
Nulls, Three-Valued Logic, and Ambiguity in SQL: Critiquing

Date’s Critique

Claude Rubinson∗

Department of Sociology
University of Arizona

rubinson@u.arizona.edu

Abstract

Date’s popular critique of SQL’s three-valued logic
[4, 3] purports to demonstrate that SQL queries can
produce erroneous results when nulls are present in
the database. I argue that this critique is flawed in
that Date misinterprets the meaning of his example
query. In fact, SQL returns the correct answer to the
query posed; Date, however, believes that he is asking
a different question. Although his critique is flawed,
I agree with Date’s general conclusion: SQL’s use
of nulls and three-valued logic introduces a startling
amount of complexity into seemingly straightforward
queries.

1 Introduction

A common critique of SQL is that the inclusion of
nulls breaks the relational model. Date enumerates a
number of reasons for this position. Most fundamen-
tally, Date argues that—since SQL defines null not as
a value but a flag indicating that the value of a partic-
ular attribute is missing—domains cannot properly
include nulls since domains are, by definition, sets of
values. Therefore, relations that include nulls are not,
in fact, relations, undermining the very foundation of
the relational model [3]. Date also make a more acces-
sible argument in which he contends that the three-
valued logic incurred by the use of nulls can generate

∗I would like to thank Garrett Hoxie and Rick Snodgrass
for their advice and support of this paper. I also wish to thank
the SIGMOD Record reviewers for their helpful comments.

nonsensical results. In this essay, I critique this sec-
ond argument and demonstrate that Date misapplies
SQL’s three-valued logic. Consequently, the critique
is logically flawed and does not, in fact, indict SQL
as Date supposes. Note, however, that my critique of
Date is not a defense of nulls or SQL’s three-valued
logic; rather, it underscores just how confusing three-
valued logic is. The introduction of nulls alters the
meaning of seemingly straightforward queries and is
likely responsible for numerous errors, errors which
may frequently go unrecognized.

2 Date’s Critique

Date’s most prominent critique of nulls employs the
simple SQL database illustrated in Figure 1. There
are two tables. The Suppliers table (S) has two
columns: the supplier number (the primary key) and
the supplier’s city. The Parts table (P) also has two
columns: the part number (the primary key) and
the part’s city. In Figure 1, each table has only one
record. Supplier S1 is located in London. We do not
know in which city Part P1 is located.1

1Nulls often introduce confusion when it is unclear why in-
formation is missing from the database. Among the more com-
mon reasons for incomplete data entry are that the value of the
attribute is (temporarily) unknown or that the attribute, itself,
is not applicable to the represented entity. With regard to the
present example, Date’s discussion of the database described
in Figure 1 makes it clear that the NULL marker in Table P
indicates that the city associated with Part P1 is (temporar-
ily) unknown. I proceed with this premise. In the conclusion,
I return to this topic and discuss the additional complications

SIGMOD Record, December 2007 (Vol. 36, No. 4) 13



S SNO* CITY P PNO* CITY
S1 London P1 NULL

Figure 1: SQL Database

Date [4, page 54] seeks to demonstrate that SQL’s
three-valued logic produces erroneous results:

The fundamental point I want to make
is that certain boolean expressions—and
therefore certain queries—produces results
that are correct according to three-valued
logic but not correct in the real world.

To do so, he poses the following query: “Get SNO-
PNO pairs where either the supplier and part cities
are different or the part city isn’t Paris (or both)”
[4, page 54] and writes the corresponding SQL im-
plementation of the query:

SELECT S.SNO, P.PNO

FROM S, P

WHERE S.CITY <> P.CITY

OR P.CITY <> ‘Paris’

Substituting in the data from the mock database,
the expression (S.CITY <> P.CITY) OR (P.CITY

<> ‘Paris’) becomes (‘London’ <> NULL) OR

(NULL <> ‘Paris’) which, in accordance with the
rules of SQL’s three-valued logic, evaluates to (NULL

OR NULL) which, in turn, reduces to NULL. The query,
therefore, returns no records.

