COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
Commun. Numer. Meth. Engng (2009)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.1275

Investigation of regularized techniques for boundary knot method

Fuzhang Wang, Wen Chen* T and Xinrong Jiang

Center for Numerical Simulation Software in Engineering and Sciences, Department of Engineering Mechanics,
Hohai University, No. 1 XiKang Road, Nanjing, Jiangsu 210098, China

SUMMARY

This study investigates regularization techniques for the boundary knot method (BKM). We consider three
regularization methods and two approaches for the determination of the regularization parameter. Our
numerical experiments show that Tikhonov regularization in conjunction with generalized cross-validation
approach outperforms the other regularization techniques in the BKM solution of Helmholtz and modified
Helmholtz problems. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent years have witnessed a research boom in boundary meshless methods, such as the method
of fundamental solutions (MFS) [1, 2], boundary knot method (BKM) [3, 4], boundary collocation
method [5, 6], boundary node method [7, 8], and modified MFS [9-11] etc. In particular, the BKM
is found to produce very accurate solution of the Helmholtz and modified Helmholtz problems.
However, the convergence curves of this method are often oscillatory when using a large number
of knots, which is also encountered in the other global collocation method such as the MFS. The
reason for this phenomenon may contribute to the severely ill-conditioned full interpolation matrix.

In order to remedy this troublesome ill-conditioned problem, the regularization technique has
been investigated on its utility to improve the accuracy of the global collocation boundary methods.
For instance, Wei et al. [12] makes a comprehensive comparison of various regularization tech-
niques in the MFS solution of inverse Cauchy problems. Ramachandran [13] uses the singular value
decomposition (SVD) to resolve the ill-conditioning of the MFS discretization algebraic equations,
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and his conclusions are that direct solution of the MFS equations by Gaussian elimination are
unreliable in some cases and that the SVD can be used to overcome this drawback. However,
Chen et al. [14] re-examine the results given in [13] and argue that the SVD is not necessary in
the MFS solution of direct problems. It is noted that the truncated singular value decomposition
(TSVD) is clearly superior to Gaussian elimination for noisy boundary conditions [14]. On the
other hand, the TSVD is also employed in the BKM solution of inverse problems [15, 16]. All
these studies, however, have mainly focused on the solution accuracy rather than on the solution
stability without a detailed investigation on the convergence behaviors. To our best knowledge,
the regularization technique has also never been examined on the BKM stability in the solution of
direct problems.

Motivated by the work mentioned above, this study investigates three regularization techniques
and two approaches in choosing regularization parameters in the BKM solution of Helmholtz
equations. The BKM is employed to discretize the equation. And then, to obtain a stable numerical
scheme, regularization methods are used in solving the resulting discretized algebraic equations.
Numerical experiments exhibit that the BKM coupled with Tikhonov regularization (TR) using
generalized cross-validation (GCV) regularization parameter performs best in terms of stability for
solving direct problems of Helmholtz and modified Helmholtz equations.

2. FORMULATION OF BKM

For simplicity, we consider solving well-posed boundary value problems for the Helmholtz
equation:

VZu+2u=0 inQ )]
ux)=i(x) onIp (2
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where u(x) and ¢(x) are the known functions, Q denotes the solution domain in R? and 0Q(=
I'pUT'y) its boundary, where d stands for the dimensionality of the space and n represents the
unit outward normal.

In the case that A is purely imaginary, the modified Helmholtz equation that has the similar
form to Equation (1) is given by

Viu—72u=0 inQ 4)

The non-singular general solution of the homogeneous Helmholtz equation (1) and homogeneous
modified Helmholtz equation (4) are, respectively, given by

(n/2)—1
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and
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uf,(r)=% (ﬁ) Lnjy—1(4r), n>2 (6)
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where J denotes the Bessel function of the first kind and / stands for the modified Bessel functions
of the first kind, r represents the Euclidean norm distance. Since there is no singularity in (5)
or (6), all collocation knots are placed on physical boundary and can be used as either source or
response points.

