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Abstract- Compressed sensing (CS) in magnetic resonance 

imaging (MRI) enables the reconstruction of MR images from 

highly undersampled k-spaces, and thus substantial reduction of 

data acquisition time. In this context, edge-preserving and 

sparsity-promoting regularizers are used to exploit the prior 

knowledge that MR images are sparse or compressible in a given 

transform domain and thus to regulate the solution space. In this 

study, we introduce a new regularization scheme by iterative 

linearization of the non-convex clipped absolute deviation 

(SCAD) function in an augmented Lagrangian framework. The 

performance of the proposed regularization, which turned out to 

be an iteratively weighted total variation (TV) regularization, 

was evaluated using 2D phantom simulations and 3D 

retrospective undersampling of clinical MRI data by different 

sampling trajectories. It was demonstrated that the proposed 

regularization technique substantially outperforms conventional 

TV regularization, especially at reduced sampling rates. 

I. INTRODUCTION 

MAGNETIC resonance imaging (MRI) is one of the 
leading cross-sectional imaging techniques used in 

clinical practice offering a great flexibility in terms of soft 
tissue contrast. MRI often suffers from slow data acquisition 
and long scanning time. Fast scanning is of particular 
importance in dynamic and cardiovascular imaging where 
whole-organ coverage within a short time is required. Beside 
ultra-fast imaging sequences [1], emerging trends focus on 
parallel MRI (PMRI) and partial Fourier measurements 
through k-space undersampling [2]. However, undersampling 
inevitably violates the Nyquist sampling criterion, whereby 
the reconstructed images exhibit aliasing artifacts and reduced 
signal-to-noise ratio (SNR). In fact, pMRI techniques, such as 
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SMASH [3], GRAPPA [4] and SENSE [5], partially collect 
data from an array of receiver radiofrequency (RF) coils and 
hence reduce the number of Fourier encoding steps. In the 
reconstruction process, they exploit the redundant information 
contained in the spatial sensitivity of the coil array to avoid 
aliasing. SMASH and GRAPP A estimate the missing k-space 
data directly from coil sensitivity maps, while SENSE restores 
the original images by solving an underdetermined linear 
system of equations incorporating sensitivity maps. However, 
the inverse problems raised in pMRI are ill-posed and unstable 
due to k-space undersampling [5] and instability arising from 
the correlation of sensitivity maps [6]. 

Regularization and incorporation of some prior knowledge 
about the image solution in the reconstruction process is an 
efficient way to stabilize the problem and in fact to penalize 
unsatisfactory solutions. Many regularization methods have 
been studied in this context. The truncated singular value 
decomposition (SVD) technique attempts to stabilize the 
solution by truncating small singular values with the 
asswnption that noise amplification is associated with small 
singular values of the solution [7, 8]. Tikhonov regularization 
suppresses noise based on the assumption that sharp 
transitions in image space are probably due to noise and hence 
favors smooth images [6, 7]. Both regularizations are based on 
L2 norm minimization. Recent developments in compressed 
sensing (CS) have introduced sparsity regularization 
techniques, which have gained significant attention in MR 
image reconstruction from highly undersampled k-spaces. In 
fact, CS-MRI exploits the prior knowledge that MR images 
are sparse or weakly sparse (compressible) in spatial and/or 
temporal domains [9-11] or in a given transform domain such 
as wavelets, discrete gradients [10] and learned dictionaries 
[12, 13]. 

In this context, total variation (TV) regularization has been 
widely used to exploit and promote the sparsity of the solution 
[14-16]. TV regularization is based on the L, norm and makes 
use of discrete gradients as a sparsifying transform. It has been 
shown that this regularization outperforms the L2 based 
regularization in CS-MRI [17]. In this study, we introduce the 
non-convex smoothly clipped absolute deviation (SCAD) 
regularization [18] for CS-MRI in order to improve the 
performance of TV regularizations. CS-MRI reconstruction is 
formulated as an optimization problem and solved using an 
augmented Lagrangian (AL) method, which is an efficient 
algorithm for solving large-scale problems encountered in CS­
(P)MRI [19]. By linearization of the SCAD function in this 
framework, we then derive an iteratively weighted TV 
regularization scheme. 
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II. PROBLEM FORMULA nON 