Date [4, page 55] contends that this result reveals
a flaw in SQL’s three-valued logic, arguing that:

But of course part P1 does have some cor-
responding city in the real world; in other
words, “the null CITY” for part P1 does
stand for some real value, say xyz. Obvi-
ously, either xyz is Paris or it isn’t.

Date then demonstrates that the WHERE clause will al-
ways evaluate to TRUE, regardless of where part P1 is
located. In essence, there are three possibilities: city
xyz is Paris, London, or some other city. If city xyz

that arise when the meaning of a null is ambiguous.

is Paris, the above expression becomes (‘London’

<> ‘Paris’) OR (‘Paris’ <> ‘Paris’). This
expression evaluates to (TRUE OR FALSE) which, in
turn, evaluates to TRUE. If city xyz is London,
the expression becomes (‘London’ <> ‘London’)

OR (’London’ <> ’Paris’) which evaluates to
FALSE OR TRUE which evaluates to TRUE. If city
xyz is some other city, for example, New York,
the expression becomes (‘London’ <> ‘New York)

OR (‘New York’ <> ‘Paris’) which evaluates to
(TRUE OR TRUE) which, again, reduces to TRUE.

According to Date, if SQL correctly took account of
the real world—specifically, that part P1 is associated
with some city, despite that this fact is missing from
the database—it should return the pair S1-P1. That
SQL returns an empty set indicates a flaw in its logic:
“In other words, the result that’s correct according to
the logic (that is, 3VL) and the result that’s correct
in the real world are different!” [4, page 55].

3 Critiquing the Critique

But Date is mistaken. The problem is not that
SQL’s results disagree with reality but, rather, that
Date poorly formulated his original inquiry. Recall
Date’s original query: “Get SNO-PNO pairs where
either the supplier and part cities are different or
the part city isn’t Paris (or both).” The formulated
SQL statement does not, in fact, correspond to this
query; in fact, Date’s query cannot properly be trans-
lated into SQL because it assumes conventional, two-
valued logic while SQL operates with three-valued
logic.

In conventional logic, propositions are true or false.
That is, part P1 is in Paris or it is not. In the three-
valued logic employed by SQL, propositions are true,
false, or unknown. By introducing the possibility of
unknown propositions, it is no longer the case that
part P1 is or is not in Paris. Rather: we know that
part P1 is in Paris, we know that part P1 is not in
Paris, or we don’t know where part P1 is.

The logic system within which one works demands
that queries be formulated appropriately. Within
a conventional, two-valued logic system, statements
must be able to be classified as “true” or “false.”

14 SIGMOD Record, December 2007 (Vol. 36, No. 4)



Within a three-valued logic system, statements must
also permit a classification of “unknown.” Date’s
original query assumes two-valued logic. Consider
the first clause of the query: “Get SNO-PNO pairs
where . . . the supplier and part cities are different.”
This query assumes that supplier and part cities are
different or that they are the same. But within SQL’s
three-valued logic system, supplier and part cities
may be the same, they may be different, or we might
not know if they are the same or different. The sec-
ond clause of the query is similar: “Get SNO-PNO
pairs where . . . the part city isn’t Paris.” Again, this
query assumes that the part city is or is not Paris.
Within SQL, however, the part city may be Paris, it
may not be Paris, or we might not know what city
it is. And, in fact, the null value in the database in-
dicates that we do not know which city is associated
with part P1.

Date argues that “in the real world” the city for
part P1 either is or is not Paris. This is certainly true.
But it is also true that “in the real world” we may
not know what city is associated with part P1. These
are two different propositions. The cities to which
parts correspond is a set of facts that is distinct from
whether we know which cities correspond to which
parts. In SQL, queries always imply knowledge of the
relationship in question and not simply the existence
of said relationship. We can therefore reformulate
Date’s original query as “Get SNO-PNO pairs where
either we know that the supplier and part cities are
different or we know that the part city isn’t Paris
(or both).” The results of the SQL statement now
make sense. An empty set is returned because—even
though part P1 “does have some corresponding city
in the real world”—we do not know to which city the
part corresponds.

