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Abstract—The Cloud Computing paradigm consists in provid-
ing customers with virtual services of the quality which meets
customers’ requirements. A cloud service operator is interested
in using his infrastructure in the most efficient way while serving
customers. The efficiency of infrastructure exploitation may be
expressed, amongst others, by the electrical energy consumption
of computing centers.

We propose to model the energy consumption of private
Clouds, which provides virtual computation services, by a variant
of the Bin Packing problem. This novel generalization is obtained
by introducing such constraints as: variable bin size, cost of
packing and the possibility of splitting items.

We analyze the packing problem generalization from a theoret-
ical point of view. We advance on-line and off-line approximation
algorithms to solve our problem to balance the load either on-
the-fly or on the planning stage. In addition to the computation
of the approximation factors of these two algorithms, we evaluate
experimentally their performance.

The quality of the results is encouraging. This conclusion
makes a packing approach a serious candidate to model energy-
aware load balancing in Cloud Computing.

I. INTRODUCTION

The Cloud Computing paradigm consists in providing cus-
tomers with virtual services of the quality which meets cus-
tomers’ requirements. A cloud service operator is interested in
using his infrastructure in the most efficient way while serving
customers. Namely, he wishes to diminish the environmental
impact of his activities by reducing the amount of energy
consumed in his computing servers. Such an attitude allows
him to lower his operational cost (electricity bill, carbon
footprint tax, etc.) as well.

Three elements are crucial in the energy consumption
on a cloud platform: computation (processing), storage, and
network infrastructure [1], [2], [3], [4]. We intend to study
different techniques to reduce the energy consumption regard-
ing these three elements. We tempt to consolidate applications
on servers to keep their utilization at hundred per cent.
The consolidation problem was discussed in [5] through an
experimental approach based on the intuition as its authors
did not propose any formal problem definition.

In this paper we address the challenge of the minimiza-
tion of energy required for processing by means of proper
mathematical modeling and we propose algorithmic solutions
to minimize the energy consumption on Cloud Computing
platforms. We address here a private Cloud infrastructure
which operates with knowledge of resource availability.

We study a theoretical problem adjacent to the minimiza-
tion of energy required to execute computational tasks. Our
working hypotheses are as follows:

1) any computional task is parallelizable, i.e. it may be
executed on several servers; there is, however, a restric-
tion on the number of servers on which a task can be
launched,

2) available servers have different computing capacities,
3) the computation cost of a server in terms of its energy

consumption is monotone, i.e. a unity of computation
power is cheaper on a voluminous server than on a less
capacious one.

The assumption that all tasks are divisible may sound
unrealistic as in practice some tasks cannot be split. We make
it in order to formulate theoretical problems and analyze them.
In the real world scenario one will rather cope with jobs which
either cannot be cut at all or which can be cut one, twice, up to
D times. Such a situation corresponds to a problem which is
“somewhere between” two extremal cases: no jobs can be split
and all jobs can be split D times. As the reader will notice
going through this paper, the “real life” problem performance
bounds can be deducted from those of the extremal problems.

The three assumptions above lead us to formulate a gener-
alization of the Bin Packing problem [6], which we refer to as
the Variable-Sized Bin Packing with Cost and Item Fragmenta-
tion Problem (VS-CIF-P). In the general case considered a cost
of packing is monotone. This problem models a distribution of
computational tasks on Cloud servers which ensures the lowest
energy consumption. Its definition is given in Subsection III-B.
We point out that the approach through packing problems to
the energy-aware load distribution has not yet been proposed.

Confronted with numerous constraints of the VS-CIF-P we
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decided to start, however, by studying in Subsection III-A a
less constrained problem, without an explicit cost function, the
Variable-Sized Bin Packing and Item Fragmentation Problem
(VS-IF-P). This has not yet been studied either. This gradual
approach allows us to deduce several theoretical properties
of the VS-IF-P which can be then extended to the principal
problem.

In Section IV we propose customized algorithms to solve
the VS-CIF-P. Willing to treat users’ demands in bulk, what
corresponds to regular dispatching of collected jobs (for
instance, hourly) we propose an off-line method (Subsec-
tion IV-B). An on-line algorithm, dealing with demands on-
the-fly is given in Subsection IV-C. This treatment allows
one to launch priority jobs which have to be processed upon
their arrivals. Expecting an important practical potential of the
VS-CIF-P we also furnish results concerning the theoretical
performance bounds of the algorithms we elaborated.

Despite the fact that the problem is approximate with a
constant factor, we go further with the performance evaluation
of the algorithms we come up with. The empirical performance
evaluation is discussed in Section V.

The list of our contributions given above also partially
constitutes the description of the paper’s organization. We
complete this description by saying that in Section II we
present a survey of related works concerning definitions of
the family of bin-packing problems together with their known
approximation factors. We also give there an outline of al-
gorithmic approaches used to solve packing problems. Our
special attention is put on those which inspired us in our
study. We point out that the notation used in the article is
also introduced in that section while carrying out our survey.

After giving our contributions in the order announced above
we draw conclusions and give directions of our further work.

