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Abstract. We investigate the occurrence of two pathological coevolu-
tionary behaviours, specifically disengagement and cycling, in GP sys-
tems. An empirical analysis is carried out using constructed GP problems
and a historical pursuit and evasion task, the Game of Tag. The effect
of semantic bias on the likelihood of pathologies and performance in a
coevolutionary context is examined. We present findings correlating se-
mantic locality in the genotype to phenotype map to disengagement and
cycling in a minimal competitive coevolutionary algorithm.
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1 Introduction

Pathological or unintended behaviours are a well-established issue in the design
of coevolutionary algorithms (CoEA) [1]. Coevolutionary pathologies are pro-
cesses, distinct to coevolutionary systems, that interfere with progress of the
search towards a desired goal state. Analysis of these pathological behaviours in
systems of minimal complexity has been a principal component of coevolution-
ary research in genetic algorithm (GA) representations, focusing on both their
theoretical basis [2] and mitigation [3]. In this paper, we examine how coevo-
lutionary pathologies can influence progress in coevolutionary forms of genetic
programming (GP). Although pathological behaviours have been addressed in
GP [4], to our knowledge no studies exist which explicitly recreate these concepts
using a quantifiable, controlled approach under program representations. Our in-
tention is to bridge this gap with an initial study demonstrating and analysing
pathologies in a minimal form of GP.

Disengagement and cycling are patterns of search behaviour that occur in
systems lacking an objective method of fitness evaluation. Informally, coevolu-
tionary algorithms determine a search gradient through the interaction of sets
of individuals rather a single individual. Disengagement therefore occurs when
an element of the system has entered a state for which no search gradient can
be induced by reference to the other coevolving elements. Cycling behaviour
occurs when previously visited interactions recur so that the search is led to
return repeatedly to a previous set of individuals. The former pathology results
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in a period of unguided search. The latter pathology wastes computational effort
by re-evaluating previously visited states. We postulate that disengagement and
cycling are particularly significant in coevolutionary systems which use GP repre-
sentations. Disengagement has been suggested to occur with greater frequency in
situations where it is more difficult to make objective progress in some coevolved
components than others [5]. Because most GP expressions are far from uniformly
represented, such asymmetry may be common. Cycling behaviour is costly be-
cause (in general) re-evaluating GP structures is associated with more compu-
tation than their binary counterparts. However, it is not presently known which
factors in the GP paradigm influence disengagement and cycling behaviours.
This empirical work focuses on one possible factor, semantic bias. Research on
semantics and the genotype-phenotype map in GP has been a prominent area
since GP’s inception [6–8], but it is not clear how previous findings in classi-
cal single population GP extend to coevolutionary systems. The experiments
described here examine the effect of local and non-local semantic topology on
disengagement, cycling and performance in a coevolutionary GP system.

The structure of this paper is as follows. In Section 2, we introduce a set of
suitable, simple, benchmark coevolutionary problems. These have been selected
to elicit measurable forms of pathological behaviour when using GP in a coevolu-
tionary setting. Section 3 describes our experimental configuration and treatment
of parameters. Section 4 summarises the results for each pathological case. The
final section discusses how the relationships observed between pathological be-
haviour, semantic constraints and performance have informed our understanding
of coevolution in GP.

2 Benchmark Selection

Few established benchmarks exist for coevolutionary forms of GP. Historically,
one natural source of problems has been competitive pursuit and evasion games,
where the objective is to develop strategies to intercept or escape an oppo-
nent. An example is the Serengeti problem, first analysed in GP by Haynes and
Sen [9], which presents a classic predator-prey scenario. Strategies are devel-
oped for multiple predators (‘lions’) to capture a prey-agent (a ‘gazelle’) on a
simulated grid-world. Serengeti is considered to be difficult to solve without a
degree of cooperation between predators [10]. Pursuit and evasion is frequently
used in the coevolutionary literature, but has been criticised as a method of
benchmarking [11], primarily due to the complexity of interactions between dif-
ferent strategies and the ensuing difficulties when defining measures of progress.
However given the breadth of practical applications, it remains an attractive
area within which to analyse CoEA, provided a sufficiently simplified problem
instance can be defined.