This understanding of the incongruity between
two-valued and three-valued logic is made more clear
by examining Date’s second example. Date [4, page
55] presents the following SQL statement

SELECT P.PNO

FROM P

WHERE P.CITY = P.CITY

and contends that “The real-world answer here is ob-
viously the set of part numbers currently appearing

in P.” What is obvious is that Date thinks that the
above SQL syntax is functionally equivalent to the
statement “Get the PNO numbers for the parts that
are associated with cities.” Because “in the real-
world” all parts must be associated with a city, Date
concludes that the query should return a set of part
numbers. But Date is again misreading the query.
Because SQL uses three-valued logic the statement
expresses a distinctly different query: “Get the PNO
numbers for the parts for which we know the associ-
ated city.” Again, SQL correctly returns an empty
set because, according to table P, we do not know
which city is associated with part P1.

Date [4, page 55] contends that his examples
demonstrate that SQL is fundamentally broken:

To sum up: if you have any nulls in your
database, you’re getting wrong answers to
some of your queries. What’s more, you
have no way of knowing, in general, just
which queries you’re getting wrong answers
to; all results become suspect. You can
never trust the answers you get from a
database with nulls. In my opinion, this
state of affairs is a complete showstopper.
(Emphasis in original.)

I have shown that Date has not demonstrated what
he thinks he has. SQL returns the correct answer for
the query posed but Date believes that he is asking
a different question. This confusion is understand-
able. SQL’s three-valued logic is not intuitive. We
are used to two-valued logic in which propositions
are either true or false. But three-valued logic also
permits unknown propositions. When working with
SQL databases, it is imperative that we formulate our
queries correctly; otherwise, we risk making mistakes
similar to Date.

4 Discussion

SQL’s use of three-valued logic and its inclusion of the
null marker requires that we formulate our database
queries to reflect the possibility that the relationships
between entities may be unknown. When we fail to

SIGMOD Record, December 2007 (Vol. 36, No. 4) 15



do so, we risk posing a different question than in-
tended. We must keep in mind that SQL’s logic is
non-intuitive. Rarely will the questions we put to a
SQL database approach what we would ask in normal
conversation. We cannot simply ask for the “SNO-
PNO pairs where the supplier and part cities are dif-
ferent;” rather, we must ask for “SNO-PNO pairs
where the supplier and part cities are known to be
different.” More crucially, we must understand the
difference between these two formulations.

The problem is only aggravated by the fact that
information can be missing from a database for a va-
riety of reasons. Date [1] identifies seven common
causes of incomplete data entry: value not applicable,
value unknown, value does not exist, value undefined,
value not valid, value not supplied, and value is the
empty set. If a value might be missing due to, for
example, an inapplicable attribute, queries must be
formulated and interpreted in consideration of this
potential condition. When null markers are loaded
with multiple meanings, the construction of associ-
ated queries rapidly becomes unmanageable: “Get
SNO-PNO pairs where the part city attribute is ap-
plicable and either we know that the supplier and
part cities are different or the part city isn’t Paris (or
all three conditions apply).” To address this latter
situation, some practitioners advocate the use of de-
scriptive truth values [5, 7]. Constituting actual val-
ues rather than null markers, such solutions permit
designers to construct databases that do not permit
nulls and, consequently, may be queried using con-
ventional, two-valued logic.

It may also be useful to note that any query that as-
sumes three-valued logic may be decomposed into two
correlated queries assuming two-valued logic.2 Take,
for example, the query “Get SNO-PNO pairs where
we know that the part city isn’t Paris.” As discussed
above, this query assumes three-valued logic because,
for any given SNO-PNO pair, the part city may be
in Paris, it may not be in Paris, or the part city may
be unknown. This query may be decomposed into
the compound query “Get SNO-PNO pairs where we
know the part city and, from the resulting set, get
SNO-PNO pairs where the part city is not Paris.” It

2I thank Charles Ragin for clarifying this principle for me.

is often helpful to perform this decomposition, par-
ticularly when constructing complex queries.

