
Seamless Visual Object-Oriented Behavior Modeling
for Distributed Software Systems

Holger Giese, J¨org Graf and Guido Wirtz
Institut für Informatik, Westfälische Wilhelms-Universit¨at

Einsteinstraße 62, 48149 M¨unster, GERMANY
guidow@math.uni-muenster.de

Abstract

To ease the development of distributed systems, the vi-
sual notions for the structural aspects of object-oriented
analysis and design should be combined with techniques
handling concurrency and distribution. A novel approach
and language for the visual design of distributed software
systems is introduced and illustrated by means of an exam-
ple. The language ofOCoNs (Object CoordinationNets)
is integrated into the structuring mechanisms of the UML
standard for object-oriented analysis and design. Such an
object-oriented notation is crucial for handling complex
software systems and can be extended with the graphical
expressive power of Petri nets to also describe concurrency
and coordination. The same visual language is used to
specify the interfaces and contracts of software components,
the resource handling within a component as well as the
control flow of services.

Keywords: visual language, object-orientation, contract,
coordination, concurrency, Petri nets

1. Introduction and Background

Due to an increasing demand for enterprise wide coop-
erating software and web based solutions as well as the
progress in workstation technology and networking, dis-
tributed systems have gained much importance recently.
Moreover, middleware technology like, e.g.,CORBA[26]
helps to overcome classical low-level problems of hetero-
geneity in hardware, networks and languages and makes
distributed systems a commonly accessible option for a
wide range of applications in manufacturing, process con-
trol, banking, multimedia etc.

The development of such systems, however, is not yet
well understood. Being at least as complex as many non-
distributed business software systems, distribution adds its

share to complexity by introducing – among others – con-
currency and complex resource conflicts. These cannot
be handled in the well-known centralized fashion which
used to work well in operating systems for decades be-
cause distributed systems lack global access rights or even
consistent global knowledge about their state. Nowadays
well accepted object-oriented development methods, e.g.,
[5, 19, 29] deliver the basic features for specifying the
static structure of such a model and provide a good point
to start with. The real challenge with distributed systems,
however, is theirbehavior. Here, the focus of OOA and
OOD on business applications has resulted in a high em-
phasis on complex static structures and a really poor sup-
port for dynamic aspects and behavior. For example, among
the many notations for dynamic modeling offered by the
UML (Unified Modeling Language) [27] like, e.g., mes-
sage sequence charts [17], collaboration and activity dia-
grams, only STATECHARTS [13] come close to sufficient
expressive power. Their state-machine-based nature, how-
ever, makes concurrency not a central issue within the for-
malism and there are more natural models for handling con-
currency like, e.g., Petri nets [7].

We utilize (parts of) the visual notations of the UML
when designing thestatic structureof software systems
and emphasize thesoftware architecture[30] aspect to
achieve a suitable design. In the very center of our ap-
proach is an object-oriented, visual design language (Object
CoordinationNets) for describing all relevant dynamic as-
pects of coordinating the concurrent use of components and
resources.OCoNs are not only a notation but a real vi-
sual language with syntactical rules, a polymorphic type
system integrated with the underlying object-oriented struc-
tural model. The real advantage ofOCoNs is the rigor-
ous integration of object-oriented concepts into a high-level
net formalism while preserving the benefits of simple net
models. This is accomplished by using nets in a manner
which carries the essential information in the visual part of
an OCoN and not by means of complex textual formulas
annotated to graphical symbols and arcs.

c© 1999 IEEE. Published in the Proceedings of IEEE Symposium on Visual Languages, September 13-16, 1999, Tokyo, Japan. Personal use of this

material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works

for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

In the rest of this paper, we give a short characterization
of our style of design (section 2), illustrate the basic ele-
ments ofOCoNs (section 3) and their different usages by
means of an example that is discussed in detail in section
4. Animation and validation aspects are considered in sec-
tion 5, related work is discussed in section 6. We end up
with some remarks on the project status and future work in
section 7.

