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Abstract

Fueled by the massive adoption of Cloud services, the CO2 emissions of the Infor-
mation and Communication Technology (ICT) systems are rapidly increasing. Overall
service centers and networks account for 2-4% of global CO2 emissions and it is ex-
pected they can reach up to 10% in 5-10 years. Service centers and communication
networks have been managed independently so far, but the new generation of Cloud
systems can be based on a strict integration of service centers and networking in-
frastructures. Moreover, geographically-distributed service centers are being widely
adopted to keep cloud services close to end users and to guarantee high performance.
The geographical distribution of the computing facilities offers many opportunities
for optimizing energy consumption and costs by means of a clever distribution of the
computational workload exploiting different availability of renewable energy sources,
but also different time zones and hourly energy pricing. Energy and cost savings can
be pursued by dynamically allocating computing resources to applications at a global
level, while communication networks allow to assign flexibly load requests and to
move data.

Even if in the last years a quite large research effort has been devoted to the en-
ergy efficiency of service centers and communication networks, limited work has been
done for exploring the opportunities of integrated approaches able to exploit possible
synergies between geographically distributed service centers and networks for access-
ing and interconnecting them. In this paper we propose an optimization framework
able to jointly manage the use of brown and green energy in an integrated system
and to guarantee quality requirements. We propose an efficient and accurate problem
formulation that can be solved for real-size instances in few minutes to optimality.
Numerical results, on a set of randomly generated instances and a case study repre-
sentative of a large Cloud provider, show that the availability of green energy have a
big impact on optimal energy management policies and that the contribution of the
network is far from being negligible.

Keywords: Green IT; Cloud service; Energy management; Green Networking; Opti-
mization; Mathematical Programming; Renewable energy.
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1 Introduction

The debate on climate change and carbon dioxide emission reduction is fostering the

development of new “green policies” aimed at decreasing the environmental impact of

human activities. How to contrast global warming and how to enhance energy efficiency

have been put on top of the list of the world’s global challenges. ICT plays a key role

in this greening process. Since the beginning, ICT applications have been considered as

part of the solution as they can greatly improve the environmental performance of all the

other sectors of the world economy. More recently, the awareness of the potential impact

of the carbon emissions of the ICT sector itself has rapidly increased.

Overall, the combination of the energy consumption of service centers and commu-

nication networks accounts for 2-4% of global CO2 emissions (comparable, e.g., to the

emissions due to the global air traffic) and it is projected to reach up to 10% in 5-10 years,

fueled by the expected massive adoption of Cloud computing [1, 2]. Service centers in-

vestment grew by 22.1% during 2012 and it is expected it will further grow by another

14.5% in 2013 [1]. So, one of the main challenges for Cloud computing is to be able to

reduce its carbon and energy footprints, while keeping up with the high growth rate of

storage, server and communication infrastructures.

Even if computing and networking components of the system have been designed and

managed quite independently so far, the current trend is to have them more strongly in-

tegrated for improving performance and efficiency of Cloud services offered to end users

[3]. The integration of computing and networking components into a new generation of

Cloud systems can be used not only to provide service flexibility to end users, but also

to manage in a flexible way resources available in geographically-distributed computing

centers and in the network interconnecting them.

A key enabler of Cloud/network cooperation is the use of geographically distributed

service centers. Distributed Cloud service provisioning allows to better balance the traf-
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fic/computing workload and to bring computing and storage services closer to the end

users, for a better application experience [4]. Moreover, from an energy point of view,

having geographically distributed service centers allows Cloud providers to optimize en-

ergy consumption by exploiting load variations and energy cost variations over time in

different locations.

The level of flexibility in the use of resources in different service centers depends on

the application domains and basically comes from the geographic distribution of virtual

machines hosting service applications, the use of dynamic geographically load redirect

mechanisms, and the intelligent use of storage systems with data partitioning and replica-

tion techniques. This flexibility in service centers management also has a relevant impact

on the communication network mainly for two reasons. First, since the service requests

from users are delivered through an “access network” to service centers hosting the vir-

tual machines, moving dynamically the workload among service centers can completely

change the traffic pattern observed by the network. Second, an “interconnection net-

work” is used to internally connect service centers and redirect end-user request or even

move virtual machines and data with, again, a non-negligible impact on the traffic load

when reconfiguration decisions are taken by the Cloud management system. Access and

interconnection networks can be actually implemented in several different ways as pri-

vate Intranets or using the public Internet, depending on the Cloud provider policies and

the specific application domains. In any case, there is a large number of possible inter-

action models among telecommunications and Cloud provider that regulate their service

agreements from a technical and economical perspective.

The main contribution of this paper is to explore the possibility of jointly and opti-

mally managing service centers and the network connecting them, with the aim of re-

ducing the Cloud energy cost and consumption. We develop an optimization framework

that is able to show the potential savings that can be achieved with the joint management
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and to point out the relevant parameters that impact on the overall system performance.

The resource utilization and load allocation scheduling is performed on a daily basis as-

suming a central decision point (one of the service centers) and the availability of traffic

patterns for different time periods. However, since the computational time is quite small

(order of a few minutes), the time period lenght can be decreased, and the granularity can

be finer, so as to follow better unpredictable traffic variation.

The approach proposed is based on a MILP (Mixed Integer Linear Programming)

model which is solved to optimality with a state-of-the-art solver. The model assumes

a Cloud service provider adopting the PaaS (Platform as a Service) approach and op-

timizes the load allocation to a set of geographically distributed service centers (SCs)

where virtual machines (VMs) are assigned to physical servers in order to serve requests

belonging to different classes. The goal is minimize the total energy cost considering the

time-varying nature of energy costs and the availability of green energy at different lo-

cations. The traffic can be routed to SCs using a geographical network whose capacity

constraints and energy consumption are accounted for. We formally prove that the prob-

lem is NP-hard since it is equivalent to a Set Covering problem.

We present a set of numerical results on a realistic case study that considers the real

worldwide geographical distribution of SCs of a Cloud provider and the variations of

energy cost and green energy availability in different world regions. Moreover, we show

some results to characterize the scalability of the optimization framework proposed and

the sensitivity to workload and green energy prediction errors.

Even if a large literature on the improvement of energy efficiency of service centers

(see e.g. [5]) and communication networks (see e.g. [6]) exists, very few studies have

considered so far the cooperation between Cloud and network providers for a joint energy

management, and, to the best of our knowledge, no one has proposed a joint optimization

framework able to exploit low energy modes in physical servers and networking devices
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(see Section 6 for a detailed analysis of related work). From a practical point of view, we

assume that the economic advantages coming from the energy savings can be managed

through service agreements between Cloud and network operators taking into account

the contributions of different system components that can be quantified by the proposed

model.

The paper is organized as follows. Section 2 describes the integrated approach and

the problem addressed. Section 3 describes the proposed MILP model. Section 4 reports

on the experimental tests and the obtained results. Section 6 overviews other literature

approaches. Finally, conclusions are drawn in Section 7.

2 The integrated framework for sustainable Clouds

In this work we consider a PaaS provider operating a virtualized service infrastructure

comprising multiple Service Centers (SCs) distributed over multiple physical sites. This

scenario is frequent nowadays. Indeed, Cloud providers own multiple geographically

distributed SCs, each including thousands of physical servers. For example, Amazon of-

fers EC2 services in nine worldwide regions (located in USA, South America, Europe,

Australia, and Asia) and each region is further dispersed in different availability zones

[7]. We denote withN the set of SCs. Physical sites are connected by a wide area network

operated by a partner network provider (see Figure 1). The network is modeled consid-

ering virtual paths connecting the SCs (a full mesh of end-to-end paths is assumed).

The PaaS provider supports the execution of multiple transactional services, each rep-

resenting a different customer application. For the sake of simplicity, we assume that each

VM hosts a single service, and multiple VMs implementing the same service can be run

in parallel on different servers.

