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Summary

In this paper we present TinyNET, a modular framework allowing development and quick integration of protocols
and applications for Wireless Sensor Networks (WSNs) in TinyOS. The motivation behind TinyNET is two-fold:
on one hand it allows to adopt a divide-and-conquer approach in the development of any TinyOS application; on the
other hand it provides a flexible administration of network protocols. As a sample development using TinyNET, we
consider an environmental monitoring application, and test it over a floor-wide WSN testbed. Data are converge-
casted toward a sink node, which gathers all data collected by the sensors. Routing toward the sink is achieved by
means of a hop count (HC) based algorithm. Our framework also integrates support for the 6LowPAN standard
(providing, e.g., per-sensor queries and pings). Thanks to TinyNET, s these messages will make transparent use of the
underlying network protocols. Also, TinyNET transparently manages the network components and related messages,
allowing different applications to share the same network stack; furthermore, it translates TinyOS interfaces so
that any previously developed application can be easily ported. These features make it possible to have a global
vision over any application, as well as to focus on each of its separate components. Copyright © 2009 John Wiley
& Sons, Ltd.
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1. Introduction

Wireless Sensor Networks (WSNs) have emerged as a
promising paradigm for a number of applications to be
implemented in the near future. These applications are
growing beyond simple data collection, localization,
and information retrieval services, to incorporate
increasingly complex features such as smart sensing,
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assisted navigation, and sensory extension. It can be
foreseen that many solutions by different distributors
will undergo full-fledged development and find their
way to the market, e.g., see Reference [1]. From
a developer’s point of view, it would be very
convenient to create new software for WSNs based
on the reuse of as many program components as
possible, taken from both open-source and proprietary
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repositories. However, as noted in Reference [2],
very few applications are actually built based on
reusable components; in fact, the most widespread
approach is to implement ad hoc, monolithic blocks
that deliver the required functionalities. From these
macro-blocks, it becomes difficult to distinguish which
components provide a given set of services. While this
usually bears greater efficiency at execution time and
a slightly smaller memory footprint, a software block-
based approach can achieve comparable efficiency and
footprint while bearing the further advantage of greater
modularity and broader system-level view [2].

A further desirable property of applications for
WSNs would be an easily manageable network
interface. WSN operating systems such as TinyOS [3]
give direct access to the radio transceiver commands.
While giving freedom and control to the programmer as
to the packets injected into the channel, this does not
make any specific networking stack available, hence
there are no clear interfaces that allow to easily link
protocols, e.g., according to the ISO/OSI model. In
other words, the programmer is not allowed to choose
whether to rely on a layered network architecture
or not, and even if he decides for a layered one,
he has to build a custom solution that encompasses
all required protocols (e.g., channel access, routing,
and application). Furthermore, the absence of a
modular and easily reconfigurable framework forces
to reconsider the whole structure of the software in
case, e.g., additional networking capabilities need to
be supported. For example, reconfiguring nodes that
are currently performing environmental monitoring
(erratic traffic, highly energy-efficient protocols) so
that the network can support fast alarm reports
(locally intensive traffic, greater tolerance for energy
inefficiency) requires to insert both the new alarm
application and the related MAC/routing protocols;
these will then have to share the same network interface
in a completely customized fashion.

In this paper, we move some steps towards a solution
to these problems, by introducing TinyNET, a modular
framework for TinyOS that (i) makes it easier to build
applications by reusing software modules; (ii) provides
any protocol and application with a layered network
interface that encompasses the whole stack, while
still allowing cross-layer operations and exchange
of parameters; (iii) allows fast reconfiguration of
applications through new protocols and functionalities,
that transparently become a part of the layered network
stack. Our framework operates on top of TinyOS but
below the user application modules, and is completely
transparent (in the sense that TinyOS module binding

directives are intercepted and used to place any module
within the framework).

The TinyNET framework is available for download
in the Tools section of the WISE-WAI website [4].

2. Related Work

With a few exceptions, most architectures proposed
for WSNs are created to comply with a particular
requirement, or to support a specific protocol feature.
For example, the authors in Reference [5] implement
energy management in WSNs by treating energy as
a fundamental design primitive. Their architecture
is composed of three parts, namely a user interface
for specifying an energy policy, a monitoring system
to control energy usage, and a management module
to enforce the energy policy. The use of expressive
language to specify the energy policy enables easier
user interaction.