II. RELATED WORKS

Let L be a list of n items numbered from 1 to n,
L = (s1, s2, . . . , sn), where si indicates an item size. Let
us also assume for a moment that for all i = 1, 2, . . . , n
si ∈ [0, 1]. The classical Bin Packing Problem (BPP) consists
in grouping the items of L into k disjoint subsets, called
bins, B1, B2, . . . , Bk,

⋃m
l=1Bl = L, such that for any j,

j = 1, 2, . . . , k,
∑

l∈Bj
sl ≤ 1. The question ’Can I pack

all items of L into K, K ≤ k, bins?’ defines the BPP in
the decision form. Put differently, we ask whether a packing
B1, B2, . . . , Bk for which k is less or equal to a given value K
exists. The corresponding optimization problem aims to find
the minimal k. Due to its numerous practical applications the
BPP, which is NP-hard, was studied exhaustively.

The current basic on-line approaches, Next Fit (NF) and
First Fit (FF) give satisfactory results. The asymptotic approx-
imation factor for any on-line algorithm cannot be less than
1.54 [6]. A widely used off-line approach consists in sorting
items in decreasing order of their size before packing them.
The tight bound for First Fit Decreasing (FFD) is given in [7].

A. Variable-Sized Bin Packing with Cost

In the initial problem the capacity of all bins is unitary.
The problem may thus be modified by admitting different bin
capacities. A bin can have any of m possible capacities bj ,
B = (b1, b2, . . . , bm). In other words, we have m bin classes.

If any bin is as good as the others, putting items inside
a solution to this problem is trivial, as one will always be
interested in using the largest bin. We thus suppose that bin
utilization induces a certain cost associated to this bin. This
assumption leads to the Variable Sized Bin Packing with Cost
Problem (VSBPCP). The reader might already observe that
in the BPP the cost of packing is always the same regardless
of the bins chosen. This fact explains that the new problem
is NP-hard [8]. Intuitively, one can consider that the cost of
packing varies in function of a bin capacity. From this point
of view we are no longer interested in minimizing the number
of bins used but in minimizing the global packing cost as a
voluminous bin which remains ’almost empty’ may be more
expensive in use than several little bins ’almost totally’ full.
Solving the VSBPCP we have at our disposal m classes of
bins and the infinite number of bins of any class available.

In the simplest case, the cost is a linear function of a
capacity. Packing into bin i costs ci, C = (c1, c2, . . . , cm)
and we have as many costs as bin classes available. Similarly
to the notation introduced above, we denote a cost of a bin Bj

taking part in a packing as cost(Bj) = cl (a bin in position
j in a packing costs cl). The goal is thus to find a packing
B1, B2, . . . , Bk such that

∑
l∈Bj

sl ≤ capacity(Bj) for which
the overall cost,

∑k
l=1 cost(Bl), is minimal.

Without loss of generality one may assume that the cost of
using bin i is equal to its capacity, ci = bi, i = 1, 2, . . . ,m.
For a packing we thus have: cost(Bj) = capacity(Bj).

A monotone cost function signifies that a unity in a bigger
bin i is not more expensive than a unity in a smaller one, bin j:
ci
bi
≤ cj

bj
, i, j = 1, 2, . . . ,m, bi > bj and the cost of a smaller

bin is not greater than the cost of a bigger bin, cj ≤ ci. A
linear cost function is a special case of a monotone one.

1) Monotone cost, off-line approach : Staying in the con-
text of a monotone cost, our attention was attracted by the off-
line algorithms from [8]. Their main idea consists in applying
an iterative approach to a well-known algorithm, for example,
FFD which leads to IFFD.

In a nutshell, at the beginning IFFD performs the classical
FFD with identical bins of the greatest capacity, maxbi(B).
The packing obtained is next modified by trying to move
(again with FFD) all the items from the last bin into the next
biggest bin. The repacking procedure continues by transferring
items entirely from the bin of capacity bj , which was the last
one filled up, into a bin of size bi, bi < bj and there is not any
l such that bi < bl < bj . It stops when any further repacking
becomes impossible. Their authors showed that the solutions
are approximated with 1.5.

2) Linear cost, on-line approach : We pay special attention
to the on-line algorithm to solve the VSBPCP described in [9].
This algorithm deals with a linear cost. Its authors proposed



an approach ’in between’ the First Fit, using Largest possible
bin (FFL)1 and the First Fit, using Smallest possible bin (FFS)
trying to take advantage of both methods with regard to the
size of the item to be packed. Their idea is to determine
whether an item to be packed occupies a lot of space or not.
The decision is taken upon a fill factor f , f ∈ [0.5, 1]. Their
algorithm, called FFf, operates in the following way. If item
i is small (i.e. si ≤ 0.5), it will be inserted into the first bin
in which it enters or into a new bin of unitary capacity when
it does not fit into any opened bin (FFL). Otherwise, it will
be inserted into the first opened bin into which it enters. If
the use of an opened bin is impossible, it will be packed into
the smallest bin among those whose capacity is between si
and si

f , if it fits inside, or into a new unit-capacity bin if it
does not (FFS). The authors of FFf proved that the result it
furnishes is approximated by 1.5 + f

2 .

B. Bin Packing with Item Fragmentation

In another variant of the classical BPP one is allowed to
fragment items while the identical bin size and bin cost remain
preserved, the Bin Packing with Item Fragmentation Problem
(BPIFP). Item cutting may reduce the number of bins required.
On the other hand, if the item fragmentation is not for free, it
may increase the overall cost of packing. In [10], [11], [12],
for instance, its authors investigated two possible expenses:
the item size growth which results from segmentation and the
global limit on the number of items cut. We point out that one
may also consider a limit on the number of items permitted
to be packed into a bin. A variant of the BPP fixing such a
limit was introduced and studied in [13], [14]. It models task
scheduling in multiprogramming systems and is known as the
Bin Packing with Cardinality Constraints Problem (BPCCP).