For the standard CS-MRI, we fonnulate the following CS 
acquisition model: 

y = <f>:Fx + n, (I) 

where y E <eM is the undersampled k-space of the underlying 
MR image, x E IR\.N, contaminated with additive noise n E <eM. 
:F E <eNXN is a unitary Fourier basis through which x is being 
sensed and <f> E IR\.MXN is a sampling matrix that compresses 
data to M < N samples. The matrix A = <f>:F is often referred 
to as sensing or Fourier encoding matrix. The direct 
reconstruction of x from y (by zero-filling the missing data 
and then taking its inverse Fourier transform) results in 
aliasing artifacts attributed to the ill-conditioning nature of 
matrix A. As a result, regularization is required to regulate the 
solution space according to a priori knowledge. The solution is 
therefore obtained by the following optimization problem 

x = argminx III<f>:Fx -yl1 2 + R(x), (2) 

where the first term enforces data consistency and the second, 
known as regularizer, enforces data regularity. In the CS-MRI 
context, sparse L,-based regularizers have been widely used 
because the LI norm is a convex and sparsity promoting norm. 
As such, the resulting problem is amenable to optimization 
using convex programming. These regularizers are of the form 
R(x) = IlIlDxlll = IlL�=ll[DxL I, wherell> 0 is a 
regularization parameter controlling the balance between 
regularization and data-consistency and D is a sparsifying 
transform such as discrete wavelet, cosine or gradient 
transfonn. The CS approach makes it possible to accurately 
reconstruct the image solution of problem (1), provided that i) 
the underlying image has a sparse representation in the domain 
of the transform D, i.e. most of the decomposition coefficients 
are zero, while few of them have a large magnitude, ii) the 
sensing matrix A should be sufficiently incoherent with the 
sparse transform D, thereby the aliasing artifacts arising from 
k-space undersampling would be incoherent (noise like) in the 
domain of D [10]. 

III. PROPOSED ApPROACH 

The sparsity of an image solution induced by L,-based 
regularizers can be increased by introducing a non-convex 
potential function, 1/JA' as follows: 

R(x) = L�=l1/JA(I[Dx]d), (3) 

where 1/JA assigns a higher penalty on the coefficients of small 
magnitude so that they are being shrunk towards zero. 

In this study, the non-convex SCAD potential function was 
applied for CS-MRI regularization. The most widely used 
SCAD function, which has been successfully applied for linear 
regression with variable selection [18], is defined as: { Illtl It I :::; Il 
1/JA (It I) = (-ltI 2 + 2 allitl - 1l2 )/2 (a - 1), Il < It I :::; all (4) 

(1 + a)1l2/2 I tl > all 

where a > 2. This potential function corresponds to a 
quadratic spline with knots at Il and all. Fan and Li [18] 
suggested to use a = 3.7 based on simulations and Bayesian 
statistical arguments. 

A 3D discrete gradient was employed as a sparsifying 
transfonn. It was defined as D = [Dh, Dv, Da] E 1R\.3NXN, a 
derivative matrix composed of directional first-order finite 
difference matrices (horizontal, vertical and axial) with 
periodic boundary conditions. The magnitude of the gradient 
at voxel i is given by: 

I [ D x ] d = )r.[ D=- h'-X """]"f -+-;[c-::- D-v x"""]"'f - +---;-:=[ D'-- a-x�]f ,  [ D x ] i E IR\. 3 . 

The summation over the magnitude of the gradient at all 
voxels defines the TV regularizer, which is known to be edge­
preserving in image processing and sparsity-promoting in 
compressed sensing. However, it sometimes results in stair­
casing artifacts, which are artificial flat regions in the image 
domain. 

To solve the problem (2) with a SCAD-based regularizer, 
we follow the augmented Lagrangian (AL) method originally 
developed for constrained optimization problems [20]. The 
AL method, also known as the method of mUltipliers [21], not 
only allows for optimization of non-continuously 
differentiable regularizers such as L,-based regularizer, but 
also through a variable splitting technique one can define 
auxiliary constraint variables and decompose the original 
optimization problem to simpler sub-problems [22]. Hence, 
we define the auxiliary variable e = Dx and cast the problem 
(2), with the regularizer defined by equations (3) and (4), into 
the following constrained problem: 

min {rex, e) � III<f>:Fx -Yll 2 + L�=l1/JA(led)}, (5) x,l} 
subject to e = Dx 

The augmented Lagrangian for this problem is defmed as: 

