Thus, at time t0+t, the value in the delay 
register is exhausted and the projected event is released as 
planned. The waiting SW code block gains CPU again to 
continue execution. As well, an interrupt may happen during 
the ongoing delay duration, such as the IRQ event at t1 in 
Figure 4. Given that interrupts are not disabled, the Interrupt 
Controller Model catches this IRQ immediately and invokes 

Figure 3. TLM hardware model for SW simulation 
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the Live CPU Simulation Engine to handle this IRQ. The 
Engine firstly cancels the previously planned SystemC event; 
then updates the delay register by calculating the remaining 
value: t-(t1-t0); finally saves the value into SW context 
control block. After that, a SW interrupt handler is called to 
continue the IRQ handling process. This SW interrupt 
handler executes its functions and gets time advance service 
by repeating the above process. In this way, both SW time 
advance and HW interruption is simulated accurately.  

In conventional HW/SW co-simulation, individual clocks 
are used for different HW and SW simulators respectively. 
They need to compare the HW and SW simulators’ local 
clocks for global time synchronisation, which bring 
undesirable simulation overheads. However, there is only 
one unified HW/SW clock in our simulation and this is 
synchronous to the SystemC simulation clock. The SW 
models do not need a local clock for timed advance. The 
Live CPU Simulation Engine uniformly and serially carries 
out SW time advance jobs. This approach offers good timing 
accuracy in simulation, whilst it brings two additional 
advantages: firstly, the Live CPU Engine’s execution 
mechanism is similar to a real CPU and is thus 
straightforward to understand; secondly, it generates a CPU 
simulation trace similar to a real execution. 

In addition to above-mentioned program counter and 
delay register, the Live CPU Model contains other 
conceptual general-purpose registers as well as some special-
purpose status registers to assist SW simulation. These 
registers stores SW delay information and system status 
information. When a context switch is invoked, current CPU 
general-purpose registers’ contents (storing SW delay 
information) are saved in the pre-empted task control block 
(TCB); and the newly dispatched task’s TCB context is 
loaded into these registers. By default, we configure and 
name the register set by partial reference to ARM processor 
register scheme [19]. Simulation users can tailor the register 
set according to different presumed CPU models.  

It is acknowledged that the interrupt latency, interrupt 
response time, and interrupt recovery time are some keen-
interested timing properties of a real-time embedded system. 
The Interrupt Controller Model provides a good foundation 
to model the usual HW/SW cooperative interrupt handling 
mechanism, which usually has three bottom-up layers: the 
HW interrupt controller, the RTOS interrupt handler, and 
ISRs. The Interrupt Controller Model always watches several 
sc_ports, which are connected with IRQ lines (some 
SystemC signal channels). In order to deal with multiple 
simultaneous interrupts from various devices and bound the 
interrupt latency, the interrupt controller can prioritise, mask 
or disable interrupt sources by setting corresponding register 
bits. When a hardware device raises an IRQ by asserting a 
signal on its interrupt request line, the Interrupt Controller 
Model can catch the signal immediately and calls the Live 
CPU Simulation Engine to stop the current delay process. At 
the same time, it sets the PC with an event belonged to a SW 
interrupt handler. Subsequently, depending on a specific 
interrupt handling scheme, either a vectored ISR or an RTOS 
kernel-level interrupt handler function will begin. 

V. EXPERIMENTAL RESULTS 
In this section, we take several experiments to 

demonstrate the benefits of our mixed timing RTOS 
modelling and simulation approach. All simulations are 
performed with SystemC v2.2 on a 2.2GHz PC. Host 
simulation times are measured by Windows high-resolution 
(μs level) QueryPerformanceCounter() function which can 
retrieve the hardware cycle counter. 

A. Simulation Engine Modes Comparison 
To demonstrate the flexible simulation performance 

trade-off ability and the good SW time advance accuracy of 
the mixed timing method, we evaluate multiple time advance 
methods supported by our method. The focus is to evaluate 
the relationship among simulation speed, simulation 
observability, and SW time advance accuracy under different 
configurations of the Live CPU Simulation Engine. The 
applications consist of eight tasks (four periodic tasks and 
four sporadic tasks) with task-level delay annotations. We 
apply a time-driven and event-driven combined scheduling 
mechanism with the round-robin algorithm. Eight interrupt 
sources are included in the simulation and fires randomly to 
trigger sporadic tasks. The simulation runs 1000ms target 
time that allows a task to repeat at least 20 jobs. 