Another commonly employed class of coevolutionary GP problem is a ‘game
vs. environment’ where programs are coevolved for the purpose of controlling an



agent in conjunction with an increasingly challenging structure, such as a maze
or series of obstacles. The Tartarus grid-world game proposed by Teller [12, 13]
presents such a situation, in which an agent must manoeuvre a series of blocks
into positions around the edges of the world. A more recent example can be found
in Cartlidge [5], in which a maze navigation problem was defined where strategies
to control robots to escape a maze are coevolved simultaneously with increasingly
difficult maps. Both problems are examples of asymmetric problem difficulty in
GP (challenging worlds are easier to obtain than good controllers.) However,
the utility of established problems such as Serengeti and Tartarus is question-
able when investigating coevolutionary pathologies. Firstly, both Serengeti and
Tartarus lack a clearly defined notion of optimal behaviour or solution concept
against which to measure progress. Secondly, their solutions require complex
components whose contribution to the problem difficulty is not well understood.
Notably, the Tarturus game requires that solutions incorporate memory, for ex-
ample in the form of a finite state machine. It is unclear how these requirements
interact with GP performance.

Given the paucity of suitable benchmarks, for this work we introduce two
new minimal constructed problems after the style of existing analysis in GA
systems, the GP Greater Than Game and Simple Cycler. These games are de-
signed specifically to explore disengagement and cycling in a GP context. The
problems are derived from the concept of GA ‘number games’ similar to those
analysed in [3] and [14]. We will also consider a more complex historical pursuit
and evasion task, the Game of Tag.

2.1 Problem Set

GP Greater-Than Game (GP-GTG) To investigate the pathology of disen-
gagement in GP, the GA Greater-Than (GT) game described by [5] was gener-
alised to the context of GP representations (GP-GTG). GP-GTG uses two sym-
metric populations of programs. Each program operates on real values formed
from a constrained function set {+,-} accepting a single terminal input fixed at
unity. Programs have a single output, derived by evaluating the expression at the
root node of the program. The outcome of comparing a pair of programs (p, p′)
is given as a function of the program outputs g. We term this the interaction
function:

g(p, p′) =

1.0 o(p) > o(p′)
0.5 o(p) = o(p′)
0.0 o(p) < o(p′)

(1)

where o(p) and o(p′) are the real valued outputs of each program. The expressions
are constrained to a maximum depth n, measured from root to terminal nodes.
The game is solved after a program is found from the subset of programs which
maximises the output.1

1 GP-GTG is superficially similar to the GP ‘MAX’ problem [15]. The key distinction
is that programs are evaluated using only their relative rather objective fitness.



Simple Cycler (SC) Informally, we define cycling behaviour in coevolutionary
GP as exiting and revisiting the same phenotypic state in a program search space.
Simple Cycler is an elementary game which is designed to simulate measurable,
irregular cycles in a coevolutionary GP algorithm. Evolved programs operate on
boolean values and are constructed from the function set {AND,OR,NOT,IF},
where the IF function accepts three arguments: a condition, response if the
condition is true and response if the condition is false. The input is a fixed
terminal with value TRUE. Programs are required to output a string of n boolean
values (for example, from n selected output nodes). This output is mapped onto
an unsigned integer o ∈ {1 : 2n}, using a binary encoding. The interaction
function is computed as:

g(p, p′) =


1.0 o(p) > o(p′) except o(p) = 2n and o(p′) = 1
1.0 o(p) = 1, o(p′) = 2n

0.5 o(p) = o(p′)
0.0 o(p) < o(p′) except o(p) = 1 and o(p′) = 2n

0.0 o(p) = 2n, o(p′) = 1

(2)

This expression states that the program corresponding to the greatest integer
wins, except for the cases where the maximum integer (2n) value is compared
to the minimum integer (1). Therefore under this function all programs can be
positioned on a single transitive chain of length 2n. A cycle is said to occur when
a program has changed from a structure corresponding to the smallest integer
to the largest and back, traversing the intermediate states. Cycling behaviour is
monitored by measuring the average period over a fixed number of generations.