From our particular perspective, founded upon the virtual-
ization of computing services in Clouds, we opt to restrain
the number of fragments into which an item can be cut.
The maximal number of cuts for any item, which models a
computation task, is limited to D. As certain items from list
L should be fragmented before packing, we do not cope with
items i but with their fragments whose sizes are noted as sid ,
where i indicates an original item i from L and d enumerates
fragments of item i. Let Di be a number of cuts of item i
made. Obviously, Di = 0 signifies that item i has not been
fragmented at all. Moreover, for any i we have Di ≤ D and∑Di+1

l=1 sil = si. Thus the solution to the BPIFP with limit D
consists in finding an appropriate fragmentation first, which
results in a new list of sizes of items to be packed

LD =
(
(s11 , s12 , . . . , s1D1+1

), (s21 , s22 , . . . , s2D2+1
), . . . ,

. . . , (sn1
, sn2

, . . . , snDn+1
)
)

(1)
(actually, this a list of lists). The number of items to be packed
is now

∑n
i=1(Di+1). Next, the BPP is to be solved with LD

as input data.

1A largest possible bin is here a unit-capacity bin.

C. Survey conclusions

To the best of our knowledge, neither the problem being in
the center of our interest, the Variable-Sized Bin Packing with
Cost and Item Fragmentation Problem (VS-CIF-P), which we
propose to model an energy-aware load distribution nor the
less constrained one, the Variable-Sized Bin Packing and Item
Fragmentation Problem (VS-IF-P), have been studied yet.

III. PROBLEM DEFINITIONS AND ANALYSIS

As announced above, we start by treating the auxiliary
problem. It will be generalized after its analysis.

A. Auxiliary Problem

We suppress the explicit cost function in the general prob-
lem. By doing this we expect to be able to find an optimal
solution to the auxiliary VS-IF-P with polynomial complexity
for certain particular cases. We recall to the reader here that
we limit the number of cuts of any individual item.

Definition 1. Variable-Sized Bin Packing with Item Frag-
mentation Problem (VS-IF-P)
Input:
• n items to be packed,
• sizes of items to be packed L = (s1, s2, . . . , sn), si ∈ N+,
i = 1, 2, . . . n,

• capacities of bins available B = (b1, b2, . . . , bm), bj ∈
N+, j = 1, 2, . . .m,

• a constant D which limits the number of splits authorized
for each item, D ∈ N+,

• a constant k, k ∈ N+ which signifies the number of bins
used.

Question:
Is it possible to find a packing B1, B2, . . . , BK of items L
whose fragment sizes are in LD defined as in Eq. (1) such
that K ≤ k?

In the analysis of the VS-IF-P we appeal to a variant of the
BPP coming from the memory allocation modeling [15], [16].
Its particularity consists in having a limit on the number of
items in any bin. This limit holds without regard to whether
an item inserted is ’an original one’ or results from the item
fragmentation itself. Thus this problem may be considered as
a variant of the BPCCP (see Subsection II-B) with item frag-
mentation. For our purposes we call it the Memory Allocation
with Cuts Problem (MACP) and we give below its formal
definition using our notation. We believe that this formal
presentation allows the reader to discover a palpable duality
existing between the VS-IF-P and the MACP: in the first one
there is a limit on the cut number of any item, in the latter we
have a limit on the number of ’cuts’ in any bin.

As the MACP admits the item fragmentation, the objects
which it packs are picked from the following list:

L′D′ =
(
(s′11 , s

′
12 , . . . , s

′
1d1+1

), (s′21 , s
′
22 , . . . , s

′
2d2+1

), . . . ,

. . . , (s′n1
, s′n2

, . . . , s′ndn+1
)
)
,

(2)



where
∑di+1

l=1 s′il = s′i, i = 1, 2, . . . , n. The number of splits
of item i, di, is not a priori limited but one cannot cut items
at will. The values of di will be determined later on by the
constraint restricting the number of pieces in a bin, D′.

Definition 2. Memory Allocation with Cuts Problem
(MACP)
Input:
• n′ items to be packed,
• sizes of items to be packed L′ = (s′1, s

′
2, . . . , s

′
n), s

′
i ∈

N+, i = 1, 2, . . . n′,
• a capacity b′ of each bin,
• a constant D′ which limits the number of items authorized

inside each bin (no more than D′+1 pieces inside a bin),
D′ ∈ N+,

• a constant k′, k′ ∈ N+ which signifies the number of bins
used.

Question:
Is it possible to find a packing B′1, B

′
2, . . . , B

′
K′ of elements

whose sizes are in L′D′ defined as in Eq. (2) such that for each
l, l = 1, 2, . . .K ′, |B′l| ≤ D′ and K ′ ≤ k′?

Theorem 1. The VS-IF-P is NP-complete in the strong sense.

Proof: It is easy to see that the VS-IF-P is in NP. In this
proof, as in Def. 2, we consequently use a prime symbol when
referring to an instance of the MACP.

10 10

10

6

4

16 4

MACP

16 4

10

6

4

10 10

VS-IF-P

Fig. 1. MACP/VS-IF-P instance transformation

First, we demonstrate that the VS-IF-P is NP-complete in
the strong sense by reducing the MACP to it as the NP-

completeness in the strong sense of the MACP was shown
in [16]. For both instances, I and I ′, we put D = D′.

