
Developing Domain-Specific Modeling Languages by
Metamodel Semantic Enrichment and Composition:

a Case Study

Luis Pedro
D’Auriol Asset Management

Lausanne, Switzerland
luis@dauriol.ch

Matteo Risoldi and
Didier Buchs

University of Geneva
Geneva, Switzerland

{name.surname}@unige.ch

Vasco Amaral
Universidade Nova de Lisboa

Lisbon, Portugal
vasco.amaral@di.fct.unl.pt

ABSTRACT
Designing a DSML implies binding the syntactical concepts
of the problem domain with the semantics of a solution
domain. Previous work presented a formal framework for
language composition where language syntactical patterns
(expressed by metamodels) along with their semantics (ex-
pressed by transformation models) are combined as small
reusable building blocks in a constructive manner, in order
to achieve the desired expressiveness for DSMLs. This arti-
cle refines the framework, as well as showing its application
through a case study led in collaboration with CERN (Eu-
ropean Organization for Nuclear Research).

Keywords
DSML, Transformation, Composition, Metamodel, Seman-
tics

1. INTRODUCTION
The main purpose of Domain-Specific Modeling Languages
(DSMLs) is to make it easier for expert of a given domain to
describe models. This is achieved by using domain-specific
terms and concepts. Designing a DSML involves analysing
the domain, defining an abstract syntax, and mapping the
syntax to semantics. This mapping can be done in several
ways; among others, by transforming models to some other
language for which semantics are already well-defined.

We previously defined a formal framework [11] for making
these operations modular. The goal of this article is refining
the framework and illustrating its concrete application on a
real world case study. It is shown how a DSML for prototyp-
ing graphical user interfaces (GUIs) for control systems was
built by composing smaller DSML blocks. This case study
was led in collaboration with CERN (Switzerland).

The remainder of this Section will talk about related and
previous work. Section 2 resumes the formal framework for
DSML composition. Section 3 illustrates the case study.
Section 4 draws conclusions and discusses perspectives.

1.1 Related Work
Works ([6]) in the area of metamodeling and DSML engi-
neering show that basic patterns exist that repeat across
different DSMLs. These patterns, or domain concepts, can
be composed to describe complex domain models. The tech-
niques available so far are either tackling the problem purely

at the syntactical level (e.g. [9]), or are too abstract (e.g. [8])
to be applied to DSMLs with a certain level of complexity.
Other approaches (e.g. model extension by package merge
in UML2 specifications) are too bound to the technology for
which they have been defined.

In [5] a technique is presented that allows “anchoring” se-
mantics to a metamodel. This technique uses Abstract State
Machines and the Graph Rewriting And Transformation lan-
guage (GReAT) [1] as instruments in the Generic Modeling
Environment (GME). Semantic units are defined by attach-
ing a transformation to each metamodel defined in the GME.
Both [5] and our work use a model transformation language
to provide semantics.

1.2 Previous Work and Goals
Previous work by the authors [10, 11] formally defined a
framework to add semantics to metamodels by transforming
them to other languages. Via transformations, domain con-
cepts are prototyped, and their behaviour validated. Com-
position of domain concepts was achieved via metamodel
composition at the syntactical level, and transformation com-
position at the semantic level. The approach extended the
work presented in [2]. This article achieves two goals. First,
it refines the formal framework with simpler and more cor-
rect definitions. Second, it gives a more pragmatical view
by applying the approach to a real world case study.

2. FORMAL FRAMEWORK FOR DSML COM-
POSITION

The composition framework is based on domain concepts. A
domain concept is a block comprised of: 1) a metamodel,
and 2) a transformation to one or more target domains.
Transformations are operations that provide semantics to
domain concepts. They map concepts to models for which
semantics are already defined.

For defining modular DSMLs by composition of domain con-
cepts, the syntax and semantics of these domain concepts
must be composed. This is done by parameterizing each
domain concept with other domain concepts. The param-
eterization means that a domain concept is partially or to-
tally replaced by another domain concept. The latter may
be richer, more refined, or have a different transformation
template.

A transformation is a function Tr : im → im′, where im
is an instance model of the source metamodel and im′ an
instance model of the target metamodel. Given the meta-
model of a domain concept mm, transformations are defined
for it. Each transformation may be a set of other simpler
transformations: Trmm = {Tr1mm, . . . , T rnmm}. Each Trimm
corresponds to rules which transform elements of a source
model into elements of a target model.