Live CPU Simulation Engine Mode A: This uses a fixed-
step time advance approach, which runs every microsecond 
to advance 1μs SW time. It is similar to the fin-grained time 
period synchronization approach in [8]. This can achieve 1μs 
SW time advance resolution. 

Live CPU Simulation Engine Mode B: This is a dual-
grained fixed-step time advance approach. When a SW 
annotation slice is greater than 1ms, the engine runs every 
millisecond to progress SW time by a fixed value 1ms. Once 
the annotation slice falls below 1ms, then the engine runs 
every microsecond to advance remaining SW time by a fixed 
value 1μs. It can achieve 1μs SW time advance resolution. 

Live CPU Simulation Engine Mode C: The Engine uses a 
mixed fixed-step and variable-step time advance mode. It 
progresses a full delay annotation slice in an interruptible 
variable-length step, and it runs every millisecond to update 
simulation status information. The SW time advance 
resolution is only restricted by the timing resolution of 
SystemC simulation engine. 

Live CPU Simulation Engine Mode D: This is a pure 
variable-step time advance mode. The engine progresses the 
SW annotation slice in an interruptible variable-length step. 
The SW time advance resolution is only restricted by the 
timing resolution of SystemC simulation engine. 

In order to compare the simulation speed of our proposed 
approach with the simulation speed of a conventional ISS, 
the same applications are run using KEIL µVision ARM ISS 
for duration of 1000ms. The target processor is set as a NXP 
LPC2378 running at 40MHZ. We port a µC/OS-II RTOS on 
this ISS to manage tasks. 

The obtained results are shown in Figure 5. Compared 
with the ISS simulation, unsurprisingly, our approach obtains 
drastic performance improvement. The results also indicate 
that the fixed-step time advance approach generally costs 
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much more simulation time than variable-step approach: 
Engine D achieves a considerable speed-up (up to 676 times) 
to that achieved by the fine-grained (1μs) fixed-step Engine 
A, when they both have a 1μs time SW time advance 
resolution. This is because the fixed-step approach 
progresses simulation time and updates status variables more 
frequently than the variable-step approach: the running count 
of Engine A is 484 times of Engine D’s.  

The Engines B and C are two compromise methods when 
compared with the fine-grained fixed-step Engine A and the 
pure variable-step Engine D. The measured simulation 
results show that the Engine C can still save more simulation 
time than Engine B (6.8 times speed-up). For its moderate 
simulation overhead and system information tracing ability, 
Engine C’s combined fixed-step and variable-step mode is 
thus acclaimed in our simulation approach. 

We also note that there is still 37% simulation time 
difference between the Engine C and Engine D. This is 
because the former runs about 1000 more times (once a 
millisecond for a 1000ms duration) in its fixed-step mode; 
and this higher Engine running count directly slows down 
simulation performance. In order to reveal the correlation 
between the step length and the simulation speed in fixed-
step mode, we test three other step granularities: 2ms, 5ms 
and 10ms, which means the Live CPU Simulation Engine 

runs every 2ms, 5ms, and 10ms respectively. The Figure 6 
shows that the simulation time and engine running count are 
steadily decreasing whilst the fixed-step granularity is 
growing. This characteristic can be used to tune the Live 
CPU Simulation Engine and thus to optimise the simulation 
performance and simulation observability in different 
situations. 

In summary, the highly configurable Live CPU 
Simulation Engine leaves adequate space for simulation 
users to trade off simulation time and accuracy, depending 
on their differing intents. 

B. Interrupt Handling Simulation 
In order to evaluate the preemption and interrupt 

handling ability of our approach, we make an interrupt 
experiment, which supports a timely, nested, prioritised, and 
maskable interrupt handling mechanism with low and 
bounded interrupt latency. It includes five IRQs (IRQ1-5) 
and five associated ISRs (ISR1-5), which are assigned 
ascending priorities (higher than any applications’ priority).  