Bins of the MACP become k′ items to be packed in the
VS-IF-P, L = (b′, b′, . . . , b′), n = k′. Items of the MACP
are transformed into variable-sized bins, L′ = B. Finally, we
require that all available bins of the VS-IF-P are used: |L′| =
|B| = k. Obviously, this transformation, also illustrated in
Figure 1, can be performed in polynomial time.

We focus our attention on a particular case k′b′ =
∑

bi∈L′ bi
in which there is no empty space left in bins forming a
solution. It is evident that in this situation the packing of
items into bins corresponds to ’inserting’ bins into items. If
the verification gives a positive answer for one instance, it
will give a positive answer for another, too. An illustrative
example, D = d′ = 1, is given in Figure 2. The overall items’
mass is 40. Thus we need four bins of capacity 10 to pack
L′ = (16, 15, 9) for the instance I ′ of the MACP depicted on
the left of Figure 2. The instance I of the VS-IF-P (on the
right of Figure 2) is composed of four items of size 10 and
B = (16, 15, 9).

10 10 10 10

10

6

4

10

1

9

16 15 9

I’ (MACP)

16 15 9

10

6

4

10

1

9

10 10 10 10

I (VS-IF-P)

Fig. 2. Example of solutions to MACP and VS-IF-P instances (I′ and I ,
respectively). Instance I′ is composed of three items whose sizes are 16, 15,
9 and bins of capacity 10. Instance I has four items of size 10 and three bin
classes of capacity: 16, 15, and 9.

Second, we estimate the computational effort required to
obtain a positive response to the question whether ’a candidate



to be a solution’ is a solution. In order to do this we determine
a size Ni of the VS-IF-P instances and a size Ns of solutions
to it. The greatest elements of both lists determine Ni, which
is thus in O(log k+(m+n) logmax(maxsi(L),maxbi(B))).
Solutions are made up of bins and ’quantities’ of items,
possibly split, selected in L. Similarly, we take into account the
most voluminous elements of the lists, which leads us to Ns

not greater than nm(logm+logmax(maxsi(L),maxbi(B))),
being in O(N2

i ) (a polynomial verification time).
In order to analyze the feasibility of solutions to the VS-

IF-P we assume for a moment that fragments resulting from
the item splitting are equal in size. We have to be assured that
any fragment of the greatest item can be inserted entirely into
the highest capacity bin:

maxsl(L)

D + 1
≤ max

bi
(B). (3)

If we can pack items of an instance of the VS-IF-P with such
a fragmentation, we can do the same for the VSBPP instance,
whose items to be packed are simply those of the VS-IF-P
split. This reasoning allows us to adapt numerous algorithms
existing for the VSBPP to solve the VS-IF-P by incorporating
cutting. Eq. (3) guarantees the existence of a solution even in
cases when items are split into ’almost equal’ pieces because a
single ’over-sized’ fragment will be not greater than maxsl

(L)

D+1 .
We propose to admit cutting in FF (Cut and FF, CFF). Despite
sorting the bin classes in decreasing order of their capacity, the
on-line principle is preserved as items are not reordered before
their cut and insertion. An illustration of a CFF execution with
’imperfect cuts’ is presented in Figure 3. The discussion above,

10 10 10 10 10 10

7
6

7
6

7
6

13 13 13

Fig. 3. Example CFF solving an VS-IF-P instance; observe that an imperfect
cut do not compromise the solution feasibility

which exhibits a relationship between instances of the VS-IF-
P and the VSBPP allows us to apply FF (or NF). In solutions
obtained with these algorithms one bin at most is less than
half full.

On the other hand, if bins are of capacity 2s, where s is a
natural number, items are of size 2(s + 1) and any item can
be cut no more than once, D = 1, we cannot expect a better
approximation factor than 2. We visualize this example by
imagining in Figure 3 the item size equal to 12 and keeping bin
capacity equal to 10. This observation leads us to formulate:

Theorem 2. A solution to the VS-IF-P for any D with CFF
is tightly bounded by 2.

B. Main Problem

As stated above, the problem which models the distribution
of computation tasks within a private Cloud infrastructure is
a bin packing in which bins are of different sizes and tasks
can be split over several servers. We assume that all numerical
data (item sizes, bin capacities, costs) are natural numbers. We
also assume that a task is parallelizable (the discussion of our
hypothesis can be found in Section I). We allow an item to be
cut into no more than D+1 pieces, i.e. any item may be split
at most D times. Indeed, if any number of cuts was admitted,
we might cut all tasks into unitary pieces and end up with a
trivial packing of

∑n
i=1 si unitary objects being able to fill up

any used bin entirely.
As the reader might have already notice while passing

through Sections I and II, our problem, the Variable-Sized Bin
Packing with Cost and Item Fragmentation Problem (VS-CIF-
P), puts together the three problems announced above. To be
more precise, we ’mix up’ the VSBPCP and BPIFP, the latter
with the constraints which have just been discussed. Unless
stated differently, the cost function is monotone.

Definition 3. Variable-Sized Bin Packing with Cost and
Item Fragmentation Problem (VS-CIF-P)
Input:
• n items to be packed,
• sizes of items to be packed L = (s1, s2, . . . , sn),si ∈ N+,
i = 1, 2, . . . n,

• capacities of bins available B = (b1, b2, . . . , bm), bj ∈
N+, j = 1, 2, . . .m,

• costs of using of bins available C = (c1, c2, . . . , cm),
cj ∈ N+, j = 1, 2, . . .m,

• a constant D which limits the number of splits authorized
for each item, D ∈ N+,

• a constant e, e ∈ N+ which signifies the cost limit of a
packing.