L(x, e, y) = rex, e) -yT (e -Dx) + %lle -Dx11 2 ,  (6) 

where y E 1R\.3N and p > 0 are respectively the Lagrange 
multiplier and the penalty parameter associated with the 
equality constraint e = Dx. The AL method aims at finding a 
saddle point (x*, e*) minimizing L(x, e, y). The classical 
approach to solve Eq. (6) alternates between a joint­
minimization and an update step as follows: 

(xk+l, ek+l) = argminx,l} L(x, e, yk), (7) 
yk+l = yk _ p(ek+l _ DXk+1), (8) 

As joint-minimization in Eq. (7) is not trivial, an alternating 
minimization with respect to a given variable while keeping 
the other constant can be followed. Using this approach, 
referred to as alternating direction method of multipliers 
(ADMM) [23], the optimization algorithm of Eq. (7) reads: 

Xk+l = argminx III<f>:Fx -Yl1 2 -y[ (ek -Dx) + 
%lIek -Dxll 2 , (9) 

ek+l = argminl} L�=l1/JA (led) -y[ (e -DXk+1) + 
� lie -DXk+111 2 , (10) 

In the following, we solve the above sub-problems, 
indi vidually. 

A. Minimization with respect to x 
The minimization in Eq. (9) is achieved by taking the 

derivative of the objective of the problem with respect to x 
and equating it to zero, thereby one arrives to the following 
normal equations: 
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(yH <l>T <l>Y + pDT D)xk+1 = yH <l>T Y + DT (p()k -yk), (11) 

where (-)H denotes the Hermitian transpose and <l>T <I> E 
IRl.NXN is a diagonal matrix with zeros and ones on the diagonal 
entries. To solve this problem, one need to invert the matrix 
y H <I> T <l>Y + pDT D. For periodic boundary conditions, matrix 
D has a block-circulant structure and its directional derivatives 
can be achieved by circular convolutions with two-element 
kernels. Therefore, D can be efficiently diagonalized using 3D 
discrete Fourier transform (DFT), i.e. D = yH AY, where A is 
a diagonal complex matrix containing the DFT coefficients of 
the convolution kernels of D. Hence, one obtains DT D = 
yH IAI 2y, where 111.1 2 E IRl.NXN is the modulus of A, also the 
eigenvalue matrix of D. With this diagonalization, one can 
solve Eq. (9) as follows: 

Xk+1 = yH (<I>T <I> + pIAI 2)-ly(yH <l>T Y + DT (p()k _ yk)) 
(12) 

B. Minimization with respect to () 

The SCAD potential function is non-convex; thereby the 
problem (10) is not tractable to minimization. Hence, one can 
utilize an optimization transfer technique to iteratively 
surrogate this function by a convex function. Fan and Li [18] 
proposed a local quadratic approximation to this function near 
the point ()k as follows: 

Q(I()d, I()ik I) = tPA(I()ikl) + � .p�I�I;rD (l()d2 -I()ik n, (13) 

where the first derivative of the SCAD function is given by: 

, fA I()d s;; A tPA (I()i I) = tmax(O, aA -I()i I) /(a - 1) I()i I > A' 
(14) 

The quadratic surrogate in Eq. (13) is however undefined at 
points ()ik = O. The denominator can be conditioned to let I + 
f, where E is a predefmed perturbation parameter [24]. As 
erroneous Es potentially degrade the sparsity of the solution as 
well as the convergence rate of the optimization algorithm, 
Zou and Li [25] proposed the linear local approximation of the 
SCAD function near the point ()t. As a result, the following 
convex surrogate is obtained: 

L(I()d, I()ikl) = tPA(I()ikl) + tP�(I()ikl)(l()d -I()ikl)· (15) 

Fig. 1 compares the SCAD function with its quadratic and 
linear convex surrogates. Note that the linear surrogate is a 
non-smooth function and is similar to a scaled or weighted L,­
norm. Given the superiority of SCAD linearization, we 
adopted this convex surrogate and derived a closed-form 
solution to the problem (10). By dropping the terms 
independent of ()i in Eq. (15), completing the square in Eq. 
(10) and defining the intermediate variable iJ = DXk+1 + 
yk /p, we can rewrite the problem (10) as follows: 

()k+1 = argminll L�=l tP�(I()ikl)l()d + �lliJ -()11 2 , (16) 

As the terms in the above optimization problem are 
separable, we obtain the solution by the following component­
wise soft-thresholding estimator according to theorem (1) in 
[26]: 