The Game of Tag (GoT) The Game of Tag is a two dimensional GP pur-
suit and evasion game introduced by Reynolds [16]. Games consist of an idealised
scenario in which control programs are developed which provide pursuit and eva-
sion strategies. Analogous to the children’s game, the objective for each control
program is to minimise the length of time during which a program is designated
as ‘it’ (the pursuer). Play occurs between pairs of competitors, which are point
objects able to move at a fixed speed over a number of discrete timesteps. No
account is made for momentum or limitations in change of heading. If the com-
petitor designated as ‘it’ enters a certain capture radius of its opponent, the
opponent is ‘tagged’ and the roles are exchanged. Successful programs must si-
multaneously evolve pursuit and evasion behaviours, depending on their role at
that timestep. Effective algorithms should increase the capability of competi-
tors in both roles progressively over time.2 Our implementation closely follows
Reynold’s original version. At the start of a game, one competitor is placed
at the centre of the two-dimensional play area. The other competitor is placed
uniformly at random in a square region with width w centered on this posi-
tion. Whilst a competitor is in pursuit, it is set to move at twice the speed of the

2 In this work we do not consider external methods of assisting progress, such as
archives. Understanding the components of GP that impact on pathological be-
haviours may provide systems which are less reliant on these approaches.
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Fig. 1. Pure and proportional navigation pursuit strategies. The pursuer is shown
against a fixed trajectory evader is shown over a discrete timestep t→ t+ 1.

evader. Inputs to each program are restricted to a real-valued vector (x, y) in the
local coordinate system of the competitor and a boolean value, which specifies
whether the competitor is in pursuit or not at that timestep. Programs provide
a single real number output, which is interpreted as an updated heading. A score
s is awarded to each competitor at the end of the game, equal to the number of
timesteps spent as the evader. During training, the interaction function between
two programs is evaluated as the average score obtained over a set of S games.
In the first half of the set the first program p begins as the evader and in the
second half the initial role is swapped.

g(p, p′) =
1

|S|
∑
i∈|S|

si(p, p
′) (3)

Reynolds assessed the objective quality of competitors by comparison against
a robust artificial strategy, pure-pursuit. Competitors implementing pure-pursuit
move directly towards their opponent whilst the pursuer and directly away whilst
the evader. In the game of tag deviation by either adversary to any other strategy
results in poorer performance, because a route other than the shortest path
must be traversed (in game-theoretic terms this is a Nash equilibrium.) The
present work includes an additional measure of solution quality using a further
guidance strategy, proportional navigation. Proportional navigation is a widely
applied guidance law, backed by a large body of analysis [17, 18]. The strategy
employs the principle that an interception between the trajectories of two objects
traveling with fixed speed will occur if the bearing between them is constant. In
proportional navigation, the heading is updated at each timestep proportional
to a constant N , which controls the magnitude of response (we assume N=3, see
analysis in [18]). The angle γ gives the heading of the adversary. The angle θ gives
the current heading. Angles are measured with respect to the local coordinate
system. An example contrasting both strategies is sketched in Figure 1.

3 Experiment

3.1 Algorithm and Representation

An intentionally minimal GP algorithm was used for ease of comparison with
other techniques. An integer genotype representation, Cartesian Genetic Pro-
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Fig. 2. Example contrasting the effects of the semantic bias on distances of mu-
tated offspring. Illustrated for 105 sampled mutation operations in Simple Cycler.

gramming (CGP), was selected across all problems [19]. Standard CGP uses only
a truncation selection strategy followed by uniform mutation without crossover.
In addition, CGP has recently been applied to a coevolutionary setting [20]. Two
populations of CGP programs were initialised uniformly and evaluated through
the simplest coevolutionary interaction scheme (complete mixing) in which pro-
grams are tested versus all members of the other population P :

f(p) =
∑
p′∈P

g(p, p′) (4)

Fitness values are given by the outcomes accumulated over all interactions.

3.2 Semantic Bias

A semantic bias was introduced to the mutation operator. A parameterised tech-
nique similar to the methods of Nguyen [7] was used, which has been previously
applied to CGP to introduce a syntactic bias in [8]. A metric approximating the
semantic difference between programs was defined for each problem, dGP−GTG,
dSC and dGoT respectively:

dGP−GTG = |o(p)− o(p′)| (5)

dSC = min

{
|o(p)− o(p′)|
2n − |o(p)− o(p′)|.

(6)

dGoT =
∑
K

|θ(p)− θ(p′)| (7)

Equation 5 is the absolute difference in the output of each program. Equation
6 is the shortest distance measured around the transitive cycle. Equation 7 is
the absolute difference between output headings summed over a set of K input
vectors to both programs. The set of vectors point to a grid of uniformly dis-
tributed fixed positions across the square starting region in the Game of Tag.