Question:
Is it possible to find a packing B1, B2, . . . , Bk of items L
whose fragment sizes are in LD defined as in Eq. (1) such
that

∑k
l=1 cost(Bl) ≤ e?

IV. ALGORITHMS

Before introducing our methods to solve the VS-CIF-P
(Def. 3) we will discuss the solution to the auxiliary VS-IF-P



(Def. 1), in order to select the algorithmic approaches the best
adapted to treat our principal problem. Indeed, as we presumed
(Subsection III-A), the VS-IF-P can be solved exactly and in
polynomial time under a certain hypothesis.

A. Next Fit with Cuts (NFC) for the auxiliary problem

Let us hypothesize that we are dealing with the instances
for which we can always find a bin to pack any entire item
(without cutting it). This hypothesis may be expressed by:

max
si

(L) ≤ max
bi

(B). (4)

If this hypothesis is satisfied, we propose a variant of NF,
Next Fit with Cuts (NFC) as an algorithmic solution. A similar
approach was used for another purpose under the name of NFf
in [10], [11]. First, the capacities of bin classes are sorted in
decreasing order. Next, for each item, if there is some room in
a current bin, we pack the item inside, cutting it if necessary,
and inserting the second fragment of the item into the next bin.
We observe that with Hypothesis (4) valid, NFC fragments
any item at most once. Moreover, when this hypothesis is
satisfied, the packing problem with variable-sized bins and
item fragmentation is in P .

Indeed, the verification whether Hypothesis (4) holds or
not can be performed in O(m) or O(n) depending upon
the relationship existing between m and n. An execution of
NFC requires O(m logm + max(n,m)) operations. Lastly,
we observe that the bins used are all totally filled up and
they are of the greatest available capacities, which proves the
algorithm’s optimality.

This discussion leads us to the conclusion:

Theorem 3. NFC is optimal and polynomial to solve the VS-
IF-P when Hypothesis (4) holds.

B. Off-line Approach to the Main Problem with Monotone
Cost

The approach presented here is based upon IFFD (Para-
graph II-A1) combined with item cutting. For this reason we
refer to it as CIFFD. As before, we assume that bin classes
are sorted in decreasing capacity order, b1 > b2 > · · · bm.

The initial idea of our algorithm to solve the VS-CIF-
P (Algorithm 1) consists in dividing items of L into two
categories: those items i which may be possibly packed
without fragmentation and those which undoubtedly may not.
Such an approach makes our algorithm off-line. We propose to
reason here upon item sizes si, not upon their indices i. This
mental operation enables us to avoid tedious renumbering of
items to be packed, which might deteriorate the text limpidity.
At the same time, it does not introduce any ambiguity.

We formally note the two categories as T1 and T+
1 , re-

spectively: T1 ∪ T+
1 = {s1, s2, . . . , sn}, for all si ∈ T1 we

have si ≤ maxbi(B) = b1, and for all si ∈ T+
1 we have

si > maxbi(B) = b1. Items from T+
1 are cut naturally up to

D times in order to completely fill up a bin of capacity b1, the
remaining fragment whose size is inferior to b1 is stored in T−1
(lines 2–9 of Algorithm 1). This loop also allows us to detect

the instance infeasibility, i.e. the number of cuts allowed D is
too small to insert an item fragmented into the largest bins.

The items whose sizes are in T1 ∪ T−1 are then packed
according an appropriate algorithm to solve the BPP as we
use momentarily bins of identical capacity b1. We have thus
a solution which we try to improve iteratively, taking bins in
decreasing order of their capacity (for a bin of capacity bj
items are divided into Tj and T+

j ), by consecutive repacking
of the contents of the less efficiently used bin into a smaller
empty one, if possible (as IFFD described in Paragraph II-A1
does). As our algorithm can fragment an item to fill up
a bin, its iterative descent may stop when the number of
cuts allowed has been reached. A solution which offers the
lowest cost among the obtained ones is returned. Finally, an
attempt is made to squeeze this solution more (lines 27–32 of
Algorithm 1).

For any item CIFFD looks for an appropriate opened bin.
If it does not find one, it will open up the smallest bin into
which the item enters. Its complexity is thus O(mn log n).

Theorem 4. The VS-CIF-P is 2-approximable with CIFFD.

Proof: CIFFD is based upon the consecutive executions
of FFD and possibly improving their result due to successful
repacking. Taking advantage of Theorem 2 and the fact that
the cost is monotone (i.e. a cost of packing is not less than the
sum of items to be packed) we obtain also 2-approximation
for CIFFD.

C. On-line Approach to the Main Problems with Linear Cost

The algorithmic on-line method we propose now is founded
upon FFf (see Paragraph II-A2) with item cuts incorporated
(CFFf). As in Subsection IV-B and for the same reason, we
operate on item sizes, not on item indices. To keep the notation
brief, we put bmax = maxbi(B).

In a nutshell, the CFFf idea is as follows. For items whose
sizes are smaller than the largest bin capacity Hypothesis 4
holds. These items, which form set A, can be therefore packed
optimally with NFC (Subsection IV-A). Other items, which
constitute set A+ = L−A, require a split before packing. For
any element t of A we perform a cut into bmax and t− bmax

fragments. The remainders t − bmax form set A− and they
are packed according to FFf with f indicating a fill factor
(Paragraph II-A2).