Domain concepts are parameterized by defining the elements
that serve as parameters and the ones that replace them.
The parameterization happens at two levels: syntactical,
concerning the metamodel composition; and semantic, con-
cerning transformation composition.

At the metamodel (syntactical) level, a parameterization is
defined as

mm′ = mm[fp
ϕ←− ep, Ffp] (1)

where mm, mm′, fp (formal parameter) and ep (effective
parameter) are metamodels; ep ⊃ ϕ(fp) re-defines, at least,
all the elements in fp; and Ffp is a set of formulae represent-
ing conditions satisfied by fp. The parameterization can be
instantiated iff ep |= ϕ(Ffp) - meaning that the conditions
satisfied by fp must be satisfied by ep. The ϕ is a total
function that maps elements of fp and ep.

Fig.1 illustrates a simplified diagram of the metamodel pa-
rameterization. It shows that a DSML metamodel is ex-
tended by substituting its formal parameter fp with an ef-
fective parameter ep.

Substitutes
fp

DSML Metamodel
ep Metamodel

ep

DSML Metamodel
after parameterization

Figure 1: Metamodel extension by parameterization

At the transformation (semantic) level, a parameterization
is defined on the transformations associated to the meta-
models. A transformation parameterization is defined as:

Trmm′ = Trmm[Trfp
ϕ,ψ←−− Trep] (2)

where:

• mm′ is the metamodel resulting from the mm meta-
model parameterization;

• Trfp is the template transformation defined for fp;

• Trep is the template transformation defined for ep;

• ϕ is the source mapping function: Dom(Trfp)→ Dom(Trep)
where Dom stands for Domain of a transformation;

• ψ is the target mapping function : Cod(Trfp)→ Cod(Trep)
where Cod is the Co-Domain of a transformation;

name
EventGen

URL
GeometryGen

value
x

value
y

value
z

Coordinates

name
Object

name
System

name
Type

name
FSM

name
isInitial

State
name
Transition

ownedGeometriesownedFSMs

ownedTypes
ownedObjects

ownedCoordinates

ownedZ
ownedX

ownedY

object

type

fsm

ownedTransitions ownedStates

target

source

ownedEvents geometry

0..*

1..*

1..1
1..1

0..* 1..1

1..1

0..* 1..1
0..*

1..1

1..1 1..1 1..1

1..*

0..*

0..*

Figure 2: Generic Cospel Metamodel: mmCospelgen

and the transformation instantiation is: tm = Trmm′(m′)
where m′ is an instance of mm′ and tm is an instance of the
metamodel of the target language.

From an operational point of view, ψ defines which trans-
formations in fp are replaced by which transformations in
ep.

3. APPLICATION: THE COSPEL DSML
The CMS Tracker at CERN is a complex high-energy physics
apparatus. It is comprised of several hundred components
which have to be monitored for diagnostics. GUIs for this
task demand a great effort of development. However, if one
wanted to automate the GUI development, most of the in-
formation needed can be found in existing engineering data
describing the system, its logic and its input/output. This
spawned interest in researching a way to automatically pro-
totype the GUI by reusing this existing information. The
first step towards this solution was to model system infor-
mation in a way that is understandable by users of the sys-
tem.

A DSML named Cospel [12] was designed to model complex
control systems. The language models a system’s structure,
behavior and communication, as well as interface-related
features like user and task models. An associated framework
transforms the language into an executable system simulator
and a user interface prototype.

Cospel has been designed using the compositional frame-
work defined here and in [11]. Its metamodel is modular, and
formed by the composition of several domain concepts. This
article shows how we achieved the composition of a few of
these concepts. For each concept, a metamodel and an asso-
ciated transformation are shown. We compose these domain
concepts into a more complex language until we have enough
information to generate a simple GUI prototype from it.
The final result shown in this article constitutes the essen-
tial of the Cospel language. There were further extensions
to Cospel, described in [12], however discussing those is out
of the scope of this article.

3.1 Target Languages
The framework supports multi-formalism approaches. In
the deployment of Cospel, it was chosen to use Concur-

rent Object-Oriented Petri Nets (CO-OPN) and Structured
Query Language (SQL) as target languages.