(17) 
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Fig. 1. The non-convex SCAD potential function (1/J) together with its 
convex quadratic (Q) and linear (L) surrogates (ek = 2, a = 3.7, .1 = 1). 

where wik = tP� (I()ik I) are iteratively derived weighting 
factors that promote or suppress the thresholding of the 
decomposition coefficients and liJd = ([iJhlf + [iJvlf + 
[iJa]f)1/ 2. It worth noting that in the adopted framework, the 
problem (10) for quadratic approximation of SCAD has the 
following close-form solution: 

()k+1 = (W + pI)-liJ W = diag {.p� (111m ... .p� (l1I� D} p , 
lilt I+< , 'III�I+< ' 

where I is an identity matrix. Our preliminary results (not 
shown) showed that the linear approximation of SCAD 
outperforms its quadratic counterpart mainly due to i) its non­
smooth nature and thus higher sparsity promotion and ii) the 
high dependence of quadratic approximation to its 
perturbation parameter, as noticed in [25]. 

As a result of SCAD function linearization, the regularizer 
L�=l tP�(I()ik 1)I()d for ()i = [DxL in fact behaves as an 
iteratively-weighted TV regularizer with improved 
performance (see Results section). Note that by setting the 
weights wik = 1, the proposed regularization reduces to the 
conventional TV regularization. To this end, Algorithm 1 
summarizes the proposed SCAD-ADMM algorithm for CS­
MRI. A global convergence is declared when the relative 
difference of Xk+1 and Xk falls below a tolerance (ry). 

ALGORITHM 1: SCAD-ADMM 

Choose p, A, ry, initialize ()o, yO = 0 and pre-compute 111.1 2. 
While (1Ixk+1 -Xk 11/lIxk II) > ry do 

1. Compute Xk+1 according to Eq. (12). 
2. Define the intermediate variable iJ = DXk+1 + yk /p. 
3. Compute the weights wk = tP� (I()k I) using Eq. (14). 
4. Compute ()k+l by weighted soft-thresholding of iJ 

using Eq (17) and the weights Wk. 
5. Update Lagrange multiplier according to Eq. (8). 

Output: xk+1. 
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Fi . 2. Reconstruction of the XCAT phantom through zero-filling, TV-ADMM and SCAD-ADMM algorithms from k-space! sampled using 7 equally spaced 
radiafFourier trajectories (Top) and a variable-density spiral trajectory (Bottom), respectively, correspondIng to 98.37 and 98.48 Yo k-space undersamphng. 

TABLE I 
SNR (dB) PERFORMANCE OF THE STUDIED ALGORITHMS IN CS-MRI WITH RESPECT TO FULLY SAMPLED (REFERENCE) IMAGES. 

DATASET (METHOD) ZERO-FILLING TV -ADMM SCAD-ADMM 
XCAT(RADIAL) 
XCAT(SPIRAL) 

BRAIN 
MRA 

IV. RESULTS 

7.37 
7.19 

12.67 
11.08 

Several simulations and retrospective k-space undersampling 
using clinical datasets were performed to evaluate the 
performance of the proposed SCAD regularization with TV 
regularization. Radial and spiral Fourier trajectories were used 
for retrospective undersampling of the (fully sampled) 
Cartesian k-spaces of phantoms and clinical datasets. 

The first experiment was performed on the XCA T phantom 
for the recovery of the underlying image (with a resolution of 
512x512) from its undersampled k-space with 7 equally 
spaced radial trajectories and a single-shot variable-density 
spiral trajectory respectively, corresponding to 98.37 and 
98.48% k-space undersampling, respectively). In this 
experiment, 20 dB complex noise was added �o the 
undersampled k-spaces. Fig. 2 compares the Images 
reconstructed by zero-filling and the best case performance of 
TV and SCAD-ADMM algorithms, i.e. heuristically optimized 
for involving parameters p, A and a. For the radial sampling 
results, the optimal parameters were set as p = 0.04, A = 0.1, 
a = 3.7 for SCAD and p = 0.02, A = 0.1 for TV. Similarly, 
in the spiral sampling, the parameters were set as p = 

0.005,A = 0.02, a = 3.7 for SCAD and p = 0.008, A = 

15.36 
21.58 
18.41 
16.62 

24.82 
30.31 
20.19 
18.12 

0.01 for TV. As can be seen in Fig. 2, the proposed 
regularization technique has efficiently reco�ere� the. tru� 
image particularly in the case of radial samphng ill whIch It 
outperforms the TV regularization in restoring the non-convex 
structures such as vertebra. The quantitative evaluation of the 
algorithms in terms of SNR is presented in Table I. The SNR 
results also confirm that the weighting scheme significantly 
improves the performance of TV regularization. It should be 
noted that at sufficiently high sampling rate the LI-based TV 
regularization can restore the underlying image as faithfully as 
the SCAD regularization. However, we purposefully lowered 
the sampling rate to evaluate the ability of algorithms in CS­
MRI from highly undersampled datasets. 