2. Contract-based Design Style

The focus of our behavioral specification is restricted to
coordination aspects as discussed in [14] which are essen-
tial for the design of distributed systems and allow to delay
other aspects (see [20]) to later phases of the design or even
the implementation. We extend the usual interface notion
and combine them with a behavioral description describ-
ing the availability of services for an interface (see [25]).
Thesecontractscan on a coarse grain level of design be
interpreted as architectural connectors [1]. Our contract no-
tion is in contrast to [18] restricted to cover only a single
interface like [24]. We do not consider any functional as-
pects and specify only the coordination aspect by adding a
behavior description. Because the details of our work to-
wards requirements and a clear contract-based method for
designing components, interfaces and their interaction have
been described elsewhere [36, 12], we put our focus here
on theOCoN visual design language and its different us-
ages and benefits in the context of the systematic design of
components and contracts.

We distinguish three views for behavioral aspects for
specifying classes and their abstract interfaces/contracts in
a distributed system. For each of the views we useOCoNs
to model the dynamic aspects on the level of detail best
suited for the view at hand:
• externally visible interface/contract: services accessi-

ble from the outside as well as the externally visible
aspects of the state of instantiations of the class w.r.t.
the availability of a service
(protocol net).

• object-wide coordination: overall resource usage of
the external as well as internal services of an object
(resource allocation net)

• a single service within its class context: detailed
implementation of a service concerning the resource
coordination. This may be a so-calledservice netor a
textually coded method.

Hence, the schematic view of a class looks like outlined
in figure 1 where all variants of visual representations are
OCoNs. Moreover, the continuous embedding of the three
behavioral views providing a seamless behavior modeling
is visualized. We can abstract from each implementation
using protocol nets. In a resource allocation net, the request

ContractR1
<<contract>>

op1()
op2()
op3()

[R1]

op1

res1_

ContractImpl::op1

op2

op1

[S2][S1]

Contract1
<<contract>>

[R2]

...

res1_

op2

ContractR2

res1_

op4

self

...

self

res2_

...

res2_

...
......

#op4()

+op1()

+op3()
+op2()

resource allocation net

signatures

<<implementation>>

Contract2

signatures

ContractR2
<<contract>>

ContractImpl

protocol net

<<service>>

[S1] [S2]

<<service>>
ContractImpl::op2

Figure 1. The seamless usage of OCoNs

processing actions are refined using service nets. Actions
and resources represent contracts and their usage via ser-
vice calls in service and resource allocation nets can be in-
terpreted as embedding certain parts of the corresponding
protocol net. The different kinds of nets are discussed in
more detail in the next section.

Besides integrating our approach in a nowadays well-
accepted methodology, object-oriented analysis and design
of systems in general leads to a decomposition of a system
into less complex entities. This decomposition and the sep-
aration of concern guarantees also thescalabilityin general
and w.r.t. graphical complexity of our approach.

3. The Elements ofOCoNs

Starting with the common Place/Transition net (P/T net)
notion [7], there are only a few principal steps of further re-
fining the general concepts in order to obtain a net model
which fits into the object-oriented world for, e.g., specify-
ing a single service in the context of a class. We assume the
reader to be also familiar with the basic concepts of classes,
methods and inheritance used in any object-oriented lan-
guage like, e.g., inJava [2] to pick a popular example.

3.1. Contracts and Protocols

The first kind of net –protocol nets– is part of the con-
tract and describes those restrictions which are essential to
know for an external client when using the offered pub-
lic services. A contract (<<contract>>) is specified us-
ing an extension of the UML stereotype<<interface>>,
where a compartment contains a protocol net. TheOrder
contract shown in figure 2 is build by an interface con-
taining a set of services that allow to initialize the or-
der (setData , addUser), getting the order identifier
(getID), test whether an order is overdue (test) and pro-

2

[Init] [Set]

setData accept

reset

getIDaddUser

[Done]setData

[Accept]

process

[Overdue]test

addUser(UserIdent)

protocol net

process()

getID(): OrderID
test() : ()overdue, ()accept

reset()

setData(OrderData)

signatures

<<contract>>
Order

Figure 2. A contract with protocol net

cessing the order (process). Additionally, a protocol net
is contained that describes the service availability based on
abstract external states.