Table 1. Fixed Algorithm Parameters and Game Properties

Parameter GP-GTG SC GoT

Nodes 20 20 50

Function Set {+,-} {AND, OR, NOT, TRUE} Reynolds [16]

Terminal Set {0,1} {TRUE} {x, y, isIt, [0.2:1.0]}
Mutation Rate 0.05 0.05 0.02

Selection Strategy 4+6 ES 1+1 ES 1+4 ES

Output Type o ∈ {1 : 2n} o ∈ {1 : 2n} o ∈ R, mapped onto [0:2π]

Populations 2 × 10 2 × 1 2 × 5

Runs 500 200 500

Max Generations 500 1000 500

β 1 1 0.05

Games/Opponent 1 1 Training: 5, Testing: 100

Game length N/A N/A 100 timesteps

Startbox Size w N/A N/A 7

Pursuer speed N/A N/A 2

Evader speed N/A N/A 1

Capture radius N/A N/A 1

A sigmoid function is used to bias the probability of mutating to individuals at
particular semantic differences. The function gives the probability of accepting a
prospective mutated individual, with respect to the semantic distance between
parent and child. Control is provided by a pair of parameters (α, β) ∈ R2, β ≥ 0.
The parameter α alters the slope of the sigmoid function, where α << 0 and
α >> 0 correspond to a bias towards small and large semantic changes in each
mutation. The parameter β offsets the function, giving the semantic distance
at which there is a 50% chance of accepting a mutation, i.e. sigmoid(β) = 0.5.
An example of the effects of the biased mutation operator on the distribution of
mutation distances is illustrated in Figure 2, for SC with β = 1.

3.3 Summary of Fixed and Variable Parameters

In preliminary experiments, fixed algorithm parameters were tuned indepen-
dently for each problem to give a locally optimal set of parameters for the CGP
system, under no semantic bias (α = 0). The range of values given in [19] was
used as a basis. The Game of Tag parameters are based on those originally fixed
by Reynolds [16]. Following the original work, the root node of all programs
evolved in the Game of Tag is seeded with the ‘IF-IT’ function to provide a sep-
arate flow of execution for pursuit and evasion. Because there is no standardised
approach to providing constants in CGP, the simplest technique is adopted here:
the introduction of a small array of fixed constants as terminal values {0.2, 0.4,
0.6, 0.8, 1.0}. Although a full-factorial analysis of all parameters is outside the
feasible scope of this work, in Section 4.2 we test the sensitivity of our exper-
imental outcomes to mutation rate and length of CGP genotype. The offset β
was fixed to the minimum semantic difference in the constructed problems and
a representative small angular difference of 0.05 revolutions (18◦) in the GoT,



to give semantically local differences in the limit α << 0. A summary of all the
parameters used in each problem case is given in Table 1.

4 Results

4.1 Disengagement in the GP Greater Than Game

The definition in [5] states that two populations can be considered to be disen-
gaged when the variance of the accumulated fitness values across each population
is zero. Figure 3 contrasts the probability of disengagement in GP-GTG and the
magnitude of expected program output (performance), averaged over all runs
as a function of α. A strong sensitivity to the semantic bias was observed. For
α < 0, the probability of disengagement is high and the evolved program output
is low. Performance and disengagement were strongly correlated with the value
of α (resp. Spearman 0.99 and -0.95, p ≤ 0.005, exact). We infer that using a
mutation operator with a high probability of making a small semantic change
increases the likelihood of disengagement. Highest performance is observed for
this case when the mutation operator is biased towards larger semantic changes.
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Fig. 3. Disengagement in the GP-GTG case. Top left: Expected output of the
best evolved program. Top right: Probability of disengagement. Bottom left:
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4.2 Periodicity in the Simple Cycler Game

Cycling is characterised by measuring the mean number of generations for each
population to transition between the maximum program state 2n and back. Use
of a 1+1 EA ensures that each population is at a single position at any given
instance.3 Figure 4 shows the period obtained over 200 runs, for transitive chains
of increasing length. As n is increased, the time to traverse the chain is larger. The
effect on cycle rate of mutation rate and α is shown in the bottom two images.
Predictably, in the limit of very low mutation rates the cycle frequency tends
to zero (no change in state). Biasing the semantic mutation operator towards
larger semantic changes (α ≥ 1) corresponded to longer periods. In the limit
of high mutation rates and small α, the average frequency tended to ∼ 1

2n , or
one generation per program state in the transitive chain. The fastest cycling
behaviour was apparent in both mutation operators which produced very small
semantic changes in programs and also those approaching random search.