The Tenet architecture [6] has been specifically
designed to support tiered architectures, where slave
(low-tier) nodes are only in charge of gathering
information, whereas the complexity of system-level,
computationally-intensive tasks (such as data fusion) is
concentrated on high-tier master nodes, which usually
own a non-volatile power supply. It is worth noting
that this is in line with the Router/End Node paradigm
seen, e.g., in the ZigBee standard [7]. Tenet subdivides
sensing tasks into tasklets, each of which specifies the
sensing operation to be carried out by low-tier motes, as
coordinated by masters. Tasks are flooded to all motes
upon user input.

The Sensornet Protocol (SP) architecture proposed in
Reference [8] aims at providing a link layer abstraction
to all protocols, by means of a shared message pool
(formed of data to be transmitted in packets) and
a shared neighbor table, which holds a summary of
neighbor information which is made available to all
protocols, instead of having each protocol maintain
its own. The SP approach allows to bind the standard
interfaces of the higher layers of the protocol stack
to the link layer; the effectiveness of this approach is
explained in Reference [9]. Chameleon [10] also targets
the design of a reconfigurable architecture, that allows
applications to transparently adapt to different MAC,
routing, and transport protocols. The key feature of
Chameleon is a universal header format which is based
on packet attributes rather than bit fields.

The approach chosen in Reference [2] is slightly dif-
ferent; the authors propose a MAC Layer Architecture
(MLA), which aims at subdividing usual MAC-layer
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functionalities into atomic operations, so that existing
as well as new protocols can be programmed based on a
large library of reusable components. Each component
(either hardware-dependent or -independent) is instan-
tiated into TinyOS; when properly connected, these
software blocks allow the creation of MAC protocols
that are entirely analogous to those found in the litera-
ture, and yield the same performance (e.g., throughput)
while bearing only a slightly larger memory footprint.
An approach similar to that in Reference [2] is also
found in Reference [11], where the authors propose
a Communication Processing Architecture (COPRA)
based on protocol processing stages and engines, i.e.,
components that perform basic operations and can
recursively become part of larger structures to carry
out more complex tasks. A survey of other ongoing
projects regarding networking abstractions in TinyOS
as of a few years ago can be found in Reference [12].

SensorStack [13] is a solution to provide an abstrac-
tion of communication services to the upper layers,
in order to facilitate data-centric communication. It
relies on an information broker based on the publish-
subscribe paradigm, and aims at providing simple
interfaces and efficient use of memory to share cross-
layer parameters, as well as the support for notifying
complex events to related protocols. Similarly, Cross-
Layer Optimization Interface (CLOI) [14] provides
an interface to exchange data between protocols; this
interface is also implemented in the form of data
structures such as message pools and neighbor tables.

Unlike the previously cited approaches, our
TinyNET architecture works at a lower level. We
focused more on the reusability of any software
block, rather than on specializing the architecture
to support a certain network task or application. In
this light, the most similar approaches are shown in
References [2,11]. However, no direct comparison
is possible even with References [2,11], in that
Reference [2] focuses on MAC protocols, while
Reference [11] requires specific protocol engines
and stages to encompass network functionalities.
In our case, instead, the framework’s main task
is to let the user promptly instantiate, switch, and
connect any kind of open or proprietary TinyOS-
based software, with special regard to creating multiple
instances of the same components and to transparently
multiplexing protocols over the same interface. In this
regard, it is worth noting that most of the previous
architectures such as those in References [5,6] could
be integrated seamlessly as part of the TinyNET
framework; this also applies to the MAC components
of Reference [2]. No direct comparison is therefore

possible between our approach and the previous efforts
at creating architectures for TinyOS. As a final note,
we recall that the Contiki operating system [15]
also implements an adaptive networking architecture
for WSNs through the Chameleon/Rime stack [10].
However, as most applications developed to date
have been programmed in TinyOS, TinyNET presents
considerable advantages, as it yields equivalently solid
network architecture, modularity, and extensibility to
present and future TinyOS applications. Also, while
Contiki has a fixed ROM occupancy of 40 kB, TinyNET
and TinyOS present a much smaller footprint, as
discussed in Section 4.

3. TinyNET

TinyOS is a powerful platform to build applications
for WSNs, due to its limited memory consumption and
to its cross-platform support; its design is based upon
tiny components, whose interfaces are linked using a
highly optimized C dialect nesC [16]. This paradigm
has proven to be effective when building a system with
shared, highly reusable components, and helps reduce
the final binary image size.