The actions(squares) in such a protocol net represent
services and firing them is interpreted as aservice call.
An action is equivalent represented in usual P/T nets by
a call and return transition. The well-known procedure
call metaphor should ease the understanding of our nets in
much the same way as theremote-procedure-callparadigm
has gained much of its benefits from being similar to an
ordinary procedure call. The state of the protocol net is
represented by a couple of places (hexagons) representing
the distinct states of the contract using a state token.
Available services for a certain state are represented by
actions which lead from this state to another or the same
state. Besides the state, we distinguish two different levels
of access modes:
• potential parallel: used for non-interferingaccesses

(two-way edge, see figure 2 actionaddUser)
• exclusive: used to avoid race conditions due to

insecure intermediate states (seperate edges to/from
action, e.g.,setData in figure 2)

This may be an usage which does not change the state (get–
use–put back) or a state changing use if an action changes
the state of the contract. Note, that this distinction is only
needed for aspects of the state of a contract which are im-
portant for its capability to execute services. In order to re-
duce the visual complexity, all services which are available

in every state and cause no state changes are simply omitted,
e.g.,getOrder andinstructOrder (see figure 8).

The protocol nets are restricted to finite state machines,
but in contrast to STATECHARTS [13] which are used in
the UML to specify the external protocol, extended features
like and/or state decomposition are not supported to ensure
that the resulting descriptions are simple enough to allow
a seamless embedding into other behavioral specifications.
To handle complex cases, the usage of multiple contracts
(c.f. [34]) in a style supportingseparation of concernas,
e.g. role based modeling (see [28]), is applied.

3.2. From Protocols to Services

When using contracts, for example in ascenario as
demonstrated in figure 3, parts of the specified usage pro-
tocol can be embedded as needed. In this scenario, an
Order contract is obtained from aFactory resource
and the order is initialized (setData), an user is added
(addUser), the id is retrieved (getID) and the order is
accepted (accept). An action is here again interpreted
as aservice call, but this time parameters have to be sup-
plied and the termination will deliver a set of results. There

Event

newOrder

Factory

Order [Init]

OrderData

setData

Order [Set]

accept

Order [Accept]

getID

OrderID

Figure 3. A scenario using the Order contract

has to be a contract of appropriate type which isproviding
the activityof an action as well as objects which act asin-
going parametersor outgoing resultsfor each service call.
The former category can be interpreted as representing the
resources needed to fire an action which may be changed
during that activity but tend to have a longer lifetime than a
single activation. The latter represent most of the detailed
flow of control and the objects which are to be processed
and, hence, may be consumed during execution. W.r.t. a
single action, two types of connected places, namelyevent
pools(circles) andresource pools(hexagons) – already used
for the states in protocol nets – are distinguished. Because
a service may need additional resources besides theunique
singlecarrier of activity, and an object may be used as a
parameter in one action, but as a resource in another one,
we partition edges intoenabling edges(filled arrow head)
for parameters/results and theactivation edge(white arrow
head) which is only used for resources. Parameter edges

3

have aconsume, produceor read semantic concerning the
pools in contrast to activation edges that describe execution
access and thus do not really consume or produce the ob-
jects.

Based on the distinction between resources and objects
produced and consumed through the flow of data and con-
trol, the metaphor of resources which is crucial in dis-
tributed systems can be used to make resource handling ex-
plicit. Theusageandstatusof resources can be specified in
detail. A single resource may be represented by more than
one resource pool if the different pools stand for the same
resource but different internal states. The state is annotated
with the resource type, e.g.,Order[Init] . This allows
a rather detailed modeling of requirements: for an action to
be enabled, the resource is required to be in a specific state,
e.g., anOrder should be in stateAccept for activating a
getID operation (see figure 2).

We distinguishlocal andexternalresources. The former
are under exclusiveaccess of the current context at hand
whereas the latter are imported from the surrounding con-
text and shared with other behaviors (visualized by double
lines; seeSecManager resource in figure 4 and 5).