CO-OPN [3] is a formal language that allows the generation
of executable specifications. It is an object-oriented formal
specification language based on synchronized algebraic Petri
nets. The main reasons why CO-OPN was chosen as a target
language are the possibility to perform formal verification on
models, and the possibility to generate executable Java code
from the model [4] through the COOPNBuilder IDE.

While in the context of this article the reader should not be
concerned with the details of CO-OPN, a brief overview is
in order to understand the transformations. CO-OPN spec-
ifications are made of three module types: ADTs (algebraic
Abstract Data Types), Classes, and Contexts:

• ADT s represent data and their associated operations;

• Classes are an encapsulation of algebraic Petri nets
that allows to describe both structure and component’s
behavior. A CO-OPN class can have methods, gates
(events with parameters) and typed places;

• Contexts are a higher level of encapsulation which de-
fines the contextual coordination between class instances
or other contexts.

SQL was also used as a target language since part of the
information in a Cospel model is meant to be stored in a
relational database. In the context of the article, this pro-
vides an example of how different target languages can be
supported at once.

3.2 Transformation Framework
The formal framework is general with respect to the choice
of a transformation framework. In the context of Cospel
development, the ATLAS Transformation Language (ATL)
framework1 was used. The remainder of the article will ex-
plain transformations using snippets of ATL rules, skipping
lengthy details of the code.

3.3 Generic Cospel DSML
The starting point for the modular creation of Cospel was
defining a“core”language, providing abstractions that define
a generic control system. Fig. 2 shows the metamodel of the
Generic Cospel DSML. It includes the concepts of Object,
Type, FSM (Finite State Machine), EventGen, GeometryGen

and Coordinates. These describe, respectively, the objects
in the system, their common features, their behaviour, the
events of the system, the geometry of the system, and the
coordinates of each object in space. Some of these concepts
(e.g., GeometryGen, EventGen) are very generic and need to
be specified further to describe a concrete system. To build
the full Cospel language we added details in a sequence of
metamodel and transformation compositions. The resulting
metamodel is shown in Fig. 3, where classes and relation-
ships affected by compositions are in a darker color.

Without going into too much detail of the CO-OPN code,
Generic Cospel models are transformed to CO-OPN models
as follows. Types are transformed into CO-OPN Classes.

1http://www.eclipse.org/m2m/atl/

States and Transitions of the associated FSMs become re-
spectively places and methods moving tokens among these
places. EventGens are also transformed into methods in the
CO-OPN Classes. GeometryGen is transformed into a place
containing the URL of the geometry data. The skeleton of
the transformation rule for Types is shown below; rules for
the other classes follow a similar schema:

lazy rule ruleType {
from
t : GenericCospel!Type

to
cls : COOPNMM!COOPNClass(...)

}

Objects are transformed into CO-OPN Contexts which in-
stantiate the classes of their associated type. Coordinates

of Objects are transformed into places in the classes. The
skeleton rule for Objects is as follows:

lazy rule ruleObject {
from
obj : GenericCospel!Object

to
ctx : COOPNMM!COOPNContext(...)

}

3.4 Event Model extension of Cospel
The first concept to refine is the EventGen. In themmCospelgen
metamodel, an EventGen is associated to a Type. It only has
a name and is not characterized by any reactive behavior.
Instead, we want an event to be able to trigger transitions or
other events. We use an event metamodel mmEvent (Fig.
4) in which an Event can have several Conditions, repre-
senting constraints of pre- and post-conditions. Each condi-
tion is associated to a Transition, and/or to another Event.
This association models a trigger: an Event, when satisfying
certain pre- and post-conditions, can trigger a Transition,
and/or it can trigger another Event.