The communication abstraction employed in TinyOS
is the active message (AM) model [17]. The AM header
is composed of 1 byte, the AM type, identifying the
user-level message handler. The rest of the packet
is composed of the payload to be passed on to the
handling process. The AM paradigm straightforwardly
allows to share the radio interface, by binding
applications to a single AM type of the AM subsystem.
Applications employ available interfaces to control
the radio subsystem, e.g., to power it on/off and, by
means of platform specific commands, read link quality
indicators such as transmit (TX) power, Received
Signal Strength Indicator (RSSI) and Link Quality
Indicator (LQI). Directly putting an application in
control of the radio subsystem is a valid approach only
if the application itself is very simple; in case a more
complex system should be built, a top-down approach
is preferred, which requires to design the architecture
and modules of the system before developing the
system itself. However, network applications are
usually designed as a holistic module which is tightly
integrated with TinyOS; this module is implemented
using hardly reusable parts and typically incorporates
platform-specific code. This is also due to the structure
of TinyOS itself, whose development architecture does
not encourage structured modular design. Furthermore,
there is no logical network architecture available for
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TinyOS, which may hinder open contributions of
network protocols and applications.

TinyNET is a network framework designed to help
fill these gaps, as it provides modularity and easy
interconnection between TinyOS and any kind of
networked system built on top of it.

3.1. Architecture Description

TinyNET exploits nesC to split any networked system
into two parts: the application layer and the network
layer. The application layer is similar to TinyOS’s
standard developing entry point, with the additional
feature that every application module represents a
single, independent process in the network system.
Utility interfaces have been built to perform such
operations as radio state control and channel selection;
in addition, the control of the radio subsystem
has been centralized, so that it can intercept any
control request. In turn, this common entry point
facilitates the development of resolution techniques
for concurrencies in radio control (e.g., through
independent locks to be imposed on the radio by
those applications that require exclusive access to
this resource). The network layer is instead a novel
layer encompassing those modules that require full
access to the packets received and/or transmitted by
the node. The network layer is a direct development
entry point for new network protocols to be inserted
in the framework, transparent to applications. This
layer also supports ordered access of protocols to
transmitted/received packets, and provides full control
over the packet itself, e.g., any module can change
the field structure of the packets if required. To make
the differentiation among the application and network
layer easier, the layers are coded within separate
files, allowing system integrators to easily combine
application and network components.

The development of TinyNET has posed various
design challenges, mainly in order to select a minimal
yet sufficient set of inter-component interfaces, which
has to be clean and practical for applications, yet
powerful for network modules. Moreover, significant
attention has been paid to preserving support for
cross-layer interactions, in that any network module
can access and process information contained in
other modules (this feature is natively available in
TinyOS). A hardware abstraction layer has been
introduced to access specific chip features, in order to
provide cross-platform support and access to low-level
hardware components. Moreover, the development has
been carried out on top of TinyOS in a completely

Fig. 1. A sketch of the TinyNET architecture.

independent fashion, in order to favor the porting of
TinyNET to newer TinyOS versions. (For better clarity,
the TinyNET code has also been placed in a different
folder tree with respect to the rest of TinyOS.) As shown
in Figure 1, the application packets to be transmitted are
taken in charge by the network layer and are scheduled
across network modules.§ After passing through all
linked network modules, the packets are sent to the
MAC module to be scheduled for transmission.‖ The
reception of packets takes place following the reverse
order, i.e., when the MAC module signals the reception
of a new packet, this packet is processed by all receive
(RX) network modules (in reverse order with respect to
the transmission phase, see Figure 1) and is eventually
passed on to the application corresponding to the AM
type of the received message.

3.2. Inter-Component Interfaces

Four different kinds of interfaces are required in
TinyNET.
Application layer interfaces—Transmission and
reception interfaces are required by applications to

§In the current implementation, the number of network
modules has been fixed to three for simplicity.
‖The MAC module manages channel access independently of
actual MAC/routing protocols. It is used to implement, e.g.,
ALOHA vs. CSMA.
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access the framework. In general, these are an
expansion of current TinyOS AMSend and Receive
interfaces.

interface TX {
command message_t* send(

message_t* pkt,
am_addr_t dst,
uint8_t len,
uint8_t power,
uint8_t prio,
bool swap );

event void sendDone(
message_t* pkt,
error_t status );

}

The send command has been extended over the
standard AMSend.send, with new per-packet TX
power and scheduling priority attributes. Moreover
a bool swap parameter is passed, to request a
message t* pointer to a free buffer in exchange
for the message t buffer passed for transmission.
This can improve memory utilization in nodes with
multiple applications that concurrently access the
network subsystem. At the current stage, the Receive
interface is identical to TinyOS 2.1, and has been
renamed RX, in order to support later modifications.
Network layer interfaces—Network layer modules
require full access to the packet, and can thus access the
internal framework data structures used by scheduling
components. The internal transmission buffer is defined
as follows:

typedef struct txring_buffentry_t {
am_addr_t src;
message_t* pkt;
txpkt_state_t state;
uint8_t power;
uint8_t prio;
error_t error;
uint8_t swapped;