SecManager

checkValid

UserIdent UserIdent

SecFault
addUser

Order [Set]

Figure 4. Check permission scenario

A second aspect of an order initialization should be a
check whether the user has permission to do so. A scenario
using aSecManager adds the user if thecheckValid
request to it succeeds (see figure 4).

The aspects discussed so far, are needed to bring the suit-
able modeling metaphors for distributed systems into the
net language. The following aspects are requirements of
a clear integration of object-oriented structural descriptions
and nets by integrating the type system provided by the class
hierarchy into the nets. The polymorphic type system de-
fined by the class hierarchy provides anisa relation which
as usually reflects the position of a class in its class hier-
archy. Because an action is identified with a service, the
carrier of activity has to be a contract of a type and state
which provides that service. Moreover, the parameters and
results have to be typed objects, too. Hence, pools have
associated types and are restricted to markings with typed
objects which fit into the pools, i.e.o fits into p ∈ P iff
isa(o, typeof(p)) is valid. Simpletokenare still in use to

model the occurrence of events of a basic event typeEvent
to describe pure control flow (see figure 5).

The nets can express calls via the provided actions with
signatures. A signature defines – much in the sense of ab-
stract data types [9] – simply the types of the parameters
and resources connected to an action. It provides the in-
formation for static type checking. In and out are visual-
ized by means of ports. The usage of traditional service
signatures permits to interface our net formalism with tex-
tually provided code of the target language in order to reuse
available class libraries, include legacy code or replace a net
specification with a hand-coded or automatically generated
piece of code. Due to the fact that the entire type system of
OCoNs depends on the concept of interfaces/contracts and
the underlying class hierarchy, it is a simple extension of the
well-known mechanisms used in object-oriented languages.
This has the additional benefit that a user who is familiar
with such a textual language can use the same rules when
working withOCoNs.

In our example, anOrderCoord object is identified to
be responsible for the coordination described in the sce-
narios of figure 3 and 4. Aservice netthat combines

OrderData

UserIdent

checkValid

newOrder

Order

[Init]

Event

Factory

setData

Order [Set]

UserIdent

SecFault

SecManager

addUser

getID

OrderID

accept

Order [Accept]

Order [Accept]

Event

orders_

<<service>>
OrderCoordImpl::instructOrder

Figure 5. A service net to create an order

them and specifies how to create and initialize an order
according to the specified arguments is presented in fig-
ure 5. TheinstructOrder service might fail if the
SecManager detects a security fault. The nondetermin-
istic output of thecheckValid service usage in figure 5
is simply a short-hand notation for a behavior which can
produce several results like illustrated for example in detail
by theinstructOrder service itself.

4

The number of incoming/outgoing arcs is visualized in
the service net by (shaded) bars for in (left) and out (right).
A single service specifies what kind and number of re-
sources it needs by itself. This supports the concept of local-
ity by avoiding the detailed treatment of complex resource
interactions in each of the services.

3.3. Internal Resource Handling

In complex cases and for visualizing the initial de-
manded resources of each service, a description for the in-
stance wide resource allocation and scheduling is needed.
A stereotype<<implementation>> and a special resource

resouce allocation net

+ getOverdueOrder() : (OrderID)

+ instructOrder(UserIdent, OrderData):(SecFault),(OrderID)

Order [Accept]

orders_

Order [Overdue]

orders_

Eventdelay

Event

[InTime]

self

[OutOfTime]

self

Order [Done]

orders_

process

ProcessUnit

workers_

reinstructOrder

stornoOrder

getOverdueOrderstornoOrder

test

delay()

+ getOrder() : (OrderID)

+ reinstructOrder(OrderID, OrderData)

signatures

+ stornoOrder(OrderID)

OrderCoordImpl
<<implementation>>

Figure 6. Resource allocation net

allocation net compartment is used to build an implemen-
tation for theOrderCoord contract presented later in fig-
ure 8. This implementationOrderCoordImpl in figure 6
contains aresource allocation netthat combines the initial
resource demands for all services of its class, provides the
point for observing dependencies between services and for
specifying design decisions w.r.t. overall resource handling
and scheduling within a single class. Note, that only those
services are explicitly represented in the resource alloca-
tion net which have either special resource requirements or
which are not available in all resource states. For this rea-
son, e.g.,instructOrder has been omitted in the net of
figure 6.