By using the non-singular general solution (5) or (6), the solution of Equation (1) or Equation (4)
can be approximated by

N
I/t(x,'): Z rxjuZ(r,-j) (7)

j=1

where j is index of source points on physical boundary, N denotes the total number of boundary

knots, o; the unknown coefficients and r;; :\/ (x; —sz.)—{—(y,- —y j)z, where i stands for index of
collocation points on physical boundary. By collocating boundary Equations (2) and (3), we have
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Equations (8)—(9) can be written in the following matrix system:
Aoa=Db (10)

where A = (A;;) is an interpolation matrix and o= (o1, a2, . . ., ocn)T. We notice that, due to the global
interpolation approach, the BKM produces a highly ill-conditioned and dense matrix system when
a large number of boundary knots are used. For more details, we refer readers to References [3, 4].

An interesting and significant aspect of discrete ill-posed problems is that the ill-conditioning
of a given problem does not prevent us from getting meaningful approximate solutions. Rather, it
implies that the standard methods in numerical linear algebra for solving Equation (10), such as
Gaussian elimination, may not be suitable for solving this type of problems. As such, regularization
methods are proposed to alleviate the difficulty of highly ill-conditioning problems [17-20]. We
briefly introduce some of them in the following section.

3. REGULARIZATION METHODS
Before presenting our numerical results, we give a brief discussion of some regularization methods.

3.1. Singular value decomposition (SVD)

As is well known, the matrix A in Equation (10) can be decomposed as [13]
A=UDVT (11)
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where U =[u1,us,...,uy] and V=[vy, v, ..., vy] are matrices with orthogonal columns, Utu =
VTV =1y, the superscript T represents the transpose of a matrix, /y denotes the identity matrix,
and D is a diagonal matrix with diagonal elements

01202> -+ 2oy >0 (12)

where g;, 1<<i<N, are called the singular values of A while the vectors u; and v; are the left and
right singular vectors of A, respectively.
Using Equation (11), we can solve Equation (10) in the following form:

N 4Tp
oc:Zu’

i=1 0i

v; (13)

We note that the ill-conditioning of A is due to the small singular values as shown in the
denominator of (13). Based on the SVD, we present some commonly used regularization methods
for ill-posed problems in the following subsection.

3.2. Regularization methods for discrete problems

The three most widely used regularization methods are the TSVD, TR method and damped singular
value decomposition (DSVD).

In order to show the completeness of this paper, concise explanation on these methods is given
as follows:

TSVD method: To obtain a better estimate of the least-squares solution, the TSVD solution is
often used. It is given by approximating a rank—N full matrix A by a rank K matrix in which
only the largest K singular values are retained.

K
AK=Zu,~G,~viT (14)
i=1

In this way, matrix A in Equation (11) is replaced by A, which has a well-defined null space of
dimension N — K spanned by the right singular value vectors, vg4i, ..., vy. The original linear
system Equation (11) is then replaced by the following problem set of Equation (15), where b is
ideal noise-free data obtained at the minimized point. The resulting TSVD solution of Equation (15)
is given by ax and Equation (16).

min ||a]|2 is subject to min||Agxo—b|l =min (15)
K ulb

K=y ——v; (16)
i=1 Oi

where K <N is also a regularization parameter.
TR method: One of the most popular regularization methods is the TR, which in its simplest
form replaces the linear system (10) by the minimization problem

min [| Ao —b|1*+ [l 17
aeR"
Here u>0 is a regularization parameter. Throughout this paper ||.|| denotes the Euclidean norm.
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The Tikhonov-regularized technique based on SVD can then be expressed as

L ulb
o‘,u:ocmin:Zfi : Vi (18)
i=1 Oi
where the Wiener weights are
fi= (19)
i = 0%—{—#2

and / is the rank of A.