} txring_buffentry_t;

where pkt is a pointer to the message t holding the
actual packet to be transmitted: swapping this pointer

with a different one allows the network module to
rewrite the entire packet from scratch. The variable
state holds the current scheduling state of the packet,
representing which network modules it has already
stepped through; power is the power level at which the
packet should be transmitted, prio is the scheduling
priority, error stores a general purpose error code
and swapped tells if the buffer space of the current
packet has been swapped. Moreover, the source address
of the packet is also stored in the structure (src field),
to distinguish between the originator of the packet and
the current relay (which is set by TinyOS). The full
txring buffentry t* structure pointer is passed
to every transmit network module which implements
the ProcessTXPacket interface:

interface ProcessTXPacket {
command error_t process(

txring_buffentry_t* txbuf );
event void processed(

txring_buffentry_t* txbuf,
error_t error );

}

Network modules handle one packet at a time:
they receive the input packet through the process
command, and signal back the processing completion
using the processed event.

typedef struct rxring_buffentry {
message_t* pkt;
rxpkt_state_t state;
error_t error;
uint8_t opt;

} rxring_buffentry_t;

Similarly, an RX buffer structure is defined, storing
the pkt message t* pointer, the state variable
of the current processing step, and an error variable
holding the code of the error that occurred during
packet processing. Furthermore, a persistent per-packet
opt variable is provided for internal module use. A
ProcessRXPacket interface is provided, analogous
to the aforementioned ProcessTXPacket.

Besides the described TX/RX processing interfaces,
two more specific interfaces are required to build
a practical network layer: a Route interface and a
TXSchedule interface.

interface Route {
command bool forward(rxring_buffentry_t* rxbuf);
command bool isForMe(rxring_buffentry_t* rxbuf);

}
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The Route interface is required to handle the
delivery process of received packets. More specifically,
it allows a routing module to implement custom
logic to choose whether a packet should be further
relayed over a multi-hop path (returning the forward
command). Moreover, the isForMe command can
be implemented to decide whether a packet must be
delivered to the applications running on the local node.

The TXSchedule interface, instead, requests a
packet transmission slot to the MAC module. ¶

interface TXSchedule {
command error_t schedule(

uint8_t id,
uint16_t dst );

event txring_buffentry_t* doTX(
uint8_t id );

event void TXdone(
txring_buffentry_t* txbuf,
error_t error );

}

Using this interface, the MAC module can be asked to
reserve a slot for transmission of packet id to node
dst. When the transmission eventually takes place,
the MAC module triggers a doTX event, which will
return the pointer to the TX buffer to be transmitted.
Upon transmission end, a TXdone event is triggered
to return the result of the operation.
Hardware abstraction interfaces—At the current
stage of development only CC2420-based motes are
supported, and the supplied hardware abstraction
is bound to the CC2420 TinyOS implementation.
When more radio chips are supported, the interface
definitions and conventions will be refined. The first
interface required to abstract from hardware-specific
components is HardPacket:

interface HardPacket {
command uint8_t getPower( message_t* p_msg );
command void setPower(

message_t* p_msg,
uint8_t power );

command int8_t getRssi( message_t* p_msg );
command uint8_t getLqi( message_t* p_msg );

}

¶This is required to support reservation-based slotted access
protocols; unslotted protocols may allow access right away
or according to specific rules.

The per-packet TX power level, receive RSSI or
LQI are extracted from the radio subsystem using
this interface. As reported before, the returned values
are currently interpreted as in the CC2420Packet
module:

interface RadioChannel {
command error_t set( uint8_t channel );
event void setDone(

uint8_t channel,
error_t error );

command uint radio_frequency (RF)();
}

The RadioChannel.set command allows to set
the operating radio channel of the radio-frequency (RF)
transceiver, according to the IEEE 802.15.4 standard;
upon completion of the command, a setDone event
is propagated. The channel currently in use can be
identified by using the get command.
Legacy application layer interfaces—To facilitate
the migration to TinyNET, a set of standard TinyOS
network interfaces is provided: AMSend, Receive,
Packet, and AMPacket. These interfaces are
sufficient to translate former TinyOS applications
to TinyNET, by instantiating TinyNET components
instead of standard TinyOS components.