Here, resource pools which represent the state and num-
ber of the different associated objects and two different kind
of actions are used. The state is represented by special state
places (self) much like in the protocol nets; specialre-
quest processing actionsdrawn with a shadow are used to
specify the initial resource demands for services offered ex-
ternally. This net represents the class internal view of its
local resources as well as the external resources the class
uses. A resource must always be in a single state iff present
at all.

A principal design decision is thatall services are con-
current a priori, i.e. as long as not stated otherwise, a ser-
vice of a class may be called concurrently with itself as
well as with other services of the same class. This does
not imply that all calls really work in parallel because that
may depend on the availability of resources. In our de-
sign, the aggregated elements of a class are interpreted to
beresourceswhich enable a class to implement its services.
So, a parallel call of different services using, e.g., the same
OrderCoordImpl object will be sequentialized due to
conflicting resource requests.

Additionally, theinner activityof an object can be spec-
ified using the simple actions. In our example all created
orders in stateAccept are tested after a certain delay and
transformed into stateOverdue when their processing was
not initiated in time. All orders in stateAccept are pro-
cessed by assigning aProcessUnit to them if available.

4. The Order System Example

SecurityProcessing

Order

Ordering

Order -orders_
0..*

<<import>>

1..*
-workers_

<<import>>

OrderCoord

(from Security)

1..*

CoordUser
<<actor>> <<implementation>>

(from Processing)
ProcessUnit
<<contract>>

:SecManager
<<contract>><<implementation>>

OrderCoordImpl

Figure 7. Class diagram of the example

We use the abstract requirements for an order process-
ing system to demonstrate the combined benefits of our ap-
proach. Such an order system has to process orders and
allow their management. The overall structure of the de-

5

sign in figure 7 (using a collapsed representation for the
different entities) contains a special coordination contract
for managing orders and controlling their processing named
OrderCoord for each client, which is specified in figure
8. This contract is implemented byOrderCoordImpl
(see figure 6) that contains a set ofOrder s represented by
a resourceorders to handle received orders. A security
managerSecManager and a resource poolworkers of
ProcessUnit s to process the orders are also available for
OrderCoordImpl .

getOrder() : (OrderID)

[InTime] [OutOfTime]

stornoOrder

reinstructOrderstornoOrder getOverdueOrder

reinstructOrder(OrderID, OrderData)
stornoOrder(OrderID)

getOverdueOrder() : (OrderID)

instructOrder(UserIdent, OrderData):(SecFault),(OrderID)

<<contract>>
OrderCoord

signatures

protocol net

Figure 8. The external view on the system

The relative simple services getOrder or
getOverdueOrder that simply retrieve informa-
tion do not contain any coordination aspects and thus
should better left for later implementation with the target
language. TheinstructOrder service is used via a
client to add orders. The analysis of the related coordina-
tion of anOrder contract is described by the scenarios in
figure 3 and 4 and its final specification in figure 5. The
OrderCoord implementation OrderCoordImpl is
an active object that triggers the correct order processing
by repeating atest service call to eachOrder in state
Accept until the order is either processed by assigning
an ProcessUnit and thus changed to stateDone or
becomesOverdue . This is done using a cyclic event
flow which is delayed by an internaldelay method. A
parallel call to all elements of theorders resource pool
in stateAccept is specified using a parallel activation
edge which is drawn with a double head. Each single call
might transform the order either into stateOverdue or
the old stateAccept . If an order is in stateAccept ,
the processing can be initiated by assigning an available
ProcessUnit to it via callprocess . For anOverdue
order an exceptional handling is needed. Thus we switch

the state of theOrderCoord contract using a local action
in the resource allocation net which fires when at least one
order in stateOverdue is available (read arc) to signal a
client that at least one of its orders has failed.

A client might react on the observable spontaneous
change to a new state of a contract by using a simple pre-
condition edge connected with a pool representing this new
state. Thus usingcall-backsthat may result in race condi-
tions in the client behavior can be avoided and we still can
use a simple unidirectional contract.