DSVD method: A less known regularization method that is based on SVD is the DSVD. Here,
instead of using the filter factors (19) in the TR, one introduces a smoother cut-off by means of
filter factors f; defined as

g

Cgitu

Ji (20)

These filter factors decay slower than the Tikhonov filter factors and thus, in a sense, introduces
less filtering.

The suitable value of the regularization parameter u>0 is chosen by the L-curve criterion (LC)
and the GCV in this paper.

3.3. Regularization parameters

The determination of a satisfactory value for the regularization parameter u is crucial and is still
under intensive research [20]. In this paper, we use the LC criterion and the GCV to choose a
good regularization parameter.

LC for choosing the regularization parameter [17,21]: A proper choice of the regularization
parameter u is essential in the successful use of a regularization method. Define a curve

L:={(log|los [l log|| Aot —=Dl) : u=0} 2n

The above curve is referred to as the L-curve, because it is shaped like the letter L for a large
class of problems. We note here that the L-curve is a continuous curve when the regularization
parameter is real in the TR and the DSVD. In numerical computation, the point with maximum
curvature will be searched as the corner of the L-curve. For the regularization methods with a
discrete regularization parameter, such as in TSVD, a finite set of points

{(loglag [l logl| Ay —bl):g=1,2,..., N} (22)

will be obtained and interpolated by a spline curve. The point on the spline curve with the maximum
curvature is then chosen as the desirable regularization parameter.

The L-curve is very attractive because the method shows how the regularized solution changes
with the regularization parameter u.
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GCYV for choosing the regularization parameter [12]: The GCV is a statistical method that
estimates the optimal value of the regularization parameter, by minimizing the functional

1 2
1= AK))D|

V(K)= . 5 (23)
—t I-A(K
|:N race( ( )):|
The influence matrix A(K) is defined as follows:
Aag =A(K)b (24)

The GCV has some computationally relevant properties and, moreover, is a predictive mean-square
error criteria, in the sense that it estimates the minimizer of the residual function

T(K)=nllA(ek —o))? (25)

In the following section, as a comparison to the BKM with no regularization technique, numerical
results are given by using the BKM coupled with six regularized methods: GCV-TR, LC-TR,
GCV-DSVD, LC-DSVD, GCV-TSVD and LC-TSVD.

4. NUMERICAL RESULTS AND DISCUSSIONS

To examine the accuracy and stability of the proposed regularization methods given in the above
sections, we test four benchmark cases of homogeneous Helmholtz and modified Helmholtz prob-
lems. The relative average error (root mean-square relative error: RMSE) in the following figures
is defined as follows:

u(xj)—u(x;) 2

u(x;)

N
RMSE= 3

j=1

1
N

for |u(x;)|>10"3 and

1 N
RMSE= | — " [u(x;)—i(x))[?
N =

for |u(x j)|<10’3, where j is the index of inner point we are interested in, u(x;) and i(x;) the
exact and numerical solutions, respectively, and N denotes the total number of interior testing
knots. The convergence behavior of the BKM using six regularized methods are shown in the given
curves of the relative average error versus the number of boundary knots. MATLAB regularization
code developed by Hansen [18] has been used in our computations.

4.1. Case I: elliptic domain case
Here, we consider the Dirichlet homogeneous Helmholtz equation on an elliptic domain
Vau(x, y)4ulx,y) =0, (x,y)eQ (26)
u(x,y) =sin(x) sinh(x) +cos(y), (x,y)e€dQ 27
where Q={(x, y):x2/4+y*=1}.
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Figure 1. Relative average error curves for Case 1.
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Figure 2. Condition number curves for Helmholtz problems with elliptic ‘o’ and modified Helmholtz
problems with rectangular domains ‘x’.

From Figure 1, we notice that convergence curve of the BKM without regularization techniques
is quite oscillatory when the number of boundary knots becomes large. With using either DSVD
or TR under the regularization parameter LC or GCV, the BKM solution accuracy degrades by
one order of magnitude, but either BKM convergence curve appears far more stable. On the other
hand, the LC-DSVD fails to yield reasonable BKM solution in this case.