In the second experiment, we performed CS-MR image 
reconstructions of a simulated Tl-weighted 3D brain MRI 
dataset (30 slices with resolution of 256x256) , 1 rum slice 
thickness, 3% noise and 20% intensity non-uniformity [27]. A 
stack of 26 radial projections was used for 88.71 % k-space 
undersampling. Fig. 3 compares the image reconstructed by 
zero-filling, TV and SCAD regularizations. In this case, both 
TV and SCAD regularizations have efficiently suppressed 
aliasing artifacts and thus recovered the underlying image. 
However, the TV regularization resulted in a global 
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TRUE ZERO-FILLING TV SCAD 

Fig. 3. Reconstruction of 3D Brain phantom through zero-filling, TV-ADMM and SCAD-ADMM algorithm using a 3D stack of 26 equally spaced radial 
Fourier trajectories (88.71% undersampling). The TV and SCAD images are shown with the same display window. 

TRUE ZERO-FILLING TV SCAD 

Fig. 4. Reconstruction of 3D brain MR angiogram through zero-filling, TV -ADMM and SCAD-ADMM algorithm using a 3D stack of a single-shot variable­
density spiral trajectory (74.27% undersampling). The TV and SCAD images are shown with the same display window. 

smoothing, whereas, as seen in zoomed-in images (Fig. 3), the 
proposed regularization method results in the preservation of 
edges through its iterative weighting of the TV regularizer. 

This is particularly noticeable for the brain's fissures with 
sharper anatomical edges. The SNR performance of the 
algorithm (Table I,) also reveals the improved signal to 
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Fig. 5. Evolution of the weights (wk) of the MRA frame shown in Fig. 4 with iteration number. The gray-color bar shows the dynamic range of the weights at 
iteration k= 70. 

noise ratio and hence the reduction of aliasing artifacts 
achieved by the proposed regularization. In this 
reconstruction, the optimal parameters set were p = 0.45, A = 
2.2, a = 10 for SCAD and p = 0.04, A = 5 for TV 
regularizations. 

The performance of the algorithms was finally evaluated in 
the CS-MR reconstruction of an MR angiography (MRA) 
dataset in a patient with arterial bolus injection [28]. The 
dataset was synthetized from projection data collected for 3 
frames per second, for a total of 10 seconds (31 collected 
frames) and the frames were linearly interpolated into 200 
temporal frames. In this study, 30 time frames of this dataset 
(with a resolution of 256x256) were chosen and their 3D k­
space was retrospectively undersampled using a stack of 2D 
single-shot variable-density spiral trajectories, yielding 
74.27% undersampling. Fig. 4 shows reconstructed images 
using the studied algorithm with optimal parameters set as 
p = 2, A = 750, a = 50 for SCAD and p = 1.5, A = 750 
for TV regularizations. The results show that the regularized 
reconstructions have substantially improved the quality of the 
images in comparison with zero-filling which is in fact an un­
regularized reconstruction. At the same time, the regularized 
estimates are less noisy than the fully sampled image. On the 
other hand, close inspection of the zoomed-in images shows 
that the SCAD regularization enhances both image quality and 
contrast. The SNR results of the reconstruction algorithms are 
presented in Table I. 