The client can either use thestornoOrder service
to simply delete the order or set a new processing time
via the reinstructOrder service. It resets the data
and transforms the order to the stateAccept again. If
the client object does not care about failed orders, it can
simply ignore the contract state and restrict its usage to
instructOrder andgetOrder which are available in
each state.

5. Working with the OCoN Language

The interactive specification of behavior aspects with
OCoNs is currently possible with a prototype of an edi-
tor with integrated simulator. This tight coupling of spec-
ification and validation improves the handling of behavior
specification to a great extent.

Figure 9. Combined Editing & Simulation Tool

As outlined in figure 9, a direct simulation of even only
partial specified nets is possible due to an always valid ab-
straction that reduces object interaction to the non determin-
istic firing of transitions in the underlying Petri net model.
Of course functional aspects can not be covered this way,
but the coordination or at least its non deterministic abstrac-
tion can be explored.

Several relevant questions concerning the correct or
compatible behavior of service, protocol and resource al-
location nets can be analyzed based on available Petri net
tools. Besides such qualitative analysis techniques, simula-
tions with estimated time intervals can help to identify bot-

6

tlenecks or problems concerning the given performance re-
quirements. Such quantitative analysis techniques are pos-
sible based on stochastic or timed Petri net models [22].

6. Related Work

There has been a lot of work on visual notations for
OOA and OOD around for some years now. Most of the
time, the many different notations have been seen to be
a disadvantage for their overall use in serious business
applications. With the UML, an approach to unify all
these approaches is in the state of standardization. How-
ever, there are three major flaws with the proposed notation:

• Instead of unifying different notations, often the sim-
ple union of different notations has taken place which
makes the UML an only hard to manage sampling of
nearly 20 notations for the same or different aspects of
modeling.

• Although working with meta-models, the UML is
a notation but far from being a language with clear
semantics at the moment.

• The support for dynamic aspects is – besides the
STATECHARTS [13] – rather poor and not well-
defined.

Message sequence charts (sequence diagrams) are essen-
tially trace based and fail to express concurrency. They also
provide a behavior description for a set of objects from an
external point of view like collaboration diagrams. Thus
they fail to describe behavior from the local perspective of
a single object. State based notations like STATECHARTS
or activity diagrams describe the behavior based on ab-
stract states and support behavior integration only using
state composition. Thus a suitable modeling based on the
resource metaphor is not provided. Besides all these differ-
ences, none of these notations is covering external behavior
descriptions (contracts), resource allocation/scheduling and
service specification at the same time. Every notion only
covers its special application area and thus can not provide
a seamlessintegration as demonstrated in figure 1.

Other approaches like [10] try to combine common non
object-oriented behavioral description languages like SDL
[16] with object oriented concepts, the UML or other anal-
ysis and design notations. But these attempts map the char-
acteristics of object-orientation on process based structures
and thus can not provide a seamless integration.

Because we use a special kind of extended Petri nets,
those projects which use a variety of high-level Petri nets
to model complex concurrent systems, are closely related
to ours. High-level nets have been proposed as a model-
ing language for about 15 years, e.g., [11], but the lack of
abstraction and modularization concepts which are under-
standable for a non-expert restricts theacceptance of these

approaches (cf. [15] for a discussion of five different ab-
straction mechanisms). The problem of integrating object-
oriented concepts into the world of nets has been tackled
based on algebraic specifications [3, 4] or through the ex-
tension/combination of colored Petri nets [21, 31]. The
(low-level) concepts used there, however, provide no suffi-
cient notion of abstraction yet. Our approach, as well as that
of [23], takes the opposite way by integrating nets into the
world of object-oriented modeling. Although it is demon-
strated in [23] that traditional behavior modeling notations
can be replaced by Petri nets, the model of interaction lacks
abstraction.

In contrast to [33] andPNtalk [8] theOCoN approach
integrates structural and behavioral aspects of object-
oriented designs, contains an implementation scheme to
specify object internal synchronization systematically and
provides a seamless embedding of aggregated elements us-
ing the resource metaphor and contract concept. Besides
our integration into an object-oriented modeling process,
we focus on a visual specification of coordination aspects
like [6]. In contrast to message passing based visual pro-
gramming for distributed systems [32, 35], our approach is
based on the remote procedure call as basic form of interac-
tion.

