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Abstract Model transformation is a core mechanism for
model-driven engineering (MDE). Writing complex model
transformations is error-prone, and efficient testing techni-
ques are required as for any complex program development.
Testing a model transformation is typically performed by
checking the results of the transformation applied to a set of
input models. While it is fairly easy to provide some input
models, it is difficult to qualify the relevance of these models
for testing. In this paper, we propose a set of rules and a
framework to assess the quality of given input models for
testing a given transformation. Furthermore, the framework
identifies missing model elements in input models and assists
the user in improving these models.
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1 Introduction

Model-driven engineering (MDE) proposes a move away
from human interpretation of high-level models, such as
design diagrams, towards a more automated process where
models are used as first-class artefacts of a development
process. The core mechanism for this automation is model
transformation. A model transformation typically imple-
ments process-related steps including refactoring, model
composition, aspect weaving, code generation or refinement.
Writing complex model transformations is error-prone, and
efficient testing techniques are required as for any complex
program development and is an important challenge if MDE
is to succeed [1]. The need for reliable model transformations
is even more critical when they are to be reused. Indeed, a
single faulty transformation can make a whole model-based
development process vulnerable.

To test a model transformation, a tester will usually pro-
vides a set of test models that conform to the input meta-
model of the transformation, run the transformation with
these models and check the correctness of the result. While
it is fairly easy to provide some input models, qualifying the
relevance of these models for testing is an important chal-
lenge in the context of model transformations [2]. As for any
testing task, it is important to have precise adequacy criteria
that can qualify a set of test data. For example, a classical
criterion to evaluate the quality of the test data regarding a
program is code coverage: a set of test data is adequate if,
when running the program with these data, all statements in
the program are executed at least once. This is a “white-box”
criterion since it requires the knowledge of internal logic or
code structure of the program. Other criteria are functional
or “black-box” [3]. They rely only on a specification of the
system (input domain or behavior) under test and do not take
the internal structure of the program into account.
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In this paper, we propose a framework for selecting and
qualifying test models for the validation of model transfor-
mations. We propose “black-box” test adequacy criteria for
this selection framework. We chose black-box criteria for two
reasons: to have criteria which are independent of any speci-
fic model transformation language and to leverage the com-
plete description of the input domain provided by the input
metamodel of the transformation. It is important that the pro-
posed approach is generic and compatible with any model
transformation language because currently there are many
languages for transformation and none of them has emerged
as the best or the most popular. The proposed criteria can be
used to validate model transformations implemented with a
general purpose language such as Java, the specific model
transformation language QVT [4] proposed by the OMG, a
meta-modelling language such as Kermeta [5], a rule-based
language such as Tefkat [6], or a graph transformation lan-
guage such as ATOM3 [7]. The second reason why we choose
black box criteria is to leverage the fact that the input domain
for a transformation is defined by a meta-model. Indeed, the
input meta-model of a transformation completely specifies
the set of possible input models for a transformation. In this
context, the idea is to evaluate the adequacy of test models
with respect to their coverage of the input meta-model. For
instance, test models should instantiate each class and each
relation of the input meta-model at least once.

Models are complex graphs of objects. To select useful
models we first have to determine relevant values for the
properties of objects (attributes and multiplicities) and next to
identify pertinent structures of objects. For the qualification
of values of properties we propose to adapt a classical testing
technique called category-partition [8] testing. The idea is
to decompose an input domain into a finite number of sub-
domains and to choose a test datum from each of these sub-
domains. For the definition of object structures, we propose
several criteria that define structures that should be covered
by the test models.

An important contribution of this work consists in defi-
ning a meta-model that formally captures all the important
notions necessary for the evaluation of test models (partitions
and object structures). This meta-model hence provides a
convenient formal environment to experiment different stra-
tegies for test selection, and a framework that checks if test
models are adequate for testing. The framework automati-
cally analyses a set of test models and provides the testers
with valuable feedback concerning missing information in
their test models. This information can then be used to itera-
tively complete a set of test models.

The paper is organized as follows. Section 2 discusses a
motivating example and provides an informal description of
the technique. Section 3 proposes a meta-model that captures
the different concepts needed to define test criteria and eva-
luate the efficiency of test data. Section 4 proposes several

Fig. 1 An example of hierarchical state machine flattening

test criteria. Section 5 employs a simple case study to show
how the proposed technique can be applied to improve test
models. Finally, Sect. 6 discusses related works and Sect. 7
draws conclusions.