3.3. Technical Description

The path tree of TinyNET contains the fol-
lowing folders: sys (framework core modules);
interfaces (interface definitions); modules (ac-
tual implementation of MAC, network, and application
modules); platforms (collection of platform-
specific components); lib (reusable components,
useful to implement common network modules);

6lowpan (porting of TinyOS’s 6LowPAN imple-
mentation to TinyNET); examples (sample usage
files demonstrating TinyNET); install (installation
procedures and utility files).
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Fig. 2. Scheme of the wiring of TinyNET components.

The sys directory contains all the components
implementing the actual framework. As shown
in the wiring scheme reported in Figure 2, the
BaseSingleNetC component is the basic module
every application should instantiate to signal its
own presence as part of the framework; the
instantiation allows every radio-related event (power
on, channel change, and radio subsystem boot)
to be exposed through the offered interfaces.
BaseSingleNetC actually instantiates BaseNetC,
and binds it to the application with a unique
net app id; the BaseNetC component is the
network layer definition file, which is in charge
of wiring all network layer components, of loading
RXRingC, TXRingC, and ActiveMessageC, and
of selecting and wiring MacC with the three receive
and transmit modules, R{1,2,3} and T{1,2,3},
respectively.

The RXRingC component is in charge of passing
on every packet received by MacC to all receive
network modules, and ultimately of delivering the
packet to the application, in order to re-queue it
for transmission. Similarly, the TXRingC component
is in charge of handling transmit packets to every
TX network module. Furthermore, it reserves a
transmission slot from the MAC module, handles the
packet to that module when the slot is available,
and signals back to the application when the
packet has actually been transmitted. The MacC
component has full direct access to the TinyOS radio
subsystem and is in charge of every transmission and
reception.

4. Proof-of-Concept Scenario

Our first experience with TinyNET focuses on a
simple test aimed at measuring the framework’s basic
functionalities and overhead. The BlinkToRadio
application has been ported to TinyNET as a
reusable application module using native TX/RX
interfaces. Therefore, BlinkToRadio can be loaded
by simply instantiating and wiring the component in the
application layer definition file. When the firmware is
built using the described application and no network
modules, the overhead due to the framework size can
be measured by comparing the size of the binary to
that of a plain BlinkToRadio binary, i.e., built
without TinyNET. As to ROM occupancy, the use
of TinyNET increased the BlinkToRadio size by
3.5 kB, reaching a total size of 15 kB. However, it
should be noted that this overhead is fixed, and does
not depend on how many applications are loaded, nor
on which ones; also, it is independent of how many
network modules have been wired to the framework.
More specifically, it depends only on how many receive
and transmit modules (see Figure 1) TinyNET is
configured to handle. To make this clearer, we report in
Table 3.3 the ROM footprint of the BlinkToRadio
application. The RAM occupancy overhead, instead,
depends on the scheduling queue buffer sizes as set up
in configuration files, plus about 60 B of static variables
allocated by the framework.

After testing TinyNET’s memory footprint, we wish
to experience the practical advantages yielded by usage
of TinyNET, as compared to the standard TinyOS
programming approach. To this end, we have built a
more complex system, featuring several networking,
communication, and application modules. A multi-
hop environmental monitoring and querying system
using 6LowPAN has been chosen in this regard, as it
is complex enough to prove the advantages brought
about by using the TinyNET framework. We highlight
that the focus of the work was to prove that, compared
to TinyOS, TinyNET allows easy and straightforward
implementation of the various modules. Therefore, we

Table I. ROM occupancy for the BlinkToRadio application
without TinyNET and with different TinyNET configurations.

Configuration ROM Occupancy (kB) % Increase

Without TinyNET 11.482 —
TinyNET 1 module 14.130 23
TinyNET 2 modules 14.576 27
TinyNET 3 modules 15.016 31
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Fig. 3. Schematic architecture of the testbed deployment (see Reference [18] for more details on the WISE-WAI project).

will not be dealing with performance metrics related to
the system itself.

4.1. The Testbed Setup

We start the description by introducing the testbed
platform upon which we have tested the application
described above. Our testbed has been designed in the
context of the European SENSEI [19] and the Italian
WISE-WAI [4,18] projects. The testbed serves as a
flexible and reconfigurable platform to test algorithms
and protocols for WSNs, and has been deployed using
networking devices and solutions which allow fast
communication to/from the wireless sensors nodes
(e.g., for debugging or reprogramming purposes). Our
network features a density of 10–20 nodes within the
coverage area of any sensor; in case different (e.g.,
lower) densities should be needed, this number can be
tuned by acting on the maximum transmit power of the
nodes.