7. Conclusions

We have presented a new visual formalism for the design
of distributed systems which integrates object-oriented con-
cepts with high-level Petri-nets. The object-oriented part
permits a well-structured visual language obtaining a con-
cept of hierarchy and encapsulation which is crucial for
real-life modeling. The nets used for the visual part have
been adopted to the metaphors of service calls and resources
which makes it possible to specify distributed systems with-
out relying too much on non-visual mechanisms. This is a
big advantage compared to almost all other high-level net
formalisms.

A working editor and simulator (see figure 9) currently
supports the development usingOCoNs. First experiences
using the tool in software engineering courses and labs are
promising. At the moment, an extension to support complex
simulations and code synthesis are under development. The
integration of theOCoN tools with a tool for static model-
ing using the UML including consistency checks between
static notations and nets as well as the reuse of net analysis
tools forOCoNs will be the next steps.

ACKNOWLEDGMENTS

The authors want to thank all students which have been
involved in implementing and using theOCoN prototype
tools.

7

References

[1] R. Allen and D. Garlan. A Formal Basis for Architectural
Connections.ACM Transactions on Software Engineering
and Methodology, July 1997.

[2] K. Arnold and J. Gosling. The Java Programming Lan-
guage. Addison-Wesley, Reading, MA, 1996.

[3] E. Battiston, F. D. Cindio, and G. Mauri. Objsa Nets: A
Class of High-Level Nets Having Objects as Domains. In
G. Rozenberg, editor,Advances in Petri Nets, LNCS 424,
pages 20–43. Springer Verlag, 1988.

[4] O. Biberstein and D. Buchs. An Object Oriented Specifica-
tion Language based on Hierarchical Petri Nets. InIS-CORE
Workshop (ESPRIT), Amsterdam, Sept. 27-30 1994.

[5] G. Booch.Object-Oriented Analysis and Design with Appli-
cations. Addison-Wesley, Menlo Park CA, 1993. (Second
Edition).

[6] P. Bouvry and F. Arbab. Visifold: A Visual Environment for
a Coordination Language. In P. Ciancarini and C. Hankin,
editors,COORDINATION ’96, Cesena, Italy, LNCS 1061,
pages 403–406. Springer Verlag, Apr. 1996.

[7] W. Brauer, W. Reisig, and G. Rozenberg [eds].Petri Nets:
Central Models (part I)/Applications (part II). Springer
LNCS 254/255, Berlin, 1987.

[8] M. Ceska, V. Janousek, and T. Vojnar. Pntalk - A Computer-
ized Tool for Object Oriented Petri Nets Modeling. InEU-
ROCAST’97, Las Palmas de Gran Canaria, Canary Islands,
Spain, LNCS 1333. Springer Verlag, 1997.

[9] H. Ehrig and B. Mahr.Fundamentals of Algebraic Specifi-
cation. Springer, Berlin, 1985.

[10] J. Ellsberger, D. Hogrefe, and A. Sarma.SDL, For-
mal Object-oriented Language for Communicating Systems.
Prentice Hall, 1997.

[11] H. J. Genrich and K. Lautenbach. System Modelling with
High-Level Petri Nets.Theor. Comp. Science, 13:109 – 136,
Jan 1981.

[12] H. Giese, J. Graf, and G. Wirtz. Modeling Distributed Soft-
ware Systems with Object Coordination Nets. InProc. Int.
Symposium on Software Engineering for Parallel and Dis-
tributed Systems – PDSE’98, Kyoto (JP). IEEE-CS Press,
April 1998.

[13] D. Harel. On Visual Formalisms.Science of Computer Pro-
gramming, 31:514–530, 1988.

[14] J. Hernandez, M. Papathomas, H. M. Murillo, and
F. Sanchez. Coordinating Concurrent Objects: How to
deal with the coordination aspect? In J. Bosch and
S. Mitchell, editors,Aspect-Oriented Programming Work-
shop ECOOP’97, Jyv¨askylä, Finland, June 1997.