The hosted services can be heterogeneous with respect to computing demands, work-

load intensities, and bandwidth requirements. Services with different computing and
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workload profiles are categorized into independent request classes, where the system

overall serves a set K of request classes.

Given the application workload profiles, the aim is to decide which SC serves each

request, taking into account performance and energy as primary factors. As SC energy

consumption is considered, the application workload can be forwarded from one SC to

another so as to exploit cheaper or green energy where it is available. However, this has

an impact on the network energy consumption. The overall problem consists in assign-

ing application workload to service centers in order to jointly minimize SC and network

energy costs.

The problem is solved on a daily basis: one day in advance, a prediction of the ap-

plication workload is considered (as in [8, 9, 10, 11]) and requests are assigned to service

centers for the next 24 hours. The considered 24 hours horizon is discretized and divided

into time bands. We denote with T the set of time bands. Each SC is characterized by a

specific traffic profile for each time band: the local arrival rate for requests of class k ∈ K

at the SC i ∈ N at time t ∈ T is denoted with λt
ik and we assume that the workload profile

is periodic [12] 1.

Furthermore, as in [13, 14, 15] we assume that the SCs implement a distributed file

system and data are replicated in multiple geographical locations for availability reasons.

As in [13, 14, 15] we assume that the SCs implement a distributed file system and data

are replicated in multiple geographical locations for availability reasons. Each SC has a

set of different types of VMs L that can serve incoming requests. Among the many re-

sources, we focus on the CPU and bandwidth as representative resources for the resource

allocation problem, consistently with [16, 17, 18, 19, 20]. Different request classes need

1It is worth noting that the computational times, discussed in Section 4, are such that even a finer gran-
ularity planning can be performed with our model. Besides, it is possible to solve the model several times
during the day, thus taking into account unexpected traffic variations that can modify the predicted 24
hours profile. However, the analysis of more fine grained time scales and their interrelationship with the
one day ahead planning is out of the scope of this paper.
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Figure 1: Reference Cloud System Architecture.

different kinds of VMs and have different bandwidth and CPU requirements. Three pa-

rameters are used to model such features. Parameter mkl is equal to 1 if request of class

k can be served by a VM of type l, parameter bk represents the bandwidth requirement

of class k requests, while Dk represents the overall CPU demanding time [21] for serving

a request of class k on a VM of capacity 1. VM and SC have capacity limits: Pil is the

capacity of a VM of type l at the SC i, while Ci is the overall SC i computing capacity.

Energy consumption varies for different VMs. Furthermore, switching on or off a

VM with respect to the previous time band also requires a certain amount of energy.

Parameter αil denotes the energy consumption for running a type l VM in SC i at peak

load (in kWh), while ηil and θil are the energy consumption for turning on and off a VM,

respectively.

Concerning network parameters, we assume that the energy consumption of Cloud

service on an end-to-end path is zero if there is no traffic, while in the presence of traffic

it has a fixed component and a load proportional component. In order, to better estimate
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these components we consider the number of physical hops along the path and the energy

consumption of routers interconnecting them (obviously the mapping of paths to physical

links and routers depends on the network operator policies). We consider that the number

of routers Rij in the path connecting each pair of SCs i and j is given, which affects the

energy consumption of connecting i to j. Furthermore, a maximum amount of traffic Qij

can be sent from i to j. In fact a maximum bandwidth is available on the links belonging to

the path connecting i and j, which cannot handle additional traffic when at full capacity.

The energy consumption, in terms of kWh, for running and keeping idle a single router

are denoted with γij and δij, respectively. Switching on and off a path consumes energy

as well: τij and ξij. For each unit of energy consumed by the path connecting i to j at time

t a cost f t
ij must be paid.

In order to take into account service centers cooling energy costs, power distribution

and uninterruptible power supply efficiency, we consider the Power Usage Effectiveness

for SC i, denoted by ρi. The Power Usage Effectiveness is defined as the total service

center power divided by the IT equipment power.

Renewable energy is considered as well, with cost and availability depending on the

sites. We denote with ct
i and gt

i the cost for brown and green energy at each SC in the

time band t, respectively. Γt
i is the renewable energy available at SC i at time t. As for the

application workload, green energy sources can be evaluated by relying on prediction

techniques [22, 23, 24].

The overall problem consists of assigning request classes to service centers, so as to

guarantee that all requests are served by a suitable VM by minimizing SC and network

energy costs, while not exceeding service centers and network capacities. The problem

solution will provide the fraction of incoming workload served at each SC and redirected

by the load managers to other SCs (see Figure 1), and the number of VMs at each SC

to be allocated to each application. The main idea behind the approach is that requests
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coming at SC i should be forwarded to another SC if the requests redirect is more efficient

in terms of energy costs than serving the requests locally. Note that, in another SC energy

costs might be lower thanks to time zone differences.

The problem parameters we will use in this paper are summarized in Table 1. We

assume to solve the problem on a daily basis at a central decision point (any SC). In

alternative the solution can be also computed in parallel at different SCs by sharing the

incoming workload prediction without adding a significant overhead in the system (the

information is shared once a day).

3 An optimization approach for energy management

The load management problem is formulated as a Mixed Integer Linear Programming

(MILP) optimization model which takes into account many other important features, such

as energy consumption, bandwidth and capacity constraints, and green energy genera-

tion.

3.1 Variables

The problem can be formulated using several sets of variables. Continuous non negative

variable xt
ijkl represents the arrival rate of requests of class k at SC i, which are served

in SC j by a VM of type l, at time t. In other terms, xt
ijkl variables represent the optimal

configuration of request forwarding or in-site serving of the Cloud system in the time

interval t. Note that xt
iikl indicates the request rate that is originated and served locally,

i.e., ∑l∈L xt
iikl ≤ λt

ik and ∑l∈L xt
iikl = λt

ik if requests are not redirected.

Integer variable wt
il represents the number of VMs of type l used in SC i at time band

t. Two integer variables represent the number of VMs of type l to be turned on (and off)

in each SC i at time band t: wt
il (and respectively, wt

il).
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N set of Service Centers
T set of time bands
L set of VM types
K set of request classes
λt

ik Local incoming workload arrival rate for request class k
at SC i at time band t (Req/hour)

mkl VM requirement parameter: equal to 1 if class k ∈ K can be served by
type l VM, 0 otherwise

bk bandwidth requirement for request class k
Dk demanding time for serving request class k on a VM of capacity 1
Pil capacity of a VM of type l at SC i
Ci SC i overall computing capacity
U average VMs utilization
αil energy consumption for running a type l VM in SC i
ηil energy consumption for switching on a type l VM in SC i
θil energy consumption for switching off a type l VM in SC i
ρi PUE value for SC i
ct

i cost for energy in SC i at time band t
Rij total number of routers in the link (i, j)
Qij maximum bandwidth available on path (i, j)
γij energy consumption for a router in path (i, j)
δij energy consumption for a router in path (i, j) in idle state
τij energy consumption for switching on a router in path (i, j)
ξij energy consumption for switching off a router in path (i, j)
f t
ij cost for energy in path (i, j)

w0
il number of active VMs of type l in SC i at time 0

z0
ij link (i, j) status at time 0

Γt
i green energy available in SC i at time band t

gt
i cost for green energy in SC i at time band t

Table 1: Sets and parameters.

10



Other variables are associated to the network: zt
ij is a binary variable which is equal to

1 if the path connecting i to j is active at time t, 0 otherwise. Similarly to SCs, zt
ij and zt

ij

indicate whether each path has to be turned off with respect to time t− 1.

Finally, continuous variable yt
i models the amount of green energy used in SC i at time

t. The decision variables are summarized in Table 2.

xt
ijkl Arrival rate for class k request redirected from SC i to SC j

served with a type l VM
wt

il Number of type l VMs running in SC i at time band t
wt

il Number of VMs of type l turned on with respect
to time t− 1 in SC i

wt
il Number of VMs of type l turned off with respect

to time t− 1 in SC i
zt

ij Whether the link (i, j) is active in time band t (binary)
zt

ij Whether the link (i, j) has to be turned on with respect
to time t− 1 (binary)

zt
ij Whether the link (i, j) has to be turned off with respect

to time t− 1 (binary)
yt

i Green energy used in SC i at time t

Table 2: Decision Variables.