Ultimately, I agree with Date that three-valued
logic is incompatible with database management sys-
tems. While I am not convinced that three-valued
logic violates the relational model per se, I agree with
McGoveran [6, page 355] that

many-valued logic means that database de-
signers, developers, and users must all learn
a whole new way of thinking. The practical
costs of this approach are hard to assess;
certainly they do violence to the goals we
set out to satisfy with an RDBMS.

That Date, himself, misinterprets the meaning of his
SQL syntax underscores the severity of the problem.

5 Conclusion

We develop databases in order to organize and make
sense of information. The problem is that the world
is complex. One manifestation of this complexity is
that we sometimes lack complete information. I echo
those who suggest that SQL practitioners avoid nulls
as much as possible. By default, database design-
ers should constrain columns as non-nullable. Oper-
ations that generate nulls such as outer joins should
be avoided when possible, particularly as the basis
of views and subqueries. Since, by definition, nulls
indicate exceptional circumstances, nullable columns
often indicate where the database design might be im-
proved. The use of nulls in SQL is not the most fun-
damental concern raised by the database presented
in Figure 1. Rather, it is: Where the heck is part
P1? If part P1 is in transit to Paris, that informa-
tion needs to be recorded in the database. So too if
part P1 is lost. Notably, inclusion of such information
elsewhere in the database increases both the value of
the database as well as its integrity by permitting the
problematic record to be dropped.

Proper design techniques, then, naturally minimize
the number of nulls in the database. A database
design is a model of a particular domain and it is
only by thoroughly interrogating that domain—by

16 SIGMOD Record, December 2007 (Vol. 36, No. 4)



circumscribing its boundaries, delineating its con-
stituent components, and identifying the relation-
ships therein—that one can produce an accurate rep-
resentation. Of course, the goal of a database de-
sign is not to represent a domain perfectly but only
those aspects that are salient to the problem at hand.
If part P1 is on a truck bound for Paris, its pro-
jected arrival time is probably relevant; that the truck
driver just had a fight with his spouse, probably not.
Nulls permit us to simplify our models by generaliz-
ing across anomalies that produce missing data and
unknown relationships. But the cost of this simpli-
fied representation is three-valued logic and the asso-
ciated increase in the complexity of our queries.

It is rare that one can guarantee the complete ab-
sence of nulls from a database. Even if database ven-
dors were persuaded to deprecate nulls and three-
valued logic, we would remain saddled with them
for the foreseeable future. And since the presence
of a single null value taints the entire database [6],
one must generally assume three-valued logic. Con-
sequently, the burden is on us to carefully review our
queries to ensure that they mean what we intend.

References

[1] C. J. Date. Not is not ‘not’ ! (notes on three-
valued logic and related matters). In Relational
Database Writings, 1985–1989. Addison Wesley,
1990.

[2] C. J. Date. Relational Database Writings, 1994–
1997. Addison Wesley Longman, 1998.

[3] C. J. Date. An Introduction to Database Systems.
Addison Wesley Longman, Reading, MA, seventh
edition, 2000.

[4] C.J. Date. Database in Depth: Relational Theory
for Practitioners. O’Reilly, Sebastopol, CA, 2005.

[5] G. H. Gessert. Handling missing data by using
stored truth values. SIGMOD Record, 20(3):30–
42, Summer 1991.

[6] David McGoveran. Nothing from nothing (part 2
of 4) classical logic: Nothing compares 2 u. In Re-

lational Database Writings, 1994–1997 [2], chap-
ter 6, pages 347–365.

[7] David McGoveran. Nothing from nothing (part
4 of 4): It’s in the way that you use it. In Re-
lational Database Writings, 1994–1997 [2], chap-
ter 8, pages 377–394.

SIGMOD Record, December 2007 (Vol. 36, No. 4) 17