The mmEvent metamodel by itself allows building models
which declare events and their behavior. Transformation of
these models to CO-OPN is relatively straightforward: an
Event becomes a CO-OPN method declaration; for each of its
Conditions, an axiom is created synchronizing the method
with the corresponding transition and/or event (right part
of Fig. 5). This metamodel is composed with mmCospelgen

name
Event

name
Geometry

value
x

value
y

value
z

Coordinatesname

Object

name
System

name
Typename

FSM

name
isInitial

State
name
Transition

ownedGeometriesownedFSMs

ownedTypes
ownedObjects

ownedCoordinates

ownedZ
ownedX

ownedY
object

type

fsm

ownedTransitions ownedStates

target

source

ownedEvents

geometry

0..*

1..*

1..1
1..1

0..1

1..1

1..1 0..* 1..1
0..*

1..1

1..1 1..1 1..1

1..*

0..*

0..*

precondition
postcondition

Condition

ownedConditions0..*

triggerEvent

0..1

transition

URL
GeomFile

width
length
height

Box
outerradius
innerradius
height

Cylinder
outerradius
innerradius

Sphere

0..1
0..*

parent

children

0..*

Figure 3: Full Cospel Metamodel mmCospelfull

http://www.eclipse.org/m2m/atl/

0..1

precondition
postcondition

Condition

name
Event

name
Transition

triggerEventtransition

0..1

RootownedTransitions

0..*

0..*ownedEvents

0..*
ownedConditions

Figure 4: mmEvent Metamodel

by substituting the EventGen class in mmCospelgen with
the Event class in mmEvent. The Conditions class and all
related associations are brought over as part of mmEvent.

Using the definitions presented in Section 2 we can express
this substitution as follows. Let mmEvent be the meta-
model in Fig. 4 and mmCospelgen the Generic Cospel meta-
model of Fig. 2. The metamodel of the new DSML with the
event extension is defined by:

• fp1 = the metamodel corresponding to EventGen of
mmCospelgen;

• ep1 = a subset ofmmEvent {Event, Condition, ownedConditions, transition,
triggerEvent};

• ϕ1 = {〈EventGen, Event〉}

A new metamodel mmCospelevent is the result of the appli-
cation of definition (1):

mmCospelevent = mmCospelgen[fp1
ϕ1←−− ep1, true]

The bottom-left part of Fig. 3 (the Event and Condition

classes) shows the result of the composition. Ffp constraints
are empty in this example.

For the transformation composition, rules for the formal pa-
rameter (i.e., Trfp1) are replaced by those for the effective
parameter (i.e., Trep1). No restrictions on Trfp1 and Trep1
are specified (i.e., the whole Trfp1 is substituted by the
whole Trep1). Fig. 5 shows the transformation composi-
tion.
A new transformation, TrmmCospelevent is the result of the

application of definition (2):

TrmmCospelevent = TrmmCospelgen [Trfp1
ϕ1,ψ1←−−−− Trep1]

Let ie be the models conforming to the mmCospelevent
metamodel, and it the models in the target language(s). The
transformation application is: it = TrmmCospelevent(ie). Fig.
6 resumes how the mmEvent and mmCospelgen metamod-
els are composed into the mmCospelEvent metamodel, and
how the composed transformation TrmmCospelevent includes
the transformation rules from TrmmEvent.

3.5 Hierarchical Model Extension of Cospel
A common feature in complex control systems is they are
built as hierarchies of objects. To model this concept, we
use a Hierarchy metamodel mmHierarchy, shown in Fig. 7
in which the Object class has a children association to itself
(0-* cardinality) as well as an opposite parent association

rule ruleInEventMethods {
 from
 e : GenericCospel!EventGen
 to
 m : COOPNMM!Methods(...)
}

rule ruleInEventAxioms {
 from
 e : GenericCospel!EventGen
 to
 a : COOPNMM!Axiom(...)
}

rule ruleInEventMethods {
 from
 e : EventModel!Event
 to
 m : COOPNMM!Methods(...) }

helper def : ruleInEventAxioms
(e : EventModel!Event) :
 Set(COOPNMM!Axiom) =
e.ownedConditions -> collect(c |
thisModule.ruleInConditionAxioms(c));

rule ruleInConditionAxioms {
 from
 c : EventModel!Condition
 to
 a : COOPNMM!Axiom(...) }

ψ1(�Trfp1
, T rep1

�)

Trfp1
Trep1

Figure 5: Transformation composition for the Event
model extension

Conforms to Conforms to

CO − OPN metamodelmmCospelevent metamodel

mmCospelevent model ie CO − OPN model

mmEvent

EventGen ϕ1(�EventGen, Event�)

mmEvent metamodelmmCospelgen metamodel
Event

Transition

Condition

TrmmCospelevent
(ie)

TrmmEvent(ie)

TrmmCospelevent

TrmmEvent

Figure 6: Parameterization of Transformations for
the Event model extension

(0-1). Transforming this to CO-OPN, the CO-OPN Context
of a “parent object” will contain references to the CO-OPN
Contexts of the “children objects”.