V. DISCUSSION 

A. Edge Preservation and Sparsity Promotion 

The TV regularization and the linearized SCAD 
regularizations are in essence based on L, and reweighted L, 
norms. In general, the outperformance of SCAD regularization 
should be ascribed to the fact that the reweighted L, norm 
non-uniformly thresholds the gradient fields (decomposition 
coefficients) of the image estimate according to adaptively 
derived weighting factors (Step 4 in Algorithm 1). In fact, 
these weighting factors, on one hand, suppress the smoothing 
(thresholding) of edges and on the other hand, enforce the 
smoothing of the regions contaminated with noise and 
artifacts. Fig. 5 shows the weights associated with the image 
frame shown in Fig. 4 as a function of iteration number. It can 
be seen that as the iteration number is increased the emphasis 
on the preservation of edges (the wall of vessels) is increased 
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-1 -0.5 0.5 -1 -0.5 0.5 
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Fig. 6. The sparsity promotion of SCAD regularizer. (a-b) The vertical 
gradient field of the image frame shown in Fig. 4 (at iteration 10) thersholded 
by respectively soft and weighted-soft thresholding with the same 
regularization and penalty parameters. (c-d) The histograms of the images in 
shown in (a) and (b). respectively. 

by zero or close to zero weights and the suppression of in­
between regions is continued by high-value weights. In fact, 
the end result of this procedure is the promotion of the sparsity 
of image estimates in the domain of the sparsifying transform. 
Figs. 6 (a-b) show the vertical gradient field (eV) of the MRA 
frame, shown in Fig. 4 at iteration number 10, thersholded 
respectively using soft-thresholding and weighted soft­
thresholding with the same regularization and penalty 
parameters. The corresponding histograms of the images (20 
bins) are shown in Figs. 6 (c-d). The results clearly show that 
the SCAD weighting scheme promotes the sparsity by zeroing 
or penalizing small value coefficients that appear as noise and 
incoherent (noisy-like) artifacts. This is also noticeable in the 
histograms where the frequency of the coefficients in c1ose-to­
zero bins has been reduced, while it has been increased in the 
zero-bin. 

To enhance sparsity, Candes et al [29] proposed a 
reweighted L, norm by iterative linearization of a quasi-
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convex logarithmic potential function. They demonstrated that 
unlike the LI norm, the resulting reweighted LI norm (with the 
weights wjk = A(18jk I + E)-l, in our notation) provides a more 
"democratic penalization" by assigning higher penalties on 
small non-zero coefficients while encouraging the 
preservation of larger coefficients. In this sense, a reweighted 
LI norm regularization resembles an Lo norm, which is an 
ideal sparsity-promoting, but intractable norm. Recently, 
Trzasko et al [30] proposed a homotopic Lo norm 
approximation by gradually reducing the perturbation 
parameter E in quasi-convex norms (e.g. the logarithmic 
function) to zero. It has been shown that the solution of Lo 
penalized least squares problems, such as the one presented in 
Eq. (16) with an Lo regularizer, can be achieved with a hard 
thresholding rule [31, 32], which thresholds only the 
coefficients lower than a threshold m. As observed by 
Trzasko et ai, the hard thresholding rule associated with Lo 
regularization increases sparsity and offers strong edge 
retention in comparison with the soft thresholding associated 
with LI regularization. In comparison with the weighting 
scheme of Candes et al and in connection with homotopic Lo 
approximations, the linearized SCAD regularization invokes a 
weighted soft-thresholding rule that in limit approaches hard 
thresholding rule. Fig. 7(a) compares the standard hard and 
soft-thresholding rules with the weighted soft-thresholding 
rule obtained from the linearization of the SCAD function 
(according to Eq. 14), for different values of the parameter a 

and for ,1 =  1. Similarly, Fig. 7(b) compares those standard 
rules with the weighted soft-thresholding rule by Candes's 
weighting scheme for different values of the parameter E and 
for A = 1. It was observed that for small values of a, the 
SCAD weight soft rule resembles hard thresholding, while for 
the small values of E the Candes weight soft rule is at best 
between the standard hard and soft thresholding. On the other 
hand, for large values of a and E, the SCAD and Candes rules 
respectively approach soft thresholding and an identity rule 
(which can be thought as a soft-thresholding with zero 
threshold). In fact, Fan and Li [18] proposed the SCAD 
potential function to improve the properties of L, and hard 
thresholding penalty functions (those approximating Lo norm) 
in terms of unbiasedness, continuity and sparsity. This 
function avoids the bias of soft-thresholding (LI norm) on 
over-penalizing large coefficients and the discontinuity and 
thus instability of hard-thresholding (quasi Lonorm) and at the 
same time, promotes the sparsity of the solution [18]. 
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Fig_ 7_ Comparison of hard (H) and soft (5) thresholding rules with the 
soft-thresholding (5w) rules weighted by (a) the linearization of SCAD 
function for different parameters a and (b) the Candes' approach for different 
parameters E_ 