We believe that this explanation is sufficient to implement
the algorithm. We propose, however, in Algorithm 2, a more
detailed description which shows explicitly a classification of
items from set A− (i.e. items which are the remainders of cuts)
into categories which are induced by different manners of item
packing. These three categories of items from set A−, which
we enumerate and comment on below, play an important role
in the approximability proof:
• X — items packed individually into bins of capacity
bmax,

• Y — items packed into bins of capacity bmax sharing
them with other items,



Algorithm 1: CIFFD solving the VS-CIF-P
Data: VS-CIF-P data as in Def. 3 with B sorted in

decreasing order
Result: Bmin = (B1, B2, . . . , Bk) whose cost is as

minimal as possible; cost emin of this packing
1 e← 0; divide L into T1 and T+

1 ;
2 foreach t in T+

1 do
3 repeat
4 split t into a fragment b1 and the remainder

t− b1;
5 pack the fragment b1 into a bin of capacity b1;
6 e← e+ cost of filling up a bin b1
7 until t− b1 ≤ b1;
8 put the remainder t− b1 into T−1
9 end

10 pack items from T1 ∪ T−1 to bins b1 with any BPP
algorithm;

11 e← e+ cost of this packing ; emin ← e; Bmin ← a
current packing;

12 for j ← 2 to m− 1 do
13 take out items from the less filled bin of size bj−1 of

packing Bmin;
14 divide them into two categories Tj and T+

j ;
15 foreach t in T+

j which has not yet reached the limit
of cuts D do

16 split t into bj and t− bj ; pack fragment bj into a
bin bj ;

17 e← e+ cost of filling up a bin bj ; put t− bj into
T−j

18 end
19 pack items from Tj ∪ T−j to bins bj with any BPP

algorithm;
20 e← e+ cost of this packing;
21 if e < emin then
22 emin ← e ; Bmin ← a current packing
23 else
24 take Bmin for repacking
25 end
26 end
27 foreach Bj of Bmin taken in decreasing order do
28 if Bj is not full ∧ its content may enter into bins of

certain capacities bl then
29 find blmin

, the smallest of these bl;
30 repack the contents of Bj into an empty bin of

capacity blmin

31 end
32 end

• Z — items packed into bins of any capacity b, b < bmax.
The computational effort of CFFf is concentrated upon

searching an appropriate bin among those which have been
already opened and selecting an empty bin with respect to a
given fill factor f . For f = 0.5 the complexity of CFFf is
O(n(log n+ logm) +m logm).

Algorithm 2: CFFf solving the VS-CIF-P
Data: VS-CIF-P data as in Def. 3, a fill factor f
Result: a packing whose cost is as minimal as possible

1 foreach t in L do
2 if t ≤ bmax then /* t from A */
3 pack t into bins of capacity bmax with NFC;
4 continue
5 else /* t from A+

*/
6 repeat
7 split t into a fragment bmax and the

remainder t− bmax;
8 pack the fragment bmax into a bin bmax;
9 t← t− bmax

10 until t ≤ bmax;
11 end

/* t is from A− */
12 if there is room for t in an opened bin then
13 b← the first opened bin into which t can be

packed;
14 pack t into b /* t ∈ Y when the bin bmax

is used and t ∈ Z otherwise */
15 end

/* an empty bin has to be opened for
t */

16 if t ≤ 0.5 · bmax then /* t is small */
17 pack t into an empty bin of capacity bmax

/* t ∈ Y */
18 else /* t is big */
19 if there are bins of capacity between t and t

f

then
20 b← the smallest empty bin of capacity

between t and t
f

21 else
22 b← a bin of capacity bmax

23 end
24 pack t into bin b /* t ∈ Z if b < bmax and

t ∈ X or t ∈ Y if b = bmax */
25 end
26 end

We estimate the quality of solution obtained with CFFf for
an instance I with list L of items to be packed, CFFf(L). We
assume here that the cost is linear and, moreover, a bin cost
is equal to its capacity, bi = ci, i = 1, 2, . . . ,m as stated
in Subsection II-A. Any solution cost is always less than or
equal to the overall mass of items from L: SL =

∑
t∈L t. The

notation SC indicates later on a sum of item sizes from any
set C.

Theorem 5. CFFf(L) ≤ 4
3SL + 2bmax.

Proof: As NFC, which packs items from A is exact and
polynomial (Theorem 3), CFFf(A) ≤ SA + bmax. We have
to estimate the packing quality for items from A− which are
divided into three categories: X , Y , and Z (see Algorithm 2).



Obviously, as items of category X result from splitting
and they occupy bins singly, CFFf(X) = 2|X|bmax and
SX ≥ 1.5|X|bmax with exception to at most a single bin,
which gives:

CFFf(X) ≤ 4

3
SX + bmax. (5)

Let YB stand for these items of Y which are packed into
bin B. Analogously, CFFf(YB) = (|YB | + 1)bmax and SY ≥
(|YB | + 2

3 )bmax with exception to at most a single bin. This
leads to:

CFFf(Y ) ≤ 9

8
SY + bmax. (6)

For a bin of capacity b in which items Zb of Z, Zb ⊂ Z,
are packed we have CFFf(Zb) = |Zb|bmax + b and SZb

>
bmax + fb. Consequently,

CFFf(Z) ≤ 3

2 + f
SZ . (7)

Combining the inequalities (5)–(7) with f = 0.5 we get

CFFf(A−) ≤ 4

3
SA− + 2bmax

which proves the theorem as CFFf(L) = CFFf(A)+CFFf(A−)
as the number of completely filled bins bmax has already been
counted.