The result of the previous composition mmCospelevent has
been composed with mmHierarchy. The Object class in
mmCospelevent was substituted with the one inmmHierarchy.
The resulting metamodel of Cospel enriched with the event
and hierarchy extensions, mmCospeleventHierarchy, is de-
fined by:

• fp2 = the metamodel of the Object class of
mmCospelevent;

• ep2 = a subset of mmHierarchy {Object, children,
parent};

• ϕ2 = {〈Object, Object〉}

At the transformation level, mmHierarchy has two rules

name
ObjectRoot ownedObjects

0..*

0..1

0..*

parent

children

Figure 7: mmHierarchy metamodel

for transforming objects to CO-OPN; one for objects with-
out children (ruleObject) and one for objects with chil-
dren (ruleObjectWithChildren). When composing trans-
formations of mmHierarchy and mmCospelevent, we do
not want to replace the latter’s rule for Objects (also called
ruleObject), as this would destroy information about the
associations of Object which are present in mmCospelevent
but not in mmHierarchy. Thus, when defining the ψ2 func-
tion for this composition, instead of using the whole Trep2
as a parameter, we use

(Trep2 − TE) ∪ (Trfp2 |TF)

where TE is a subset of Trep2 formed by all Triep2 such that

∃Trjfp2 : Dom(Trjfp2) = ϕ2(Dom(Triep2)) for any i, j. In
other terms, all rules in Trep2 who have a corresponding rule
in Trfp2 with the same domain after parameterization. TF
is a subset of Trfp2 formed by all the Trjfp2 as just defined;

(Trep2 − TE) is the rules in Trep2 minus those in TE; and
(Trfp2 |TF) is the subset of Trfp2 including only the rules
in TF . In layman’s terms, (Trep2 − TE) excludes from the
composition the rules we don’t want use as replacements;
instead, we keep the rules for fp, which are in (Trfp2 |TF).
In this case, (Trep2 − TE) = {ruleObjectWithChildren,
ruleContextUse} and (Trfp2 |TF) = {ruleObject}. The
transformation composition is shown in Fig. 8. Rules in
black are those which will be kept in the result.

rule ruleObject {
from
 obj :
 CospelEventModel!Object
to
 ctx :
 COOPNMM!COOPNContext(...)
}

rule ruleObject {
 from obj : HierarchyModel!Object
 to ctx : COOPNMM!COOPNContext(...)
}
rule ruleObjectWithChildren
extends ruleObject {
 from
 obj : HierarchyModel!Object
 (obj.children.notEmpty()))
 to
 cont : COOPNMM!COOPNContext(...)
}
lazy rule ruleContextUse {
 from
 obj : HierarchyModel!Object
 to
 contUse : COOPNMM!ContextUse(...) }

ψ2(�Trfp2 , (Trep2 − TE) ∪ (Trfp2 |TF)�)

Trfp2
Trep2

T
r1 f

p
2 T

r
1e
p
2

T
r
2e
p
2

T
r
3e
p
2

{ }
}
}

{ } TE

T
r f

p
2
|T

F

} T
r
e
p
2 −

T
E

Figure 8: Transformation composition for the Hier-
archical model extension

3.6 Geometry Model extension of Cospel
A useful concept for modeling physical systems is a collec-
tion of geometrical primitive shapes which can be param-
eterized quickly to represent the various shapes of objects.
The mmCospelgen metamodel and the further extensions we
made until now, however, only model geometry as the URL
of a file containing geometrical data (vertices and faces).

name
Geometry

name
Root ownedGeometries

URL
GeomFile

width
length
height

Box
outerradius
innerradius
height

Cylinder
outerradius
innerradius

Sphere

0..*

Figure 9: mmGeometry metamodel

To refine geometry, we use a simple metamodelmmGeometry
shown in Fig. 9, with an abstract Geometry class. It has

several classes (Box, Sphere, Cylinder and GeomFile) im-
plementing it. The particularity of this transformation is
that it has a different codomain from the rest of Cospel.
This is becausethe Cospel framework does not store this ge-
ometrical information in the CO-OPN model, but rather in
a database. The database is then used by a GUI prototyping
engine to load a 3D scene. Instances of this metamodel are
thus transformed into a set of SQL queries using a simplified
SQL metamodel called sql4Cospel with Strings representing
queries. For each Geometry, an INSERT statement is made
in the appropriate table (according to the kind of primitive).