We deployed the testbed according to the hierarchical
organization depicted in Figure 3, whereby all sensors
are connected, via USB hubs, to tiny embedded
computers that act as node cluster gateways (NCGs,
see Figure 4). USB connections are not used for
actual communication, but rather provide power supply
and log data for debugging purposes. During actual
operations, communications take place only through
the wireless channel. For the quick deployment of
applications to be executed on the nodes, USB cables
can also convey new application modules. The NCGs
are core elements of the network hierarchy, and interact

Fig. 4. An example of node cluster gateway (NCG), showing
the embedded computer at the center, and the two USB 2.0-

compliant hubs at the top.

with the nodes both in the upstream (node-to-gateway)
direction, e.g., for reporting debug and log messages,
and in the downstream (gateway-to-node) direction,
e.g., to reprogram, reset, and power up or down the
nodes. The latter functionality is provided by fully USB
2.0-compliant hubs and proves particularly useful as
a sort of hard sensor reset. This is accomplished by
powering off the port to which the sensor is attached.
Thanks to this function, the sensors need not be
manually disconnected, in case they should not respond
to software reset commands. NCGs can be reached
from a central server through virtual private network
(VPN) connections, in order to carry out management
tasks; otherwise, their presence is transparent to the
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Fig. 5. Node deployment map, with a close-up on the arrangement of nodes within one of the rooms.

user, who interacts with the network as though they
were directly communicating to the sensors. While
command line scripts are available for this purpose,
an HTTP interface has also been developed to ease
node programming, as well as other management tasks
(power on/off, information retrieval, and so forth).

The aforementioned architecture (server, NCGs,
USB hubs, and sensors) is scalable and easy to extend;
furthermore, its components can be easily replaced
in case of failures. As anticipated, NCGs are key
components of our network hierarchy. They are small
computers of size 15 cm × 15 cm, bearing limited
power supply requirements, which can be supported
through the Power-over-Ethernet (PoE) standard. The
wireless embedded sensors we chose for use in our
testbed are the TelosB nodes [20], a widely used
platform enjoying constant support and upgrades.
Here we recall that the TelosB platforms are low-
power ZigBee-compliant wireless nodes employing a
maximum transmit power of 1 mW within the 2.4 GHz
ISM band, at a maximum bit rate of 250 kbps. The
nodes have been deployed within the buildings of

the Department of Information Engineering at the
University of Padova, Italy. Part of the testbed is shown
in the map in Figure 5.

The following sections will present the components
of our system architecture in more detail.

4.2. 6LowPAN/IPv6 Stack

Research on the integration between standard Internet
services and WSNs, as well as the introduction of
novel concepts such as the Internet of Things [21,19]
bestow larger importance on protocols that allow easy
connection between WSN islands and the Internet.
6LowPAN [22] plays a key role in this regard, as it
is specifically designed to make any, no matter how
tiny, object addressable from anywhere in the Internet
through IPv6; the burden of typical IPv6 processing and
header sizes, which are not optimized for the wireless
channel and the limited processing power of sensor
nodes, is alleviated by compressing the IPv6 header.
This is achieved, e.g., by avoiding repeating patterns
and useless or redundant fields, while still allowing
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use of the full breadth of IPv6’s addressing space. Such
protocols as 6LowPAN, although simple, allow packet
transfers compatible with Internet communications,
making WSNs become part of the world-wide network
along with any other kind of connected smart object.

Currently TinyOS features a lightweight 6LowPAN
implementation, which can be found in the path
lib/net/6lowpan; this implementation provides
the minimum working set of features required by IPv6
specifications: ICMPv6 Echo Request/Reply, header
compression and User Datagram Protocol (UDP)
socket support. The implemented features and exposed
interfaces fit the requirements of our proof-of-concept
application; for this reason, the 6LowPAN implemen-
tation provided along with TinyOS has been ported
to TinyNET. Through the 6LowPAN component, any
node can assign itself any IPv6 64-bit prefix to be added
to its MAC address (TOS NODE ID); furthermore, a
node can send UDP packets to any IPv6 address and
listen over one or more UDP ports.

In TinyNET, 6LowPAN sits on top of the whole
framework, behaving as a standard application. This
way, 6LowPAN can make straightforward use of
any available link layer and network protocol (e.g.,
routing and security). By using legacy TinyOS support
interfaces, porting 6LowPAN to TinyNET has been
very easy, as the only changes required involved the
instantiation of some components and the setup of
the proper wiring to the 6LowPAN subsystem. This
is a further clue of how TinyNET straightens up
development tasks when integrating objects into a more
complex application.