The Figure 7 shows a time-line segment of this 
experiment. Initially, at t=7011μs, IRQ2 and IRQ3 happen 
simultaneously. Since the Live CPU model controls SW time 
advance and monitors IRQ lines, ongoing SW time advance 
can be stopped as soon as possible, i.e., the IRQ is handled 
immediately. The theoretical interrupt latency (til) is zero in 
simulation. Note that, to make our model more practical, we 
may also assign til with some tiny delays to mimic the case 
that a CPU needs to finish current instruction execution 
before it handles the interrupt. Because IRQ3’s priority is 
higher than IRQ2’s, then the interrupt controller ignores 
IRQ2 and begins to service IRQ3. Afterwards, RTOS 
services (context_switch and interrupt_handler_enter) and 
ISR3 execute sequentially. At t=7022μs, a higher-priority 
IRQ4 happens and it then gets nested service by pre-empting 
ISR3. The lower-priority IRQ1 that fires during ISR4 
execution is ignored by the interrupt controller, as it has been 
masked by the preceding interrupt handler. After the finish of 
ISR4, the lower-priority IRQs that have taken placed are 
handled successively.  

In order to quantify timing accuracy of interrupt 
handling, we measure the interrupt latency of these five 
IRQs. Each IRQ randomly fires 500 times in 10 seconds 

Figure 7. Interrupt handling experiment  
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simulation. The focus is to evaluate the experimental 
interrupt latency with the theoretical results. In order to 
eliminate varying RTOS critical section’s interference on 
interrupt latency, we assume interrupts are always enabled 
and the Live CPU Simulation Engine can stop SW execution 
as soon as a higher-priority interrupt happens. Therefore, at 
any simulation time point, the highest-priority IRQ’s 
interrupt latency should always be zero, and all IRQs are 
only able to be postponed by higher-priority ISRs. Therefore, 
the theoretical maximum (worst-case) interrupt latency of an 
IRQ can be computed as the sum of all higher-priority ISR 
time cost: ∑=

priohigh
ISRil tt

_
max_ . 

TABLE I. compares the measured maximum interrupt 
latency with calculated theoretical results. As expected, in 
most cases, when the happening IRQ is the highest-priority, 
it is serviced without any delay (i.e., zero-time latency). In 
case it is delayed by some other higher-priority ISRs, its 
maximum interrupt latency does not exceed the theoretical 
worst-case value either. 

TABLE I.  COMPARISON OF THEORETICAL AND EXPERIMENTAL 
INTERRUPT LATENCY 

 Zero-time 
IRQ 

Latency 
Times 

Delayed 
IRQ 

Latency 
Times 

ISR 
time 
cost 
(μs) 

Theoretical 
Max IRQ 
Latency 

(μs) 

Measured 
Max IRQ 
Latency 

(μs) 
IRQ5 500 0 500 0 0 
IRQ4 441 59 10 500 494 
IRQ3 440 60 10 510 488 
IRQ2 448 52 10 520 502 
IRQ1 444 56 10 530 488 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a mixed timing system-

level cycle-approximate embedded software modelling and 
simulation approach. By isolating the timing modelling 
problem from the timing simulation problem, it can not only 
integrate multiple-level timing models for the sake of 
accuracy and efficiency at the modelling stage, but can also 
achieve a good SW time advance and interrupt handling 
accuracy at the simulation stage. The hardware TLM model 
presents a clear and essential high-level HW architecture 
abstraction for assisting SW simulation. Especially, the 
HW/SW synchronization problem is tackled by the Live 
CPU model, which incurs much less overhead than 
conventional fine-grained annotation and synchronization 
approach. Additionally, the Live CPU model supports 
multiple execution modes, which could trade off the speed of 
simulation with the observability of simulation process. 
Through comparison with µVision ARM ISS simulator, the 
proposed approach improves simulation performance up to 
three orders of magnitude.  

The remaining issue of our research is to implement the 
mixed timing modelling and simulation approach in more 
complex embedded SW simulation that includes a full 
functional RTOS model. We also intend to apply it for 

multiprocessor systems. Favourably, the modular hardware 
TLM models have provided such potential. 
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