3.2 Objective function

As mentioned above, the aim of the problem is to reduce energy cost along the consid-

ered time horizon and to exploit green energy where available. The following objective

function accounts for these goals.

min ∑
t∈T

∑
i∈N

{
ct

i

[
ρi ∑

l∈L
(αilwt

il + ηilwt
il + θilwt

il)− yt
i

]
+ gt

i y
t
i

}

+ ∑
t∈T

∑
i,j∈N

f t
ijRij

[
δijzt

ij + τijzt
ij + ξijzt

ij + (γij − δij)
∑k∈K bk ∑l∈L xt

ijkl

Qij

] (1)
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The total energy required at SC i at the time band t is represented by the term

ρi ∑l∈L(αilwt
il + ηilwt

il + θilwt
il), namely the sum of the energy needed to keep the VMs

running and the energy needed to switch them on and off. The cost for the total energy

is split into green and brown energy costs. The amount of green energy used is simply

given by the variable yt
i , while the brown energy is the difference between the total energy

needed in the SC and the green energy actually used.

Concerning the network, the total amount of energy cost to be minimized is com-

puted summing each path energy cost, which depends on the cost of keeping the routers

working and the cost of turning on and off the routers. Besides, the cost of the energy

consumed by the the routers is considered, which is proportional to the total bandwidth

in use, namely the fraction with respect to the total bandwidth available. Network is as-

sumed not to use green energy. The energy costs of SC (first term of the objective function)

and network (second term) are jointly minimized.

3.3 Constraints

Several constraints are needed to guarantee a proper description of the service centers

and of the network behavior.

3.3.1 Workload assignment constraints

First of all, we need to guarantee that all the requests are served, either by the SC at which

they occur or by another to which they are forwarded. Further, they must be served by

a suitable class of VM. The following constraints guarantee that these requirements are

satisified.

∑
l∈L

∑
j∈N

xt
ijkl = λt

ik ∀ i ∈ N , ∀k ∈ K, ∀t ∈ T (2)

xt
ijkl ≤ λt

ikmkl ∀i, j ∈ N , ∀k ∈ K, ∀l ∈ L, ∀t ∈ T (3)
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In details, constraints (2) make sure that all the incoming traffic is served by any of the SC.

Equations (3) ensure that each type of request in each SC is served by the suitable type of

VM.

3.3.2 Service center capacity constraints

The following capacity constraints are added to ensure that service centers capacity is not

exceeded.

wt
il ≥ ∑

j∈N
∑

k∈K

Dkxt
jikl

U
∀i ∈ N , ∀l ∈ L, ∀t ∈ T (4)

∑
l∈L

Pilwt
il ≤ Ci ∀i ∈ N (5)

Constraints (4) determines the number of VMs of type l required to serve the overall

incoming workload at site i. As in other literature approaches [8, 25] and currently im-

plemented by Cloud providers (see, e.g., AWS Elastic Beanstalk [26]), these constraints

force a suitable number of VMs to be active in i in time slot t, guaranteeing that the aver-

age VM utilization is less or equal to a threshold U. Note that ∑j∈N ∑k∈K
Dkxt

jikl

wt
il

equals to

VMs utilization under workload sharing. In practice U is usually set around 60%. Since

wt
il must be integer while the right hand side may be not, the constraints may not be tight,

and therefore inequalities are needed. Finally, constraints (5) ensure that the number of

VMs running at SC i in time t is lower than the available resources.
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3.3.3 Network constraints

A network description must be included in the model, guaranteeing that the network

capacity is not exceeded and that the network energy consumption is properly computed.

∑
k∈K

bk ∑
l∈L

xt
ijkl ≤ Qijzt

ij ∀i, j ∈ N , ∀t ∈ T (6)

zt
ij = zt

ji ∀i, j ∈ N , ∀t ∈ T (7)

Formula ∑k∈K bk ∑l∈L xt
ijkl compute the portion of link bandwidth used for both di-

rections of the traffic between SC i to SC j, thus determining the bandwidth used on each

path of the network in each time slot. Constraints (6) ensure that traffic on each path does

not exceed the available capacity and force zt
ij to be one if the amount of used bandwidth

on (i, j) is strictly positive, thus determining the active paths at time t.

Furthermore, constraints (7) guarantee that if a path is active in one direction, it is also

active in the other, as paths are bidirectional.

Note that parameters Qij may not be the actual bandwidth along the path between

i and j, but a reduced value that can guarantee that the capacity available for traffic

load is just a fraction of the total one. This is one of the typical traffic engineering in-

struments adopted by network operators to control the quality of service experienced by

traffic flows.

3.3.4 Time continuity constraints

VMs and paths switching on and off must be computed along the considered time hori-

zon. The following constraints represent the relations between consecutive time bands.

14



wt
il ≥ wt

il − wt−1
il ∀i ∈ N , ∀l ∈ L, ∀t ∈ T (8)

wt
il ≥ wt−1

il − wt
il ∀i ∈ N , ∀l ∈ L, ∀t ∈ T (9)

zt
il ≥ zt

il − zt−1
il ∀i ∈ N , ∀l ∈ L, ∀t ∈ T (10)

zt
il ≥ zt−1

il − zt
il ∀i ∈ N , ∀l ∈ L, ∀t ∈ T (11)

Concerning SCs, (8) and (9) identify how many VMs have to be switched on or off on

with respect to time band t− 1. Concerning the network, equations (10) and (11) define

which paths have to be turned on or switched to idle mode with respect to the previous

time band.

3.3.5 Green energy

The following constraints concerns the green energy consumed.

yt
i ≤ ρi

L

∑
l=1

(
αilwt

il + ηilwt
il − θilwt

il
)

∀i ∈ N , ∀t ∈ T (12)

yt
i ≤ Γt

i ∀i ∈ N , ∀t ∈ T (13)

Equation (12) ensures that the green energy used in each SC does not exceed the total

energy needed. Equations (13) guarantee that the availability of green energy sources in

each SC is not exceeded. The lower cost of green energy (we assume gt
i < ct

i for all i and t)

forces the optimal solution to prefer those SCs which have the possibility to exploit green

energy produced in-site, and to use all the green energy available in a site before starting

to use brown energy. Therefore, requests will be forwarded to those sites where green

energy is available, provided that the network cost is lower than the savings that would

be obtained.
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3.3.6 Domain constrains

Finally, the model is completed by defining the variables domains.

xt
ijkl ∈ R+ ∀i, j ∈ N , ∀k ∈ K, ∀l ∈ L, ∀t ∈ T (14)

wt
il, wt

il, wt
il ∈N ∀i ∈ N , ∀l ∈ L, ∀t ∈ T (15)

zt
ij, zt

ij, zt
il ∈ {0, 1} ∀i, j ∈ N , ∀t ∈ T (16)

yt
i ∈ R+ ∀i ∈ N , ∀t ∈ T (17)

In Appendix B we show that this probelm is NP-hard since it is equivalent to an Set

Covering Problem.

4 Experimental analysis

Our resource management model has been evaluated under a variety of systems and

workload configurations. Section 4.1 presents the settings for our experiments, while

Section 4.2 reports on the scalability results we achieved while solving our models with

commercial MILP solvers. Finally, Section 4.3 presents a cost-benefit evaluation of our so-

lution, which is compared to the case where resource allocation is performed locally and

independently at each SC without workload redirection and green energy is not available.

4.1 Experimental settings

Our approach is evaluated considering a large set of randomly generated instances. The

model parameters were randomly generated uniformly in the ranges reported in Table 3.