Composition of mmGeometry with the previous
mmCospeleventHierarchy substitutes the GeometryGen class
with the new abstract Geometry class (the Box, Sphere,
Cylinder and GeomFile classes are brought over too). The
metamodel of the resulting DSML with the geometry exten-
sion is defined by:

• fp3 = the metamodel of the GeometryGen class of
mmCospeleventHierarchy;

• ep3 = a subset of mmGeometry {Geometry, GeomFile,
Box, Cylinder, Sphere};

• ϕ3 = {〈GeometryGen, Geometry〉}

rule ruleGeometryGen{
 from
 geometry : CospelEventHierarchy!
 GeometryGen
 to
 geomplace: COOPNMM!Place(...)
}

rule ruleGeometry {
 from
 geometry : mmGeometry!Geometry
 to
 sql : sql4Cospel!SQLQuery (...),
 sqlmap : sql4Cospel!SQLQuery (...)
}

ψ3(�Trfp3 , T rep3�)

Trfp3
Trep3

Figure 10: Transformation composition for the Ge-
ometry model extension

For the transformation composition in this case, the codomains
of Trfp3 and Trep3 are different: Trfp3 creates models con-
forming to the CO-OPN MetaModel, while Trep3 creates
models conforming to sql4Cospel. The composition is shown
in Fig. 10.

However, in our case study there was a catch with this trans-
formation composition. To satisfy the requirements, we had
to store in the database a record stating that a certain object
was associated to a certain geometry. This was not necessary
pre-composition, as everything was done in CO-OPN; and
unfortunately, there is nothing in the mmGeometry trans-
formation that allows automatic creation of this insert state-
ment. In this case, we had to add a posteriori an ATL helper
which made the association. This goes to show that in some
cases composition can not be fully automatized.

After this last composition, the resulting metamodel is the
one we had previously shown in Fig. 3. It has enough infor-
mation to build a first prototype of the GUI for visualizing
a control system structure and state. The GUI is a 3D dy-
namic representation of the system structure and state. It
loads the database created by the transformations of Section

3.6 to build the 3D representation. It also uses the CO-OPN
model created by the transformation of all other data to sim-
ulate the dynamic system state. Details on the technologies
used in the GUI are given in [12]. A video capture of the
GUI is found at http://youtu.be/Q5M2X98JNH4.

4. CONCLUSION AND FUTURE WORK
We presented the application of a methodology which allows
a language designer to compose metamodels and transforma-
tions. There is a main advantage coming from the fact that
the framework is defined formally: it is possible to ensure
that the properties of transformations are preserved in com-
position. This is not the case when composition is done by
hand. Other advantages lay in the facilitation of incremental
language development with a reduced re-factoring effort and
increased re-use. Also, this methodology is suitable not only
to engineer DSMLs in a modular and incremental fashion,
but also to particularize a DSML into more specific ones [11].

Limitations of the methodology include that not everything
can be composed easily. The work proposed here is not a
silver bullet – difficulties often arise, especially at the trans-
formation level. Transformation blocks must have compati-
ble domains, and while extending the work of the case study
we met some patterns which were not trivial to tackle. We
found that imperative transformations in particular intro-
duce difficulties. These can be so hard that in pathological
cases the effort of performing composition might be compa-
rable or even higher than simply rewriting the transforma-
tions by hand. Even when composition is feasible, manual
work may be required to complete it, as we saw in the ex-
ample of the mmGeometry metamodel. This has all sort of
implications on preserving properties in composition: non-
trivial compositions may require further steps to re-check
models.

For some of these limitations, an editor which detects prob-
lematic compositions could help. In this perspective, a thor-
ough classification of composition problems should be done.
Another limitation is that this work obviously applies only to
the cases where it makes sense to compose transformations,
i.e., where available domain concepts fit the desired result
rather well. If the development of a DSML from modular do-
main concepts requires a radical rewriting of all associated
transformations, there is no particular advantage in using
this methodology.