V. PERFORMANCE EVALUATION

The goal of the performance analysis is to estimate the
difference of results obtained with our approximation algo-
rithms relative to the exact solutions. Moreover, we oppose our
methods to two simple reference algorithms, less “intelligent”
and less costly in terms of computational effort. We also
analyze the impact of the number of bin classes available and
the number of cuts allowed D on the approximation ratio of
the obtained results.

A. Experimental Setup

In order to estimate algorithm’s approximation ratios we
created VS-CIF-P instances from exact solutions artificially
made. We also proceeded with the comparaison of algorithms’
results for instances whose exact solutions are unknown.

All instances treated are feasible, i.e. the largest item
fragmented at most D times can be inserted into bins of the
greatest capacity. The numerical experiments were conducted
for instances with few (m = 3) and many bin classes
(m = 10). We arbitrarily fixed the largest capacity bmax to
100. The capacities of other m−1 classes are chosen uniformly
in the natural interval [1, bmax − 1].

In the case of a linear cost we took a bin cost equal to
its capacity, ci = bi, i = 1 . . . ,m. When dealing with a
monotone cost we assume that the largest bin cost is also
equal to its capacity, cmax = bmax. Assuming that bin classes
are sorted in decreasing order of their size, the cost ci+1 is
chosen uniformly in [bi+1, ci − 1].

Initial items are generated uniformly in [1, 99] and their
average size is 50. The number of initial items is arbitrarily

fixed to 200. We have thus the expected total volume of 10′000
to be packed.

The construction of exact solutions consists in putting initial
items into bins with FF and filling the opened bins entirely
with extra items. Items to feed the algorithms which admit
fragmentation are made up of initial and extra items put
together: up to D + 1 items (initial or extra) can be glued
to form an individual item. Consequently, in the experiments
we made, for D = 1 the average item size is equal to 100, for
D = 2 the average item size is equal to 200, etc.

The exact solutions which we took as a base of the instance
creation are composed typically of numerous large bins and
a single little one. Not willing to restrict ourselves to such
a solution form we also realized the direct confrontation of
results obtained from initial items, possibly glued up to D
times, as explained above. We did not add, however, any extra
items as we did not fill up the opened bins. By giving up
fixing an exact solution as a starting point of the instance
construction we award instances with more flexibility.

Despite the fact that the approximation factor we give for
CFFs in Theorem 5 holds for the linear cost, we decided to
run CFFf with the monotone cost, too. We argue that at this
stage we can evaluate empirically its performance with the
monotone cost.

The results are averaged for series of 1000 instances with
which the algorithms are fed. The confidence intervals de-
picted in all figures illustrating the following subsection are
computed with the confidence level α = 0.05.

B. Results

Before presenting the results we explain the simple greedy
algorithms which will be brought face to face with our
algorithms.

The first of them, called CNFL (this abbreviation is straight-
forward and will be explained below) is on-line. Its operating
mode is two-fold. First, it cuts items up to D times to fit their
fragments into largest bins. This is a “modulo bmax cut”: D
bins are filled up, the last one may be partially filled. Next,
it packs them according to the Next Fit principle (Cut and
Next Fit, CNF). The reader may refer to Subsection III-A and
Figure 3 to recall the discussion of the similar CFF based upon
“almost equal” cuts. Cost minimizing is obtained by always
using the Largest bin (the dual principle to the one seen in
Paragraph II-A2). Assuming that bin classes are preliminarily
sorted, the CNFL complexity is O(n). Its performance will be
compared with that of CFFf.

The second one is an off-line mutation of CNFL in which
the items, after the preliminary “modulo bmax cut” made as
explained above, are sorted in decreasing order. This off-line
algorithm, to be confronted with CIFFD, is obviously called
CDNFL.

Intuitivelly, the great number of cuts allowed may facilitate
packing procedures. We opted thus to confront the algorithms
for D = 1. Figures 4 and 5 present the results of the
comparison of the approximation ratios obtained with two off-
line algorithms in function of the number of bin classes for
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Fig. 4. Estimation of the approximation ratio for the off-line algorithms,
CIFFD and CDNFL, with D = 1 and linear cost for different numbers of bin
classes
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Fig. 5. Estimation of the approximation ratio for the off-line algorithms,
CIFFD and CDNFL, with D = 1 and monotone cost for different numbers
of bin classes

linear and monotone costs, respectively. Figures 6 and 7 do
the same for both on-line methods.

Figures 5 and 6 show at a glance that the algorithms
perform much better the theoretical performance bounds given
in Theorems 4 and 5 for CIFFD with monotone cost and CFFf
with linear cost, respectively.

As one may expect, the approximation ratio obtained with
CIFFD is significantly better comparing with the one produced
by the naive approach for both the analyzed costs (Figures 4
and 5). As our algorithm is based upon consecutive repacking
of a single, the least filled bin, the impact of the number of
bin classes available is considerable. CIDDF packs better when
having many bin classes at its disposal, in contrast to CDNFL
which is insensitive to this parameter.

The on-line approach, CFFf, is not significantly influenced
by the number of bin classes. Figures 4–7 put in evidence
its strikingly good performance. CFFf, despite being on-line,
outperforms even the off-line CIFFD method in certain situ-
ations. This interesting phenomenon will be explained below
while studying the influence of the number of cuts allowed.