The number of service centers varies between 9 and 36 considering a world wide dis-

tribution, while the number of request classes varies between 120 and 600. In particular

SCs are located in four macro-regions: West USA, East USA, Europe, and Asia, where
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most of the SCs belonging to each area have the same time band. In order to evaluate the

impact of interaction among different geographical areas, each instance includes at least

one SC in several macro regions. SCs location has an impact on the energy costs and on

the availability of green energy sources. This latter also depends on the size of the SC

if solar energy is considered. According to [27] we consider SCs with size in the range

300-10,000sqm. Furthermore, the overhead of the cooling system is included in energy

costs by considering service centers PUE according to the values reported in [2].

For what concerns applications incoming workload, we consider 24 time bands and

we have built synthetic workloads from the trace of requests registered at the Web site

of a large University in Italy. The trace contains the number of sessions registered over

100 physical servers for a one year period in 2006, on a hourly basis. Realistic workloads

are built assuming that the request arrivals follow non-homogeneous Poisson processes

and extracting the request traces corresponding to the days with the highest workloads

experienced during the observation periods. Some noise is also added, as in [28, 29, 11].

Figure 2 shows a representative instance of the normalized local arrival rate of a given

class.

In order to vary also the applications peak workload we consider the total number

of Internet users [30] for each world region where SCs are located and set the λt
ik peak

values proportionally to this number. Overall, the peak values vary between 100 and

1000 req/sec.

We considered 9 types of VMs varying their capacity in the range between 1 and 20,

according to current IaaS/PaaS provider offers [7, 31].

The computing performance parameters of the applications have been randomly gen-

erated uniformly in the ranges reported in Table 3 as in [32, 29, 11, 28]. Applications net-

work requirements have been generated considering the SPECWeb2009 industry bench-

mark results [33].
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Figure 2: Normalized local arrival rate over a day (UTC+1).

The switching energy consumption of VMs has been evaluated as in [34], while VMs

power consumption has been generated according to the results reported for the SPECVint

industry benchmark [35], considering the peak power consumption of the reference phys-

ical servers and averaging the power consumption among the VMs running during a test.

The overall SC capacity has been determined varying the number of physical servers

between 5,000 and 16,000 and assuming a 1:8 ratio for the physical to virtual resources

assignment (i.e., 1 physical core is assigned to 8 virtual cores of equal capacity) according

to SPECVint recent results [35].

For what concerns the wide area network connecting remote SCs, paths capacity varies

between 0.5 and 1 Gbps. A typical path connecting SCs is build up both by physical lines

(such as optical fibers) and network components (such as routers and switches). Thus,

we estimate the energy consumption of each path as the energy consumed by its routers,

proportionally to the bandwidth in use. We have estimated the number of routers con-

necting different world regions through the traceroute application. Results (reported in

Tables 11 of the Appendix) show that, the number of hops within the same region is often

one, while the largest number (18), is achieved when connecting Europe with West USA
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and Asia with East USA.

Due to the difficulty in obtaining detailed energy consumption profiles of commercial

routers and the heterogeneity of devices used by network providers, we have considered

a simplified scenario taking into account a single reference router. The model considered

is the Juniper E320 [36], which is quite popular and whose power parameters are publicly

available and reported in Table 3. Obviously, the model proposed is general and results

can be easily extended to other router energy profiles.

Finally, from the cost point of view, we assumed that for each path (i, j) energy cost is

equal to the average energy cost between service centers i and j.

The cost of energy per MWh varies between 10 and 65 Euro/MWh. Energy costs data

have been obtained by considering several energy Market Managers responsible for those

country in which SCs are located, taking into account also the energy price variability

depending on the time of the day. The list of energy Market Managers we have considered

is reported in Table 12 of the Appendix; for China, where there is no data disclosure on

energy prices we have considered an unofficial source [37]. Figure 3 shows the energy

cost trend in the four geographical macro-regions with respect to time zone UTC+1.

Figure 3: Service centers energy cost during each time band (UTC+1).

Regarding green energies, we have considered a subset of SCs able to produce green

energy or close to clean energy facilities. For example, Google and other Cloud market
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leaders have launched initiatives aiming at increasing the amount of electricity derived

from renewable sources, rather than relying on electricity produced only with coal [38]. In

[39], Google stated that energy coming from renewable sources represents the 25% of the

overall Google’s electricity use in 2010 and it is argued that this percentage could grow

up to 35% in 2012.

According to [40], [41], [42], we have derived the availability of renewable energy

sources (namely, solar, wind, and geothermal energy), in the four macro-regions. Details

are reported in Figure 4.

Figure 4: Green SCs location.

Finally, for what concerns green energy costs, we assume that energy is produced

locally within the SC, so that the only cost to be considered is the capital cost required to

realize the facilities. Consequently, parameters gt
i are set to zero.

bk [10, 210] KB Dk [0.1, 1] s αil [60, 90] Wh ηil [2, 3] Wh θil [0.28,14.11] Wh
γij 3.84 KWh δij 0.768 KWh τij 0.128 KWh ξij 0.128 KWh ρi [1.2, 1.7]

Table 3: Performance and Energy parameters.
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4.2 Algorithms Performance

In order to evaluate the scalability of commercial MILP solvers in dealing with our opti-

mization model, we performed a large set of experiments. All tests were run on an Intel

Nehalem dual socket quad-core CPUs @2.4 GHz with 24 GB of RAM running Ubuntu

Linux 2011.4. CPLEX 12.2 was use as MILP optimization solver [43]. CPLEX was installed

within a VirtualBox VM running Ubuntu Linux 2011.4 with 8 physical cores dedicated

and 20 GB of memory reserved.

We generated four sets of randomly generated instances. The rational was to include

several time zones in the analysis and to be representative of real SCs location around the

globe according to the main Cloud providers practice (see also the following section).

In the first set S1 the service centers number and location is fixed in the four macro-

regions, namely West America, East America, Europe, Asia, and the scalability of the

solver varying the number of classes is investigated. The set S2, vice versa, investigates

the scalability of our approach varying the number of SCs in East America and Europe,

while keeping constant the number of classes. Finally, in sets S3 and S4 the number of

SCs and the number of classes are jointly varied by considering three (i.e., West America,

East America and Asia) and the four macro-regions.

Table 4 reports the average optimization time required by CPLEX. The average values

reported in this Section have always been computed by considering 35 instances with the

same size. Results show that CPLEX is very efficient and can solve problem instances

up to 600 classes and 25 SCs in about seven minutes. The size of the solved instances is

limited by the available memory of the hosting VirtualBox VM.

Overall, our approach is suitable for the one day ahead planning. Besides, it could be

applied to solve the problem several times during one day, so as to exploit updated data.
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Test Set |N | |K| Exe Time (s)
S1 11 150 28.40

11 300 69.29
11 450 90.20
11 600 135.63

S2 10 300 58.10
15 300 124.84
20 300 177.46
25 300 385.29

S3 9 120 15.37
17 180 38.60
24 300 115.51

S4 11 150 28.29
19 300 88.66

Table 4: CPLEX solver execution time

4.3 A Case Study

In this section we perform a cost-benefit evaluation of our solution with respect to a base

scenario in which the system cannot exploit the network infrastructure to move requests

between sites, which is the approach currently used for Cloud resource allocation. Anal-

yses evaluate the costs savings that can be achieved through load redirection, exploiting

energy costs variability and green energy availability in multiple locations.

Furthermore, we also evaluate the greenhouse gas emission reduction with respect to

a brown scenario where no green energy is available. CO2 emission has been computed

through the U.S. Environmental Protection Agency web tool [44].

In the following, we consider a case study inspired by the Google infrastucture where

we also varied the number of searches to be performed per day. Although Google tends to

be quite secretive about its SCs technology, the geographical location of its SCs is known.

Google owns 36 SCs spread all over the world [45], in order to have a huge amount

of computational resources to satisfy the tens of billions of user requests per day. SCs

have been setup near large urban areas close to the end-users in order to reduce network

latency. Figure 13 and Table 13 in Appendix details where SCs are placed.