4.3. Routing Network Module

A simple routing protocol based on hop count (HC)
descent has been implemented; a node with HC equal
to n always relays packets to a neighbor exhibiting
HC equal to n − 1. While this might be a suboptimal
strategy [23], it is sufficiently effective and simple
to serve as a proof-of-concept component. The HC
information has to be renewed periodically; to this
end, each node sets its own HC to an arbitrarily high
value, and the sink starts a HC flooding procedure by
sending an advertising packet with HC equal to 0; all
nodes receiving the messages set their HC equal to 1,
and choose the sink as their next hop. The procedure
is recursively repeated, as every node broadcasts its
HC (say n), and its neighbors set their own HC to
the minimum between the current HC and the value
read from the packet plus one. When the node’s HC
is actually updated (the packet carried a smaller value

than currently held by the node), the receiver selects the
packet sender as its next hop toward the sink. This is
only one way to choose the next hop; other choices that
lead, e.g., to some cost optimization [23] can be applied
as well. In order to handle dead nodes and topology
modifications, an age variable is associated to any
chosen relay. Each time a node propagates its HC, it
also increments the age of its relay by one. When
age gets bigger than a preset MAX AGE, the current
next hop becomes outdated, and the node is required to
perform a further relay choice upon reception of a HC
update packet from a neighbor; in any case, the age
of a relay is also set to zero any time a HC packet is
received by that relay.

The protocol described above supports node-to-sink
communication, but does not apply to sink-to-node
routing, because the sink itself has no knowledge about
which path to go through in order to reach the node.
A simple solution to this shortcoming is to have any
node, including the sink, remember which neighbor
is relaying the packet sent from a specific source. By
dynamically building a {relay,source} least recently
used (LRU) cache table, any path can be walked in
a reverse, sink-to-node direction. To accomplish the
described tasks, a routing header is required, which
carries information about the final destination of the
packet, the chosen next hop, and the original source of
the packet (which is also required in order to build the
route from sink to node).

Implementing the described protocol in TinyNET
requires that the network module provides three
interfaces: ProcessTXPacket, used to build the
routing header in the packets queued for transmission
(in order to keep implementation simple, the routing
metadata has been appended to the outgoing packet);
ProcessRXPacket, required to extract the routing
footer appended by the transmitting node; Route,
which updates the LRU table when a packet is queued
for further relaying or delivery to the application.

4.4. Environmental Monitoring and Querying
Application

The application built upon the described system
performs environmental monitoring and supports
single node querying. The application concept is
very simple; the monitoring component ReadStoreC
periodically samples values provided by on-board
sensors, and stores them into the RAM using a circular
buffer of fixed size (equal to N PKT). The sampling
interval is fixed to READ INTERVAL, and can be tuned
by acting on the variable.
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Asynchronous to the gatherer of sensor readings,
a second component (LocalAggregationC) ac-
cesses the circular buffer, and stores a summary of the
values on the flash memory integrated on the sensor
node board. This way, the only permanent trace of past
readings is kept in a compressed form, and provides
useful information about reading history (which can
be accessed by using proper queries), without wasting
the flash memory. As a compressed representation of
the readings, we chose the average value.

The networked component is named
TotalAggregationC, and is the only module in
charge of network-related operations, such as listening
for incoming requests and reporting data back to the
sink. The latter operation is performed periodically
by all sensors, but it should be noted that the sink
itself can query any specific sensor at any time, if
needed. The 6LowPAN support discussed before also
enables queries to be originated by any host on the
Internet toward any node in the network; the converse
is also true, i.e., sensor readings can be conveyed to
any host on the Internet. Figure 6 shows the interfaces
connecting the aggregation and data reading modules.

In order to achieve communication efficiency and
scalability, the nodes progressively aggregate the
sensor readings while routing packets throughout
the network. As commonly done in many similar
approaches [24,25], we have organized the nodes into
an aggregation tree. The tree is formed in such a way
that hierarchically higher nodes aggregate the readings
received by the sensors from lower hierarchical levels.
Hierarchical connections are devised so that nodes
expected to yield correlated measurements are at the
same hierarchical level and report to the same head
node. Such nodes are said to form a group. For example,
the nodes in the same room report to a node which

Fig. 6. Interconnection between modules of the application
performing sensor reading collection and aggregation.

is also inside the room, and which can decide if and
how to aggregate the data coming from its children.
In turn, further levels of aggregation are possible;
e.g., head nodes representing groups of sensors within
rooms on the same floor or wing of a building may
report to another head node, which occupies a higher
hierarchical position; this node receives information on
a per-group basis, and can thus decide whether or not to
further aggregate the readings, depending on whether
the end user requires a coarse or fine data report. We
note that this structure is scalable and fast to replicate.
All aggregation operations applied to group readings
are again delegated to the TotalAggregationC
component.