Corresponding to Figure 1, Figure 2 shows the condition number variation curves versus the
number of boundary knots, from which we can see a sharp increase in the condition number as a
small number of boundary knots are added. This may partially explain the oscillatory behaviors
of convergence curves illustrated in Figure 1.
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Figure 3. Relative average error curves for Case 2.

4.2. Case 2: square domain case

In this case, we examine the modified Helmholtz problem on a unit square domain with two
Dirichlet edges (x=1,y=1) and two Neumann edges (x =0, y=0). The analytical solution is
given by

u(x,y)=e*ty (28)

The wave number of the non-singular general solution (5) is A=+/2 [4]. The curve of relative
average error against the number of boundary knots is plotted in Figure 3. It is noted that the
BKM with no regularization technique still encounters distinct oscillation. We can also see from
Figure 3 that GCV-TR exhibits smooth convergence curve, and the BKM solution accuracy of
GCV-TR is even higher than the one with no regularization technique. Corresponding to Figure 3,
condition number curve in Figure 2 illustrates highly ill-conditioning nature of the influence
matrices.

4.3. Case 3: triangular domain case

We consider Helmholtz problems with high wave numbers in this case. The boundary knots are
uniformly distributed on an equilateral triangle domain with the left corner at the coordinate origin
and side length 4. The Helmholtz problem of a high wave number 4= 100 with mixed boundary
conditions (Neumann edges the bottom side x =0 and others Dirichlet boundary) is considered.
The analytical solution is given by

u(x,y)=sin(Ax)+cos(1ly) (29)

In Figure 4, condition number curve is again shown versus the number of boundary knots
in a highly increasingly rate. As shown in Figure 5, the relative average error curves of
GCV-TR and GCV-DSVD work very well, but LC-TSVD fails to give an acceptable numerical
result for this problem. The BKM with no regularization technique also has the oscillatory
problem.
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Figure 4. Configuration of condition number curve for Case 3.
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Figure 5. Relative average error curves for Case 3.

4.4. Case 4: irregular domain case

Next we consider a complex-shaped geometric case, as sketched in Figure 6, which involves mixed
boundary conditions, namely, two adjacent Neumann edges (x =0, y=0) and the rest Dirichlet
edge. The analytical solution for Helmholtz problem is given as

u(x,y)=sin(x)cos(y) (30)

with wave number 4= +/2. The condition number curve for this case is shown in Figure 7. Relative
average error curves versus the number of boundary knots are shown in Figure 8, from which robust
curves are shown by TR or DSVD using LC or GCV. The accuracy of GCV-TR and GCV-DSVD
are even higher than the BKM with no regularization technique.
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Figure 7. Configuration of condition number curve for Case 4.

4.5. Discussions

In terms of the convergence stability in the above-tested cases, we can conclude the numerical
results in the following table:

Regularization method

Parameter TSVD TR DSVD
LC * >k *k
GCV ok ek ok ek ok *ohk

Note: The convergence stability is scaled up from 1 to 5 “x’.
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Figure 8. Relative average error curves for Case 4.

5. CONCLUDING REMARKS

Coupled with three regularization techniques and two algorithms for selecting regularization
parameters, we are able to overcome the numerical instability induced from highly dense and
ill-conditioned BKM interpolation matrix. In stark contrast, without an appropriate regularization,
the direct use of the standard algebraic equation solvers, such as Gaussian elimination, often results
in an oscillatory convergence curve when using a large number of boundary knots.

From the foregoing numerical results and discussions, we observe that the TR using GCV
regularization parameters exhibits good performances for all tested problems in Section 4. Although
TSVD using LC regularization technique is excellent for solving inverse problems with noisy
boundary conditions, it fails to yield acceptable numerical approximation for all problems tested
in this study.
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