For what concerns SCs capacity, since no specific data is available but only aggregated

values have been undiscolsed [46], we assume that the servers are almost spread uni-
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formly among SCs (a gaussian random deviation from the mean for each SC is added).

For the PUE value, [47] reports an average value close to 1.8. However, considering

SCs geographic location, we can adopt a lower value of PUE for those SCs placed in

regions with suitable climatic conditions, like the ones placed in North Europe. In fact,

in most moderate climates with temperatures lower than 13◦C for 3,000 or more hours

per year, new cooling techniques based on free air can eliminate the majority of chillers

runtime. For example, the SC in Belgium eliminates chillers, running on free cooling 100%

of the time, and reaching in this way a PUE value close to 1.2 [47]. Figure 14 in Appendix

shows the PUE value assumed for each SC.

Finally, in order to estimate the total amount of green energy produced by each SC

during a single day (parameters Γt
i), we assuemed that the green energy was proportional

to the SC area. The values we used are reported in the Appendix by Figure 15, while

details on SC location and time zone are reported in Table 13.

Figure 5: Overall cost comparison with respect to the base scenario.

Figure 5 shows the cost savings that can be achieved by our solution with respect to the
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base scenario varying the number of searches to be performed per day. The savings are

very significant, ranging between 40% and 56% for the lightest loaded instance. This can

be expected, since only a small set of SCs can rely on green energy. Our model forwards

as many requests as possible to these sites, until the VMs utilization threshold is reached

or the upstream bandwidth is saturated. Additional requests cannot be served and need

to be routed elsewhere, possibly to a non green-enabled SC. Therefore, saving are smaller

when the overall workload is higher. This argument is confirmed also by the data re-

ported in Figures 6 and 7, which show how the energy consumption is split among the

network and the SCs. Whilst the network energy consumption fraction is almost constant

and around 15-20%, the test cases with a larger number of daily requests are characterized

by a higher usage of brown energy. As it can be expected, with a larger amount of green

energy available, a Cloud provider would experience not only savings (due to the lower

cost assumed for green energy), but also massive reduction of CO2 emission, as will be

further discussed in the following. It is worth noticing that for the heaviest load instance

the base scenario can not find a feasible solution. Hence, the requests redirection allows

also to exploit remote SCs available capacity when local resources are saturated.

Figure 6: Energy split for our model.

While our approach can achieve lower cost with respect to the base scenario, it may
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Figure 7: Percentage energy split for our model.

cause a larger energy consumption. As shown in Figure 8, this is due to the network

transfers and routers crossed along the path between two sites. However, our model

especially fosters the maximum possible amount of “clean” energy usage, unlike the base

scenario, which is limited in relying on local energy only. This consideration is confirmed

by Figure 9, which reports the percentage of green energy used in our model and in the

base scenario. The plot clearly shows how our model performs better on all accounts, i.e.,

it is able to exploit as much green energy as possible by forwarding the requests to the

green SCs.

Furthermore, as a representative example, Figure 10 shows the number of active servers

for each time band, distinguishing the four macro-regions where SCs are located, while

serving 30 billion requests a day. As it could be expected, the trend of each macro-region

appears opposite to the energy cost, presented in Figure 3: the number of active servers

increases when the energy cost decreases, and vice versa. For example, requests are exe-

cuted in Asia only in the first time bands, where in fact the energy cost has a minimum,

while in most of the other time bands the majority of the requests are forwarded to East

and West USA, since the energy cost appears always lower with respect to the other ar-

eas. However, since also the network costs and the network and SC capacities have to be
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Figure 8: Energy consumption comparison with the base scenario.

Figure 9: Percentage of green energy usage.
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taken into account, a small amount of requests is served locally also in areas where the

energy cost is not optimal.

Figure 10: Number of active servers for each time band (UTC+1).

An interesting comparison can also be made between our model and the brown sce-

nario (see Figure 11, where the overall energy consumption is reported). When the work-

load is light, the energy consumption of our model is higher, while being almost equal in

the other cases. It has to be reminded that, for our model, more than 50% of the energy

consumed in lightly loaded instances comes from green sources, thus the CO2 emission

results to be lower, as will be discussed in the following. The main explanation for a

higher energy consumption is that, considering in particular the 2 billion requests per

day scenario, our model consumes more energy for the network, since it has to forward

more requests (in percentage) to remote SCs to exploit green energy sources. In the other

instances, this problem is marginal, since all the green energy is saturated. Requests are

forwarded according to the same criteria as the brown model, thus consuming the same

amount of energy.

Finally, Figure 12 reports the CO2 emissions of the brown scenario and of our model.

The maximum absolute reduction (around 25 tons of CO2) occurs in the 40 billion re-

quests per day instance. Our model is able to reduce up to 57% the environment pollu-

tion derived from greenhouse gases for the lighest loaded scenario, while this percentage
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Figure 11: Comparison of the energy consumption of our model with the
brown scenario.

reduces with the workload, advocating a larger adoption of green energy sources for the

largest Cloud providers.

Figure 12: CO2 gas emissions comparison with respect to the brown scenario.

4.4 Sensitivity analysis for the Case Study

We performed some tests to evaluate the impact on the problem solution of an error in

the prediction of the workload or the amount of green energy produced.

We consider a total workload around 2 billions requests/day (λ∗), which corresponds

to the worst case scenario for the green energy sensitivity (recall from Figure 9 that most
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of the energy consumed by SCs is green in that case).

Let us first consider the impact of a variation of workload estimate. As in [29], we

solve the model cost with one hour of time limit for a traffic equal to λ∗, and we compare

it with the solution obtained within the same time limit when the amount of workload is

perturbed. Workloads of all SCs are reduced (or increased) by the same parameter ζ. For

instance, if we consider ζ = 1.1 the perturbed workload associated to SC i, time slot t and

request type k is 1.1λ∗tik . Two values of ζ are considered: 0.9 and 1.1.

The ratio between the objective function associated with the perturbed workload and

the original one shows that the variation of the workload has a small impact on objec-

tive function variation. The variation is almost linearly proportional to the perturbation.

In fact, as the number of VMs is large, it behaves almost as a continuous variable, and

therefore VMs cost varies linearly with the workload. Besides, the link switching costs

are the only stepwise costs, and they are usually smaller than the VMs costs. Therefore,

the variation of the objective function depends in a linear way on the workload variation,

unless one link is switched on or off when the workload changes.

We also considered the case where workloads are perturbed independently in a ran-

dom way, with their value uniform in the interval +/− 10% around the predicted level.

We compared the optimal solution value obtained solving the model with the nominal

workloads and the values obtained according to the following procedure. We compute

the optimal solution with the nominal workload, then we fix the values of the routing and

network variables (i.e. the maximum traffic between any pair of service centers and the

network activation variables) and recompute the objective function considering the per-

turbed workloads. This comparison scenario corresponds to the practical case where the

load balancing between service centers is fixed according the optimal solution computed

with the predicted workloads and any unexpected variation of the workload is handled

locally in each service center reducing or increasing the local load. Results show that the
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difference is always below 4% over 100 randomly generated scenarios.

Then we evaluated the impact of an error in the prediction of green energy availabil-

ity. We consider the conservative case in which the available green energy is smaller than

the forecasted one and the percentage error is the same for all SCs provided with green

energy generation. Starting with a known solution, we reduce the amount of green en-

ergy available in each SC. Then, keeping the loads for each SC as they are in the starting

solution, we compute the increase of brown energy use, if reduced green energy available

in a SC in not enough to deal with SC load. Due to such increase, we compute the increase

in the objective function. The percentage objective function increase is reported in Table 5

for three values of percentage prediction error: it is the same for all the SCs and it is equal

to 100%, 50% and 25%.