4.3 Performance in the Game of Tag

Performance in the Game of Tag was measured by relative evaluation with re-
spect to four pursuit and evasion strategies. These included pure-pursuit (PP)
and proportional navigation (PN). In addition, progress was also evaluated
against a noisy control (R), which returned a randomised heading for all input
vectors. Finally a mixed strategy was defined to give an intermediate quality
opponent, which returned either a randomised response or the pure pursuit re-
sponse with equal probability (PR). Figure 5 (left) shows the expected progress
of unbiased CGP against these metrics. Best performance was achieved against
the randomised and proportional navigation strategies (evolved strategies are ex-
pected to win ≈ 90% of games versus random opponents). Weakest performance
is evident against the PP and PR strategies. A modest expected performance
(≈ 20%) was observed against the pure pursuit case, though higher success rates
were achieved in individual cases, similar to that of Reynolds [16]). A direct
comparison with the performance of Reynold’s implementation is not possible
because only 5 individual runs were reported in the original work. The sensitivity
of the CGP algorithm in the Game of Tag to semantic bias was examined. No
significant change was observed when measuring against the PP strategy. A weak
response was measurable against the PR, R and PN strategies. The measured
Spearman correlation coefficients in each case are (PP = -0.17, PR = -0.82, PN
= -0.79, R = -0.62) where the correlations in PR, PN and R are significant at
p ≤ 0.005 (exact). Figure 5 (right) shows the change in expected performance
at 250 generations for each of the significant results. Best performance was ob-
served at α = −50, which corresponds to a strong bias towards small phenotypic
changes. However, the net performance change is small (≈ 5− 10% difference in
win ratio) and the effect of varying semantic locality in this case is marginal.

3 Devising an unambigious definition of cycling behaviour in larger populations of
practical interest is an open issue for GP, which we leave for future debate.
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5 Discussion

The strong correlation between performance and disengagement in GP-GTG
supports our hypothesis that disengagement is a significant factor in program co-
evolution. The probability of disengagement increases for small changes because
programs are less likely to be distinguished using the coevolving population. Al-
though we must be wary of generalising too far from this simplified example,
the result suggests there may be a tradeoff between the use of semantically local
mappings and operators which permit sufficient diversity to ensure populations
of programs remain engaged. An interesting result from the Simple Cycler ex-
ample is the trend towards faster cycling in both random (high mutation rate)
and highly local search (small α). Inspection of individual runs showed that this
is a consequence of two distinct search behaviours. Under random search, pro-
grams do not traverse the chain of states and instead revisit each state with
fixed probability. For small n this probability is high, therefore giving a short
period. In contrast, when mutations are constrained to programs with a small
difference in output, the search tends towards hillclimbing through the interme-
diate states, also giving fast cycles. The result implies that, because cycling in
GP is a pathology which occurs when an algorithm follows a transitive chain
of programs, mappings biased towards small semantic changes may worsen this
behaviour. Varying semantic bias in the Game of Tag problem introduced only a
minor change to performance. We theorise this is due to two issues. Firstly, rel-
ative to the constructed problems, the semantic mapping in the Game of Tag is
significantly more complex. The relationship between the outcome of a game and
changes to program output is not transparent. It is therefore not clear whether
our metric for semantic difference is the most suitable for this case. Secondly,
the randomised starting configuration introduces noise into each outcome. This
reduces the measured likelihood of disengagement in this case because of the
increased variation in fitness values.

6 Conclusions and Further Work

These experiments highlight that pathological behaviours are a factor in the
performance of coevolutionary forms of GP and that semantic biases in the GP
genotype-phenotype map can influence their occurence. We introduced two new
constructed problems based on the concept of coevolutionary number games in
GA systems. Disengagement in coevolving populations was strongly related to
semantic locality. We showed that semantic locality changed the frequency of cy-
cling in a simple GP system. A weak response to semantic bias was also observed
in a more realistic coevolutionary system, the Game of Tag. The scope of this
work could be extended by analysing further GP algorithms, problem sets and
other pathological behaviours which have been characterised in binary represen-
tations (for example, overgeneralisation [21]). At present, archiving techniques
are used to provide theoretical guarantees of progress in coevolutionary EAs.
However, examining the genotype to phenotype map used in methods of GP



which have achieved good results without archives [22] may indicate how repre-
sentations inherently robust to coevolutionary pathologies can be developed.
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