Figures 8 and 9 show the performance of the algorithms
for the same series of instances whose exact solutions are a
priori unknown, with linear and monotone cost, respectively.
This experience allowed us to compare the algorithm quality
for instances which do not suffer from the imposed form of
an exact solution. The smaller value of the average packing
cost signifies a higher packing efficiency. As the average total
volume of items to be packed is preserved and equal to 10′000,
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Fig. 6. Estimation of the approximation ratio for the on-line algorithms,
CFFf and CNFL, with D = 1 and linear cost for different numbers of bin
classes
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Fig. 7. Estimation of the approximation ratio for the on-line algorithms,
CFFf and CNFL, with D = 1 and monotone cost for different numbers of
bin classes

the reader may observe the similar tendency as in the case of
the comparison with optimal solutions. It is not astonishing
that all algorithms behave better for the linear cost. CIFFD
becomes more efficient when the number of bin classes goes
up. Again, CFFf performs much better that a greedy off-line
method CNFL.

The impact of the limit set on the number of splits permitted
is illustrated in Figures 10 and 11 for the off-line and on-line
approaches, respectively. This analysis reveals a secret of the
excellent performance of CFFf. As the results for the linear
and monotone costs exhibit the same tendency, we restrict the
graphical presentation to the latter only. The fragmentation
ban (D = 0) signifies that the problem solved is simply the
VSBPCP.

The graph in Figure 10 confirms the intuition that more
splits allowed make packing easier. For instance, CIFFD with
monotone cost, 10 bin classes and up to 8 cuts often reaches
“an almost exact solution”.

The behavior of CFFf depicted in Figure 11 does not,
however, exhibit the same trend. Before explaining this phe-
nomenon we recall to the reader that the items which satisfy
Hypothesis (4) are packed optimally with NFC according to
Theorem 3. We also call up that in our experiments the average
total volume of items to be packed is preserved regardless the
value of D (see Subsection V-A). It means that for a great D
value an instance has less items but they are bigger.

As we see in Figure 11, admitting one cut (D = 1) dras-
tically lowers the solution cost comparing with the situation
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Fig. 8. Average result of the off-line (CIFFD and CDNFL) and on-line
algorithms (CFFf and CNFL) with D = 1 and linear cost for different
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Fig. 9. Average result of the off-line (CIFFD and CDNFL) and on-line
algorithms (CFFf and CNFL) with D = 1 and monotone cost for different
numbers of bin classes

when the fragmentation is forbidden (the VSBPCP for D = 0).
In our experiments, the average item size for D = 1 is 100.
The largest bin has the same capacity bmax = 100. A relatively
large part of items is therefore inserted into largest bins by
NFC (line 3 in Algorithm 2). When more cuts are allowed,
for example D = 2, the average item size is greater, 200,
while the largest bin capacity stays unchanged, bmax = 100,
the “modulo bmax splitting” made in the repeat loop (lines 7–
10 of Algorithm 2) takes over. This loop may potentially
open up too many largest bins than necessary. Finally, when
D is increasing (starting from D = 7 in our experiments)
the negative impact of the repeat loop is compensated by the
intelligent packing realized in lines 12–25 of Algorithm 2 and
the CFFf performance stabilizes close to an exact solution
(between five and ten per cent).

We thus draw a conclusion that the more items CFFf inserts
with NFC, the better its performance is.

VI. CONCLUSIONS AND PERSPECTIVES

We proposed the modeling of the energy-aware load balanc-
ing of computing servers in networks providing virtual services
by a generalization of the Bin Packing problem. As a member
of the Bin Packing family, our problem is also approximable
with a constant factor. In addition to its theoretical analysis we
proposed two algorithms, one off-line and another one on-line,
giving their theoretical performance bounds. The empirical
performance evaluation we realized showed that the results
they provide are significantly below the approximation factor.
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Fig. 10. Estimation of the approximation ratio for the off-line CIFFD with
monotone cost for different numbers of bin classes available in function of
the number of splits allowed
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Fig. 11. Estimation of the approximation ratio for the on-line CFFf with
monotone cost for different numbers of bin classes available in function of
the number of splits allowed

On the one hand, this practical observation encourages us to
continue looking for a better approximation factor, especially
for CIFFD whose performance is much better than predicted
theoretically. We will also try to extend the analysis of CFFf
to the monotone cost.

On the other hand, we gave the performance evaluation
which allows us to consider CIFFD and CFFf as the algorithms
with a very good potential for practical applications like
energy-aware load balancing, which motivated our work. We
emphasize the remarkable efficiency of our on-line approach
(CFFf) which outperforms considerably simple off-line algo-
rithms. Notwithstanding, the theoretical result proven only for
the linear cost CFFf behaves very well when bin costs are
monotone.

The approach presented in this paper is centralized and
adapted to private Cloud infrastructures. Another challenge
calling into question is the application of our packing ap-
proach into a distributed environment when information about
resource availability is incomplete.

We believe that the approach through packing is a powerful
tool allowing one to perform a load-balancing in Clouds which
ensures the realization of tasks with respect to their require-
ments while consuming the smallest quantity of electrical
energy. For this reason we think to use this approach in our
further multi-criteria optimization of a Cloud infrastructure.
Among other criteria which we find essential to study in this
context are the efficient utilization of resources of a telecom-
munication network (the principle “network-aware Clouds”)



and the guarantee of meeting the QoS requirements expressed
in customers’ contracts, concerning, for instance, the task
termination before a given dead-line or the task execution time
limited by a given make-span.
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