Results show that, although we consider a very conservative case in which the predic-

tion error affects simultaneously all the SC, and green energy availability is never greater

than the forecasted value, the impact of the overall energy cost is limited.

green energy reduction % objective function increase %
100 68.98
50 41.35
25 24.00

Table 5: Impact of green availability prediction error

5 Modeling other problem features

In this Section we show how the model can be modified for taking into account more in

detail the network connecting service centers and and its characteristics such as the delay

experienced by traffic load. We also show with an example network how results differ

from those obtained with the base model.

To represent the network connecting service centers, a set of router nodesNR is added.
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Therefore, in the graph representing the network, the set of nodes is N ∪NR. The net-

work is not fully connected. It is represented by a set of linksA ⊂ (N ∪NR)× (N ∪NR).

Parameters Rij, Qij, γij, δij, τij, ξij and f t
ij, which are associated with predefined paths in the

former model, are now associated with single links.

Continuous routing variables ϕodt
ij are added to the model: φodt

ij represents the band-

width required by the requests redirected from SC o to SC d, such that o 6= d, through i

and j. Besides, variables zt
ij, zt

ij, and zt
ij are now associated with links in A instead of with

paths. The domain of variables zt
ij, zt

ij and zt
ij (16) is to be changed accordingly:

zt
ij, zt

ij, zt
il ∈ {0, 1}∀(i, j) ∈ A, ∀t ∈ T (18)

Objective function takes into account network costs, associated with links in set A:

min ∑
t∈T

∑
i∈N

{
ct

i

[
ρi ∑

l∈L
(αilwt

il + ηilwt
il + θilwt

il)− yt
i

]
+ gt

i y
t
i

}

+ ∑
t∈T

∑
(i,j)∈A

f t
ijRij

[
δijzt

ij + τijzt
ij + ξijzt

ij + (γij − δij)
∑o,d∈N ϕodt

ij

Qij

] (19)

Flow balancing constraints are added which ensure that the overall rate from o served

by d is sent on the network from o to d:

∑
(i,j)∈A

ϕodt
ij − ∑

(j,i)∈A
ϕodt

ji = 0, ∀i ∈ NR, o, d ∈ N : o 6= d (20)

∑
(i,j)∈A

ϕodt
ij − ∑

(j,i)∈A
ϕodt

ji =


∑k∈K,l∈L bkxt

odkl, i = o

−∑k∈K,l∈L bkxt
odkl, i = d

0, i 6= o, d

, ∀i ∈ N , o, d ∈ N : o 6= d (21)

Constraints (20) concern nodes belonging to NR. As such nodes are not associated
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with SC, they are neither origin nor destination of any flow. Therefore, all the flow enter-

ing in each of them must leave. Instead, constraints (21) concern SC nodes. For any two

data centers o and d, such that o 6= d, the flow, related to request type k and VM type l,

entering in node i ∈ N must be equal to the rate from o to d is i = d. As well, the flow

leaving node i must be equal to the rate redirected from o to d is i = o. If i 6= o, d, the

overall flow entering in i, associated with o and d, must leave node i. Besides, constraints

(6) and (7) must be replaced to take into account the activation of each link in A:

∑
o,d∈N

ϕodt
ij ≤ Qijzt

ij, ∀(i, j) ∈ A, ∀t ∈ T (22)

zt
ij = zt

ji, ∀(i, j) ∈ A, ∀t ∈ T (23)

The model describing not fully connected network among data center is therefore:

min (19)

s.t.

(2)–(5), (8)–(15), (20)–(23), (17), (18).

Besides the network connecting routers and service centers, other features of the prob-

lem can be modeled, such as delay, by setting suitable limits to network performances.

For instance, let us consider delay due to the network. It can be represented by assigning

a delay µij to each link (i, j) ∈ A. A maximum delay µ̄ is set by adding the following

constraints:

∑
(i,j)∈A

µij ϕ
odt
ij ≤ µ̄, ∀o, d ∈ N , ∀t ∈ T

5.1 Numerical Evaluation

To evaluate the behavior of including the network we consider a small example with a

4 service centers example, including Atlanta, Mountain View, Pleasenton and Chicago.
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DC-Montain View
DC-Pleasanton
DC-Chicago
DC-Atlanta
(Palo-Alto merged with DC-Montain View)
San-Diego
Boulder
Washington
(Atlanta merged with DC-Atlanta)
Urbana-Champaign
Ann-Arbor
Lincoln
Princeton
Ithaca
Pittsburgh
Houston
Salt-Lake-City
Seattle

Table 6: Set of nodes

Green energy is not available. We consider a network from the SNDLib [48] Library,

Nobel US. The Nobel US network has 14 nodes. We integrate the Nobel US network with

the 4 service centers. We collapse two service center nodes with two close router nodes

belonging to NR. We added the remaining two service centers, and connected each of

them to three close router nodes. Therefore the example has |NR| = 12 and |N | = 4. The

set of nodes and arcs are reported in Table 6 and 7. Each link in A has one router. All the

other parameters have been derived in the same way as for previous examples.

The model with the approximate network representation is solved to optimality in less

than one second. Instead, the full network description model is not solved to optimality

within one hour. The provided gap, computed as UB−LB
LB , where UB is the best feasible

solution found, and LB is the best relaxation found, is 3.6%.

Although the impact of network energy cost on the overall consumption is greater if

the network is fully described, the increase is balanced by a decreasing in the SC con-

sumption, resulting in a difference between objective functions for the two cases of about
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DC-Montain View San-Diego
DC-Montain View Salt-Lake-City
DC-Montain View Seattle
San-Diego Houston
San-Diego Seattle
Boulder Lincoln
Boulder Houston
Boulder Salt-Lake-City
Washington Princeton
Washington Ithaca
Washington Houston
DC-Atlanta Pittsburgh
DC-Atlanta Houston
Urbana-Champaign Lincoln
Urbana-Champaign Pittsburgh
Urbana-Champaign Seattle
Ann-Arbor Princeton
Ann-Arbor Ithaca
Ann-Arbor Salt-Lake-City
Princeton Pittsburgh
Ithaca Pittsburgh
DC-Pleasanton Seattle
DC-Pleasanton DC-Montain View
DC-Pleasanton San-Diego
DC-Chicago Ann-Arbor
DC-Chicago Pittsburgh
DC-Chicago Washington

Table 7: Set of arcs
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network DC energy consumption network energy consumption
representation overall computing switching overall fixed and switching flow
approximate 15.62 15.17 0.45 2.49 1.52 0.83

full 14.11 13.80 0.31 3.92 2.45 1.38

Table 8: Comparison between full and approximate network representations

0.5%. Therefore, the network approximate model can be profitably used to evaluate the

overall impact of redirecting, as it provides reliable insights in negligible computational

time. Besides, network cost is not increasing when including a full network description.

If green energy is assumed to be available in two service centers the problem with full

network description becomes more time consuming, and the gap rises up to about 23%

with a one hour time limit.

6 Related work

As discussed before, for many years energy management of cloud systems has been stud-

ied considering separately the service centers and the network components.

From the service center side, three main approaches have been developed: (i) control

theoretic feedback loop techniques, (ii) adaptive machine learning approaches, and (iii) utility-

based optimization techniques.

A main advantage of a control theoretic feedback loop is system stability guarantees.

Upon workload changes, these techniques can also accurately model transient behaviour

and adjust system configurations within a transitory period, which can be fixed at design

time. A previous study [28] implemented a limited lookahead controller that determines

servers in the active state, their operating frequency, and the allocation of VMs to phys-

ical servers. However, this implementation considers the VM placement and capacity

allocation problems separately, and scalability of the proposed approach is not consid-

ered. A recent study [49, 50] proposed hierarchical control solutions, particularly provid-
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ing a cluster-level control architecture that coordinates multiple server power controllers

within a virtualized server cluster [49]. The higher layer controller determines capacity

allocation and VM migration within a cluster, while the inner controllers determine the

power level of individual servers.