Another relevant limitation is more pragmatical. It comes
from the fact that the success of this method is heavily de-
pendent by the creation and maintenance of a solid base
of domain concepts, as well as tools which implement the
theoretical framework. Similar conclusions [7] were found
for situational method engineering, a similar approach for
designing modular methodologies. Again, we don’t think
this proposal is a one-size-fits-all solution. It is rather one
of many practices that can improve the process of language
design. Its usage should be guided by a critical analysis of
the case and of available metamodels and transformations.

Future work includes further studies on satisfying constraints
of ep over fp; traceability of ep in order to automatically re-
flect its modifications in the composed DSMLs; versioning
of transformations and of transformation compositions al-

lowing backward compatibility of subsequent versions of the
DSMLs.

This work was partially funded by the Portuguese founda-
tion FCT/MCTES ref. PTDC/EIA/65798/2006

5. REFERENCES
[1] D. Balasubramanian, A. Narayanan, C. van Buskirk,

and G. Karsai. The graph rewriting and
transformation language: GReAT. Electronic
Communications of the EASST, 1, 2006.

[2] M. Barbero, F. Jouault, J. Gray, and J. Bézivin. A
practical approach to model extension. In D. H.
Akehurst, R. Vogel, and R. F. Paige, editors,
ECMDA-FA, volume 4530 of Lecture Notes in
Computer Science, pages 32–42. Springer, 2007.

[3] D. Buchs and N. Guelfi. A formal specification
framework for object-oriented distributed systems.
IEEE Transactions on Software Engineering,
26(7):635–652, july 2000.

[4] S. Chachkov. Generation of Object-Oriented programs
from CO-OPN Specifications. PhD thesis, Ecole
Polytechnique Fédérale de Lausanne, 2004.

[5] K. Chen, J. Sztipanovits, S. Abdelwalhed, and
E. Jackson. Semantic anchoring with model
transformations. In Model Driven Architecture, volume
3748 / 2005. First European Conference, ECMDA-FA
2005, Springer Berlin / Heidelberg, October 2005.

[6] M. Emerson and J. Sztipanovits. Techniques for
metamodel composition. In OOPSLA - 6th Workshop
on Domain-Specific Modeling, pages 123–139,
Portland, Oregon, October 2006. ACM Press.

[7] B. Henderson-Sellers and J. Ralyté. Situational
method engineering: State-of-the-art review. J. UCS,
16(3):424–478, 2010.

[8] E. Jackson and J. Sztipanovits. Towards a formal
foundation for domain-specific modeling languages. In
W. Y. Sang Lyul Min, editor, Proceedings of the Sixth
ACM International Conference on Embedded Software
(EMSOFT 06), pages 53–63. ACM, October 2006.

[9] Á. Lédeczi, G. Nordstrom, G. Karsai, P. Völgyesi, and
M. Maróti. On metamodel composition. In Control
Applications, 2001. (CCA ’01). Proceedings of the
2001 IEEE International Conference on, pages
756–760, Mexico City, Mexico, September 2001. IEEE
Computer Society.

[10] L. Pedro. A Systematic Language Engineering
Approach for Prototyping Domain Specific Languages.
PhD thesis, Université de Genève, 2009. Thesis #
4068.

[11] L. Pedro, V. Amaral, and D. Buchs. Foundations for a
domain specific modeling language prototyping
environment: A compositional approach. In J. Gray,
J. Sprinkle, J.-P. Tolvanen, and M. Rossi, editors,
Proc. 8th OOPSLA ACM-SIGPLAN Workshop on
Domain-Specific Modeling (DSM 08), pages 20–27.
University of Alabama at Birmingham, 2008.

[12] M. Risoldi. A Methodology For The Development Of
Complex Domain Specific Languages. PhD thesis,
Université de Genève, 2010. Thesis # 4230.

http://youtu.be/Q5M2X98JNH4

	Introduction
	Related Work
	Previous Work and Goals

	Formal Framework for DSML Composition
	Application: the Cospel DSML
	Target Languages
	Transformation Framework
	Generic Cospel DSML
	Event Model extension of Cospel
	Hierarchical Model Extension of Cospel
	Geometry Model extension of Cospel

	Conclusion and Future Work
	References