B. Computational Complexity and Parameter Selection 

In this study, we solved the standard CS-MRI image 
reconstruction problem presented in Eq. (2) using an 
augmented Lagrangian method. Recently, Ram ani et al [19] 
studied AL methods for pMRI and showed that this class of 
algorithms are computationally appealing in comparison with 
nonlinear conjugate gradient and monotone fast iterative soft­
thresholding (MFIST A) algorithms. In the minimization of the 
AL function with respect to x, they solved Eq. (11), which 
also included sensitivity maps of array coils, using a few 
iterations of the conjugate-gradient algorithm. In contrast, we 
derived a closed-form solution for this equation in CS-MRI, 
which allowed speeding up the algorithm, particularly by the 
per-computation of the eigenvalue matrix of discrete gradient 
matrix D. The practical application of this analytic solution for 
pMRI remains to be addressed in future work. 

All of our CS-MR experiments were implemented in 
MA TLAB 201 Oa, running on a 12-core workstation with 2.40 
GHz Intel Xeon processors and 32GB memory. In general, for 
retrospective reconstruction of a dataset 256x256x30, the 
SCAD and TV-ADMM algorithms required about 0.4 and 
0.25 seconds per iteration in our implementation. A tolerance 
of TJ = 5 X 10-4 was used in Algorithm 1 to declare the 
convergence of the algorithms. For optimally tuned 
parameters, it was found that the TV-ADMM algorithm 
generally converges after a fewer number of iterations in 
comparison with the SCAD-ADMM. In the 3D Brain and 
MRA datasets, it converged after 32 and 43 iterations, 
respectively, while the SCAD converged after 93 and 72 
iterations, respectively. This convergence behavior should be 
ascribed to the weighting scheme that SCAD regularization 
exploits. In fact, our results showed that the TV regularization 
has a comparatively better initial SNR improvement, however, 
after a sufficient number of iterations, it is not able to further 
improve the quality of the image estimate and hence it is 
stopped. Whereas, the SCAD algorithm showed a gradual 
improvement in SNR to a higher level, as summarized in 
Table I. 

As mentioned, the algorithms were compared in their best 
case performance, that is, the involving parameters (the 
penalty parameter p, the regularization parameter A and the 
SCAD's scale parameter a) were tuned to obtain the best 
qualitative and quantitative results. In general, it was observed 
that the parameter p has higher impact on the overall 
smoothing of image features compared with A. In the SCAD 
regularization, the parameters A and particularly a controlled 
the impact of weighting factors, and they showed a higher 
flexibility for selection than p. An alternative way to choose 
the pair parameters (a, A) could be two-dimensional grids 
search using some criteria such as cross validation and L­
curve methods [7], which calls for future investigations. 

C. Future Prospects 

For our experiments, we employed Cartesian approximations 
to radial and spiral k-space undersampling patterns to 
retrospectively perform a CS-MR acquisition model in Eq. (1). 
However, the extension of this model to true non-Cartesian 
data acquisitions is straightforward and the reconstruction can 
be done with regridding of data to a rectangular grid with 
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density compensation [14] or non-uniform fast Fourier 
transform (NUFFT) [33]. In the employed AL framework, the 
SCAD regularization can also be exploited for multi-scale 
sparsifying transforms such as orthogonal wavelets, a 
normalized tight frame of translation invariant wavelets or 
curvelet frames. Thereby, one can obtain a closed-form 
solution to the problem (11) using matrix inversion lemma 
(MIL) and the fact that <f><f>T = I and for these transforms 
DDT = I. Finally, in this framework, the linearization in Eq. 
(15) can be extended to derive a family of reweigh ted L, norm 
regularization from non-convex potential functions [34]. 

VI. CONCLUSION 

In this study, we proposed a new regularization technique for 
compressed sensing MRI through the linearization of the non­
convex SCAD potential function in the framework of 
augmented Lagrangian (AL) methods. Using variable splitting 
technique, the CS-MRI problem was formulated as a 
constrained optimization problem and solved efficiently in the 
AL framework. We exploited discrete gradients as a 
sparsifying transform and demonstrated that the linearized 
SCAD regularization is an iteratively weighted TV 
regularization with improved edge-preserving and sparsity­
promoting properties. The performance of the algorithm was 
evaluated in phantom simulations and retrospective CS-MRI 
in clinical datasets and it was found that the proposed 
regularization technique substantially outperforms the 
conventional TV regularization. 
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