Machine learning techniques are based on live system learning sessions, without a

need for analytical models of applications and the underlying infrastructure. A previous

study [51] applied machine learning to coordinate multiple autonomic managers with dif-

ferent goals, integrating a performance manager with a power manager in order to satisfy

performance constraints, while minimizing energy expenses exploiting server frequency

scaling. Recent studies provide solutions for server provisioning and VM placement [52]

and propose an overall framework for autonomic cloud management [53]. An advantage

of machine learning techniques is that they accurately capture system behaviour without

any explicit performance or traffic model and with little built-in system-specific knowl-

edge. However, training sessions tend to extend over several hours [51], retraining is re-

quired for evolving workloads, and existing techniques are often restricted to separately

applying actuation mechanisms to a limited set of managed applications.

Utility-based approaches have been introduced to optimize the degree of user satis-

faction by expressing their goals in terms of user-level performance metrics. Typically, the

system is modelled by means of a performance model embedded within an optimization

framework. Optimization can provide global optimal solutions or sub-optimal solutions

by means of heuristics, depending on the complexity of the optimization model. Opti-

mization is typically applied to each one of the five problems separately. Some research

studies address admission control for overload protection of servers [54]. Capacity allo-

cation is typically viewed as a separate optimization activity which operates under the

assumption that servers are protected from overload. VM placement recently has been

widely studied [18, 55, 56]. A previous study [8] has presented a multi-layer and multiple
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time-scale solution for the management of virtualized systems, but the trade-off between

performance and system costs is not considered. A hierarchical framework for maximiz-

ing cloud provider profits, taking into account server provisioning and VM placement

problems, has been similarly proposed [57], but only very small systems have been anal-

ysed. The problem of VM placement within an IaaS provider has been considered [58],

providing a novel stochastic performance model for estimating the time required for VMs

startup. Finally, frameworks for the co-location of VMs into clusters based on an analysis

of 24-hour application workload profiles have been proposed [59, 60], solving the server

provisioning and capacity allocation problems.

Due to the increasing trend towards more communication intensive applications in

data centers, the bandwidth between VMs is rapidly growing. These features raise new

interest in the specific study of VMs migration strategies, and in the joint optimization of

the network underling the cloud and the data center structure [61, 62, 63, 64]. In [65] the

authors propose a data center virtualization architecture called SecondNet. The central

idea it is to allocate as a unit of resource a virtual data center, instead of single/groups of

VMs. The authors propose a greedy algorithm based on clustering of servers to simplify

the problem and reduce the dispersion of VM inside the real data center. The method first

assign the set of VM to servers, then construct the communication network. In [66] au-

thors propose dynamic programming algorithm for computing the optimal embedding

on special structured networks, namely both network and requests topologies are trees.

They showed that the problem of embedding it is still NP-hard, but proposed a special-

ized method to deal with this subproblem, representative of a large class of service and

enterprise workloads.

All these works are devoted to consider the bandwidth usage within the cloud, but

in recent years the increase of cloud dimensions and requests applications to take into

account aroused the interest in considering geographical clouds. In this context the con-
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sumption of the network between clouds and the communication delays introduced by

migration of VMs among different clouds must be considered to manage efficiently the

overall system. An energy-aware traffic engineering in the geographical network is the

optimization instrument necessary for this purpose.

From the network side, research on improving energy efficiency has been attracting a

growing attention during the last years [6], but a limited number of works have been de-

voted to energy-aware traffic engineering. Some recent studies evaluate the potentialities

and the effective applicability of energy-aware routing procedures [67, 68, 69, 70, 71, 72,

73]. Main differences between considered approaches are related to the use of flow-based

label-switching techniques, or shortest path routing. In [74] a MPLS (Multi Protocol Label

Switching) framework is considered and traffic routing is optimized according to a multi-

period schedule in order to switch off routers and/or their line cards for saving energy.

The approach proposed in [75] aims at switching off the line-cards (network links) guar-

anteeing QoS constraints (maximum utilization and maximum path length constraints)

in a scenario where an hybrid MPLS/OSPF (Open Shortest Path First) scheme is adopted.

In [76] the authors describe some heuristics that, given a traffic matrix and a fully pow-

ered network, are able to switch off nodes and links while respecting traffic constraints. In

[77] some on-line Energy-Aware Traffic Engineering (EATe) techniques are presented for

optimizing links and routers power consumption, by considering their rate-dependent

energy profiles. In [78] , models and algorithms for setting link weighs (routing metric)

used for shortest path calculation are used in order to optimize traffic and minimize the

energy consumption.

To the best of our knowledge, very few approaches has provided an integrated frame-

work for service centers and network, and no one has included an accurate model of

the network enery management. On the other side, several recent papers have consid-

ered the problem of geographical load balancing with the aim to reduce energy cost by
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exploiting differences of electricity price and weather conditions across different regions

(see e.g. [13], [14], [15]). In [79] the focus is on the impact of local temperature on the

energy efficiency on the flexibility allowed by batch workload in shifting the energy con-

sumption. The problem of interactive workload routing and capacity allocation for batch

workload is formulated as a MILP model and a distributed algorithm is proposed. The

interesting issue of the interaction between the smart grid and data centers is investi-

gated in [80] and [81] where the different objectives of data centers interested in cost

minimization and grid interested in power load balancing over time and space are taken

into account.

The energy cost is a central point in managing cloud system, however optimizing

energy costs without taking into account energy consumption, can lead to the collateral

consequence of increasing the amount of energy. For this reason, some new works are de-

voted and centered on greening the network consumption and reducing energy amount

instead of reducing merely energy costs. In [82] the problem of managing the energy us-

age in data centers that can exploit on-site power production is considered and dynamic

algorithms that are able to optimize the energy consumption and the use of energy from

local sources and from the electric grid are defined. In [83] and [84] authors consider the

problem of geographical load balancing with the aim of utilize green energies. They pro-

pose a discrete-time model where the two decision taken are the amount of traffic routed

from a given source and a given data center and the number of servers active at each data

center. The delay is modeled as a network delay (depending on the couple source and

data center) and a queueing delay depending on the traffic served by the data center and

the number of active servers. The objective function takes into account energy consump-

tion and total delays, the model is linearized leading to a continuous optimization model.

In [85] authors present an optimization based framework to manage the consumption of

energy in multi-data-center services. The framework manages to assign requests across
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data centers with the aim of reducing the total energy costs, but at the same time respect-

ing SLAs. The framework take into account energy costs and sources, and the possibility

to introduce caps on brown energy. The model of the data centers and SLA is very sim-

plified. Different decisions are taken at different time scales. At time scale of one year the

proportion of green and brown energy used is decided; at time scale of one hour, distribu-

tion of requests with a simplified model that consider all requests of the same type. The

resulting model is a non-linear optimization model and it is solved using a simulated an-

nealing strategy with online re-optimization. The network connecting the data centers is

not considered, data center capacity is evaluated by the algorithm, and after that servers

are managed as a consequence (servers are kept on to manage 20% more capacity then

the one evaluated by the algorithm). In [86], the same authors modified their model to

take into account the use of UPS batteries to manage different costs of energy in different

times of the day. In this work they do not consider any more brown vs green energy, but

use different costs of energy for different geographical regions and time of the day (cost

data are drown from real life).

Differently from these previous papers, our work provides a fully integrated manage-

ment of service centers and communication network considering variable traffic, energy

cost, and green energy availability. We proposed a new MILP model for the integrated

problem and we show that it can be solved to the optimum in relatively short time (order

of minutes) for realistic size instances without the need to rely on heuristic algorithms.

Our extended model is the first one that model accurately the energy consumption of the

network even in the presence of management strategies that can put in sleep some parts

of the network following load variations.
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7 Conclusions and open issues

In this paper we propose a new optimization framework for the management of the en-

ergy usage in an integrated system for Cloud services that includes both service cen-

ters and communication networks for accessing and interconnecting them. The proposed

MILP model considers a PaaS scenario where VMs of a group of applications can be al-

located to a set of SCs geographically distributed and traffic load coming from different

world regions can be assigned to VMs in order to optimize the energy cost and minimize

CO2 emissions. We have shown that, despite its quite good level of detail in modeling

the energy consumption of different system components and the computation and band-

width constraints, the proposed problem can be solved to optimality in relatively short

time (order of minutes) with realistic size instances.