The aforementioned application elements are
connected through a custom interface ReadData,
supporting asynchronous replies to get commands
by means of getDone events. Therefore, upper layer
modules propagate queries in a top-to-bottom direction
whenever data is required, thereby limiting the further
occupation of the sensor RAM. We recall that the
averages of past readings are available on the flash
memory of the node, whereas a limited amount of
recent, non-averaged readings can be retrieved from
the node circular buffer.

Examples of the data gathered by the application
can be found in Figures 7 through 10. In particular,
Figures 7 and 8, respectively, show the correlation
among the time series of temperature and luminosity
readings output by sensors m1 through m9, in the
bottom-right room of the map in Figure 5. Figures 9
and 10, instead, show the same correlation metrics
taken over the readings of sensors c1 through c5,
along the corridor. From the graphs, we infer that the
correlation among the luminosity levels perceived by
nodes in the room (Figure 7) is very high, meaning
that this metric can be aggregated into an average

Fig. 7. Correlation among the time series of temperature
readings for nodes m1 through m9 in Figure 5.
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Fig. 8. Correlation among the time series of luminosity
readings for nodes m1 through m9 in Figure 5.

Fig. 9. Correlation among the time series of temperature
readings for nodes c1 through c5 in Figure 5.

with little (if any) loss of information. The same
applies to the temperature readings of nodes in the
corridor (Figure 9). The reason behind the very high
correlation is that the room features very uniform
lighting from windows and sometimes ceiling lamps,
which leads to very similar sensor readings. The same
is verified for the corridor temperatures; these tend
to be uniform across the corridor itself, with slightly
larger deviations, which are small enough to make the
temperature information amenable to be represented
with an average value. The luminosity in the corridor
(Figure 10) behaves differently; in this case, there are
no windows, and lighting comes from rooms, doors,
and side corridors as well, making the luminosity non-
uniform, and more so for nodes placed farther from
each other (e.g., nodes c1 and c5, which have the
lowest luminosity correlation). The same applies to the
temperature readings in the room (Figure 7), where this
time the source of different heat levels is the equipment
placed in the room itself.

Fig. 10. Correlation among the time series of luminosity
readings for nodes c1 through c5 in Figure 5.

These results are just samples of the data which
can be gathered from our sensor network; however,
they indeed suggest that aggregation is a viable and
effective option for environmental data, making the
environmental monitoring application an effective part
of our proof-of-concept TinyNET application.

5. Lessons Learned and Conclusions

During the development of our system, our attention
has been focused on the complexity required to develop
single components and on their later integration, rather
than on how to design a monolithic code encompassing
the desired functionalities. We experienced that
TinyNET represents a change of perspective with
respect to the usual way of programming TinyOS
applications, as it gives TinyOS developers a chance
to follow the well-known divide-and-conquer design
strategy for complex systems. In other words, TinyNET
allows to subdivide the development into many simpler
independent parts, each to be handled separately. Using
the provided framework interfaces, the development
of components was fast, allowing straightforward
implementation and easy debugging; in particular, the
latter is facilitated by concentrating on a single module
instead of inspecting a monolithic code. Maintaining
the software is also substantially easier, as each
component can be easily replaced, integrated with
other components, or deleted. Thanks to modularity,
every component can be swapped with no further
adaptations; furthermore, new features can be added on
top of the already available software by creating new,
separate modules, and by applying the proper wiring.
TinyNET yields all these advantages with no further
computational complexity and memory burden.

Copyright © 2009 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2010; 10:101–114

DOI: 10.1002/wcm



TinyNET: A TINY NETWORK FRAMEWORK FOR TinyOS 113

Future work on TinyNET includes further op-
timizations, including the wrapping technique of
network modules, in order to provide flexibility on the
number of modules, yet retaining the static component
allocation and limited memory footprint (and without
changing any presently available interface); we
also plan to uniform the access interfaces of the
6LowPAN component to TinyNET’s TX/RX interfaces,
which allows simpler implementation and porting of
previously developed applications.

The whole TinyNET framework is available in the
‘Tools’ section of the WISE-WAI project website [4].
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