2 Motivating example

To discuss and illustrate the techniques we propose, we use
a simple model transformation which flattens hierarchical
state machines (we call this transformation SMFlatten). The
transformation takes a hierarchical state machine as input
and produces an equivalent flattened state machine as out-
put. Figure 1 presents the application of this transformation
to a simple example. Both the input model and the output
model of the transformation are state machines. Figure 2 dis-
plays the state machine meta-model we use. According to this
meta-model, a state machine is composed of a set of states,
composite states and transitions. Each state is labeled by an
integer (property label) and an event is associated with each
transition (property event). Properties isInitial and isFinal on
class State respectively specify initial and final states.

The validation of the SMFlatten transformation consists
in running it with a well-chosen set of hierarchical state
machines and checking that the obtained flattened state
machines semantically correspond to their sources. As it is
obviously impossible to test the transformation with every
possible input state machine, the first issue is to select a set
of input state machines that is likely to reveal as many errors
as possible in the transformation. In the following sections
we call such a set of input models a set of test models.
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Fig. 2 Composite State Machine Meta-model

A reasonable set of test models for the SMFlatten
transformation should, at least, fulfill the three following
coverage requirements:

• Class coverage. Each concrete class of the state meta-
model should be instantiated in at least one test model.

• Attribute coverage. Each attribute in the meta-model
should be instantiated with a set of representative values.
For example, in the test models there should be both some
final states and some non-final states in order to cover the
values of property isFinal of class State.

• Association coverage. Each association in the meta-
model should be instantiated with a set of representative
multiplicities. The state machine meta-model specifies
that a composite state can contain from none to several
states. To cover these possibilities, the test models should
contain, at least, composites states with no inner states,
with only one inner state and with several inner states.

The first requirement (class coverage) is simple and can
be applied directly. However, in order to take advantage of
the two remaining properties, the way “representative” values
and multiplicities are defined must be expressed more for-
mally. In the following sections we propose to adapt category-
partition testing to select relevant ranges of values for
properties and their multiplicities.

Covering individually each attribute or association of the
meta-model with a set of representative values is not suf-
ficient. In addition to the above coverage requirements the
representative values and multiplicities should be combined
to build relevant test models. For instance, the SMFlatten
transformation should be tested with models which contain
states that are both initial and that have several outgoing
transitions. There should also be several states with all pos-
sible combinations of values for isFinal and isInitial. In the

following sections, we propose 10 systematic strategies
(defined as test criteria) to combine values for properties.

3 A framework for selecting test models

This section introduces the framework we use to define test
criteria for model transformations (that are detailed in the
next section). First, we explain how we can define generic
test criteria for any source metamodel. Then, we introduce
the notions of partition and model fragment that are necessary
to specify the instances of the metamodel that are relevant for
testing. Finally, we present the metamodel that captures all
these notions. It is the core for the definition of test criteria
and for the tool that checks that test models satisfy a test
criterion.

3.1 Generic approach

The goal of this work is to propose criteria to evaluate the
coverage of test models with respect to the structure of their
corresponding meta-models. In practice, meta-models like
the state machine meta-model of Fig. 2 are specified using
a meta-modelling language. Today, several meta-modelling
languages exist: the Meta-Object Facilities (MOF [9]),
ECore, CMOF, EMOF, etc. The work presented in this paper
is based on the Essential Meta-Object Facilities (EMOF [10]).
This means that the metamodels we manipulate to define
test criteria are modelled using EMOF. We choose EMOF
because it is a standardized language that is well supported
by tools such as Eclipse Modelling Framework (EMF [11]).
Although it is based on EMOF, the ideas and techniques pre-
sented in this paper can be adapted to any object-oriented
meta-modelling language.

EMOF was standardized by the Object Management
Group (OMG) as a compact meta-modelling language. It
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Fig. 3 Main classes of EMOF

contains a minimal set of concepts which are necessary for
meta-modelling. Figure 3 presents the main classes of EMOF
which are relevant to the work presented in this paper (overall,
EMOF contains 21 classes). According to EMOF, a meta-
model is composed of a set of packages (class Package).
Each package contains a set of types which can be either
data types (classes PrimitiveType and Enumeration) or
classes (class Class). Each class is composed of a set of
properties (class Property). The notion of property is cen-
tral to EMOF because they are a compact representation for
both attributes in classes and associations between classes.
If the type of a property is a data type then it corresponds to
an attribute. For example, in the state machine meta-model
(Fig. 2) the property label of class AbstractState corres-
ponds to an attribute of type integer. If the type of a property
is a class then it corresponds to an association. In that case,
properties of two classes involved in an association can be
defined as opposites. Such correspondence pairs of proper-
ties are used to represent the ends of a single association.
In the state machine meta-model the associations between
AbstractState and Transition have been defined in this
way. The first association corresponds to a property outgoing-
Transition of type Transition in class AbstractState and
a property source of type AbstractState in class Tran-

sition. To have a generic approach, in the following we will
not distinguish between attributes and associations, but deal
only with classes and their properties in the metamodel to be
covered.