The numerical results presented in previous Sections provide interesting insight in

the factors that influence optimal energy management policies. In particular, it is worth

pointing out that the availability of green energy has a remarkable impact on the energy

management and that in most cases exploiting clean energy comes at the cost of an higher

global energy consumption mainly because of the impact of the communication network.

We expect that in more complex scenarios than that considered here, where also the im-

pact on the network of VMs migration and data replication is considered, this effect may

be even more evident.

We believe that the optimization instrument proposed in this paper is flexible and effi-

cient enough to be used for exploring possible energy management policies in real Cloud

systems beyond the results presented here. Moreover, given the small computation com-

plexity, the approach can be extended quite easily to scenarios where load predictions on

a 24 hours horizon are not reliable and predictions must be adjusted according to real

time traffic measurements. In this case, the proposed approach can be modified using

a sliding time window (24h or shorter) that is shifted ahead every time a new load pre-
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diction is available. At each update the optimization is re-executed. Depending on the

accuracy of the traffic values, also the time granularity of the window can be modified.
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A Problem complexity

We prove that our problem is NP-hard reducing the Set Covering Problem to it. A set

of elements M = {1, . . . , m} and a set of subsets N = {N1, . . . ,Nn} (Nj ⊂ M) are given.

A cover is a set F ⊆ N, such that ∪Nj∈FNj = M. The decision version of Set Covering is

defined as follows: Is there a cover F such that its cardinality is at most equal to a given

threshold κ?

The decision version of Set Covering can be reduced in polynomial time to the consid-

ered problem. Let consider that Γ1
i = 0, ∀i ∈ N (green energy is not available).

Each item of the set M is represented by a SC. Each subset Nj is represented by a SC,

as well. Let us callN1 the set of SCs representing the elements of M, andN2 the set of SCs

representing the elements of N. Thus, the set of SCsN = N1 ∪N2. Since, by construction,

N1 ∩N2 = ∅, |N | = |M|+ |N|. We consider |T | = 1, |L| = 1, |K| = 1, m11 = 1, b1 = 1,

U = 2|M|. Parameters associated with SCs are defined in a different way for the two

subsets of SCs and are summarized in Table 9 and in Table 10.

The arrival rate λ in SCs representing elements of M is equal to 1, while it is 0 for SCs

representing elements in N. As the SCs belonging toN1 have no capacity, and VM energy

consumption equal to 10κ, in any feasible solution, whose value is lesser or equal than the

threshold κ, the arrival rate of SCs belonging to N1 must be assigned to SCs belonging to

N2. On the other hand, the average utilization rate of SC belonging to N2 is high enough

to deal with all the requests. If a SC belonging to N2 is activated, at most one VM can be

activated, due to the value of Ci. The corresponding energy consumption is equal to 1:

thus the energy consumption associated to active VMs corresponds to the cardinality of

activated SCs. Switching on and off cost are assumed with value zero.

Network costs are used to represents the coverage matrix. Each SC j ∈ N2 corresponds

to one subset Nj. Only the requests of SCs in N1 associated to the elements of Nj can be

served by SC j. Therefore, the energy cost on the network are set so as to guarantee
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parameter i ∈ N1 i ∈ N2
λi 1 0
Ci 0 1
αi 10κ 1
D 1 1
Pi 1 1
ηi 0 0
θi 0 0
ρi 1 1
ci 1 1

Table 9: Reduction parameters : nodes

that any unfeasible solution for the Set Covering has a cost higher than the threshold.

We consider only costs associated to activation, while switching cost are considered with

value zero. The number of routers between two SCs i and j is always 1. The energy cost

is 10κ for any pair of SCs which represents an unfeasible assignment for the Set Covering

problem, while it is equal to zero if the assignment is feasible.

If a solution of the considered problem is found, whose cost is below κ, the corre-

sponding solution of Set Covering, which has the same cost, can be derived as follows.

The set of selected subsets F is the set of SCs in N2 in which one VM is active; each ele-

ment in M is covered by at least one of the selected subsets, as each element belonging to

N1 is redirected toward SCs belonging toN2 with a network cost equal to 0. On the other

hand, if no solution of the considered problem is found whose cost is below the threshold,

then no feasible solution for Set Covering with cardinality at most κ exists. In fact, either

one SC in N1 is activated or a SC i ∈ N1 is assigned to j ∈ N2 such that i /∈ Nj.

B Parameters details

In this Section we report the details of the parameters we used for performing the paper

numerical analyses.
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parameter i ∈ N1, j ∈ N1 i ∈ N1, j ∈ N2 i ∈ N2, j ∈ N1 i ∈ N2, j ∈ N2
Rij 1 1 1 1
Qij 1 1 1 1
γij 1 1 1 1
δij 1 1 1 1
τij 0 0 0 0
ξij 0 0 0 0
f t
ij 10κ 0 if i ∈ Nj, 10κ 10κ

10κ if i /∈ Nj

Table 10: Reduction parameters: links

Figure 13: Map of Google SCs location considered in our model.

Figure 14: Google SC PUE values considered in our analyses.
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Region Region Number of hops
Europe West USA 17
Europe East USA 11
Europe Asia 15
Asia East USA 11
Asia West USA 14
West USA East USA 11

Table 11: Number of network hops among world regions.

Country Market Manager
Brazil Electric Energy Commercialization Chamber
Italy GME (Gestore dei Mercati Energetici)
Canada IESO (Independent Electricity System Operator)
France Powernext
Germany EEX (European Energy Exchange)
Ireland SEMO
Japan JEPX (Japan Electric Power Exchange)
Netherlands, UK, and Belgium APX-ENDEX
Russia ATS (Trade System Administrator)
USA California ISO, New England Market, and PJM

Table 12: Energy Market Managers considered in the Experimental Analyses.
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Service center City Country Time zone
DC1 Mountain View California (USA) UTC-08
DC2 Pleasanton California (USA) UTC-08
DC3 San Jose California (USA) UTC-08
DC4 Los Angeles California (USA) UTC-08
DC5 Palo Alto California (USA) UTC-08
DC6 Seattle Washington (USA) UTC-08
DC7 Portland Oregon (USA) UTC-08
DC8 The Dalles Oregon (USA) UTC-08
DC9 Chicago Illinois (USA) UTC-05
DC10 Atlanta Georgia (USA) UTC-05
DC11 Reston Virginia (USA) UTC-05
DC12 Ashburn Virginia (USA) UTC-05
DC13 Virginia Beach Virginia (USA) UTC-05
DC14 Houston Texas (USA) UTC-05
DC15 Miami Florida (USA) UTC-05
DC16 Lenoir North Carolina (USA) UTC-05
DC17 Goose Creek South Carolina (USA) UTC-05
DC18 Pryor Oklahoma (USA) UTC-05
DC19 Council Bluffs Iowa (USA) UTC-05
DC20 Toronto Canada UTC-05
DC21 Berlin Germany UTC+01
DC22 Frankfurt Germany UTC+01
DC23 Munich Germany UTC+01
DC24 Zurich Switzerland UTC+01
DC25 Groningen Netherlands UTC+01
DC26 Mons Belgium UTC+01
DC27 Eemshaven Netherlands UTC+01
DC28 Paris France UTC+01
DC29 London England UTC+00
DC30 Dublin Ireland UTC+00
DC31 Milan Italy UTC+01
DC32 Moscow Russia UTC+03
DC33 Sao Paolo Brazil UTC-03
DC34 Tokyo Japan UTC+09
DC35 Hong Kong China UTC+08
DC36 Beijing China UTC+08

Table 13: SC locations details.
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Figure 15: Total kWh produced by green Google Service Centers during a single day.
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