[15] P. Huber, K. Jensen, and R. M. Shapiro. Hierarchies in
Coloured Petri Nets. In G. Rozenberg, editor,Advances
in Petri Nets, LNCS 483, pages 313–341. Springer Verlag,
1990.

[16] International Telecomunication Union (ITU).Specification
and Description Language (SDL) Recommendation Z.100,
1992.

[17] International Telecomunication Union (ITU) Study Groups
CCITT. Message Sequence Chart (MSC) Recommendation
Z.120 draft version, 1996.

[18] ISO/IEC. Open Distributed Processing Reference Model
- parts 1,2,3,4, 1995. ISO 10746-1,2,3,4 or ITU-T
X.901,2,3,4.

[19] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Soft-
ware Development Process. Addison Wesley Object Tech-
nology Series. Addison-Wesley, 1999.

[20] G. Kiczales. Aspect-oriented programming.ACM Comput-
ing Surveys, 28(4):154–, Dec. 1996.

[21] C. Lakos. From Coloured Petri Nets to Object Petri Nets.
In G. D. Michelis and M. Diaz, editors,Applications and
Theory of Petri Nets 1995, 16th International Conference,
Turin, Italy, LNCS 935. Springer Verlag, June 1995.

[22] C. Lindemann.Performance Modelling with Deterministic
and Stochastic Petri Nets. John Wiley & Son, 1998.

[23] C. Maier and D. Moldt. Object Colored Petri Nets - a For-
mal Technique for Object Oriented Modelling. Workshop
PNSE’97, Hamburg, Germany, Sept. 1997.

[24] B. Meyer.Object-Oriented Software Construction. Prentice
Hall, 1997. 2nd edition.

[25] O. Nierstrasz. Regular Types for Active Objects. In O. Nier-
strasz and D. Tsichritzis, editors,Object-Oriented Software
Composition, pages 99–121. Prentice Hall, 1995.

[26] Object Management Group.The Common Object Request
Broker: Architecture and Specification, CORBA/IIOP 2.2
Specification, Feb. 1998. Revision 2.2: OMG Technical
Document formal/98-07-01.

[27] Rational Software Corporation.Unified Modeling Language
1.1, Sept. 1997.

[28] T. Reenskaug.Working with Objects: The OOram Software
Engineering Method. Addison-Wesley/Manning, 1996.

[29] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen.Object-Oriented Modeling and Design. Pren-
tice Hall, 1991.

[30] M. Shaw and D. Garlan.Software Architecture: Perspectives
on an emerging Discipline. Prentice Hall, 1996.

[31] C. Sibertin-Blanc. Cooperative NETs. In R. Valette, editor,
Applications and Theory of Petri Nets 1994, 15th Interna-
tional Conference, Zaragoza, Spain, LNCS 815, pages 471–
490. Springer Verlag, June 1994.

[32] N. Stankovic and K. Zhang. Towards Visual Develop-
ment of Message-Passing Programs. InProc. VL’97 - 13th
IEEE Symposium on Visual Languages, Capri, Italy, 23-26
September, 1997, IEEE Computer Society Press, Los Alami-
tos, USA, pages 144–151, 1997.

[33] M. M. Usher and D. Jackson. A Concurrent Visual Lan-
guage Based on Petri Nets. In1998 IEEE Symposium on
Visual Languages (VL 98), Halifax, Nova Scotia, Canada,
Sept. 1998.

[34] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.Designing
Object-Oriented Software. Prentice Hall, 1990.

[35] G. Wirtz. Modularization and Process Replication in a Vi-
sual Parallel Programming Language. In A. L. Ambler and
T. D. Kimura, editors,Proc. Int. Symp. on Visual Program-
ming, St. Louis, USA, pages 72–79. IEEE, Sept. 1994.

[36] G. Wirtz, J. Graf, and H. Giese. Ruling the Behavior of
Distributed Software Components. In H. R. Arabnia, ed-
itor, Proc. Int. Conf. on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’97), Las Vegas,
Nevada, July 1997.

8