3.2 Partitioning values and multiplicities of properties

The basic idea of category-partition testing strategies [8] is to
divide the input domain into sub-domains or ranges and then
to select test data from each of these ranges. The ranges for
an input domain define a partition of the input domain and
thus should not overlap. Partition testing has been adapted to
test UML models in [12], and here we adapt it to test model
transformations. In this specific case, the input domain is
modeled by the input meta-model of the transformation. The
idea is to define partitions for each property of this meta-
model. A precise definition of a partition is recalled below.

Definition – Partition. A partition of a set of elements is
a collection of n ranges A1, . . . , An such that A1, . . . , An do
not overlap and the union of all subsets forms the initial set.
These subsets are called ranges.

Notation – Partition. In this paper, the partitions are noted
as follows:

– Boolean partitions are noted as a set of sets of Boolean
values. For example {{true,}{false}} designates a parti-
tion with two ranges: a range which contains the value
true and a range which contains the value false

– Integer partitions are noted as a set of sets of Integer
values. For example, {{0,} {1,} {x | x ≥ 2}} designates a
partition with three ranges: 0, 1, greater or equal to 2.

– String partitions are noted as a set of sets of String values.
A set of string values is specified by a regular expres-
sion. For example {{“evt1”,} {“”,} {“.+”}} designates
a partition with three ranges: a range which contains the
string “evt1”, a range which contains the empty string
and a range which contains all strings with one or more
character. In the regular expression language, “.” desi-
gnates any character and “+” specifies that the prece-
ding symbol has to be repeated one or more time.

To apply this idea for the selection of test models, we propose
to define partitions for each property of the input meta-model
of a transformation. These partitions provide a practical way
to select what we called the “representative” values introdu-
ced in the previous section: for a property p and for each
range R in the partition associated with p, the test models
must contain at least one object o such that the value o.p
is taken in R. For instance, the partitions {{“evt1”,} {“”,}
{“.+”}} for the property event of class Transition in the state
machine meta-model, formalize that the test models should
contain transitions with a particular event called “evt1”, tran-
sitions with an empty event and transitions with a random
non-empty event. The same kind of strategy is used for mul-
tiplicities of properties: if a property has a multiplicity of
0..∗, a partition such as {{0,} {1,} {x | x ≥ 2}} is defined to

123



Qualifying input test data for model transformations 189
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Fig. 4 Partitions for the state machine meta-model

ensure that the test models contain instances of this property
with zero, one and more than one object.

The effectiveness of category-partition testing strategies
relies on the quality of the partitions that are used. The
approach for the generation of meaningful ranges is usually
based on the topology of the domain to be partitioned. The
idea is to isolate boundaries and singular values in specific
ranges in order to ensure that these special values will be
used for testing. Figure 4 shows the partitions obtained for
all properties of the state machine meta-model used by the
SMFlatten transformation (partitions on the multiplicity of a
property are denoted with a#). The default partitions based
on the types of properties can be automatically generated. On
this example, they seem sufficient. Yet, if other values have
a special meaning in the context of the transformation under
test, the tester can enrich the partitions to ensure that some
additional value is used in the test models.

The next section introduces the meta-model that captures
the concept of partitions associated with a meta-model, as
well as concepts needed to combine ranges in order to define
test criteria. An instance of this meta-model can then be used
to check that a set of test models covers the desired values
and combinations.

3.3 Model and object fragments

As introduced previously, independently covering the values
and multiplicity of each property of the input meta-model
is not sufficient to ensure the relevance of test models. As
an example, let us consider the property ownedState of class
Composite in the state machine meta-model. The partitio-
ning step has defined three ranges for the multiplicity of this
property to ensure that the test models contain empty com-
posite state, composite states with only one inner state and
composite states with several inner states. However, none of
these constraints requires that any composite state has both
incoming and/or outgoing transitions and inner states. The
selection criterion should be expanded to ensure the com-
bined coverage of the ranges for the properties ownedState
combined with ranges of properties, incomingTransition, and
outgoingTransition. This way the test models would include

composite states with both a variable number of inner states
and a variable number of outgoing transitions.

A naive approach to combine partitions of various pro-
perties would be to generate the combinatorial product of all
partitions for all properties of the meta-model. However, this
approach is not practically viable:

1. Combinatorial explosion: Combining ranges of all pro-
perties quickly results in unmanageable number of com-
binations. For the state machines example, which is
fairly simple„ the number of combinations reaches 1944
(3*1*1*3*2*3*3*2*2*3) for the partitions defined in
Fig. 4.

2. Unconsidered relevance: Among the 1944 combina-
tion, some are more relevant than others for testing: for
instance, combining property ownedState and property
outgoingTransition is interesting for the testing of com-
posite states while combining the property label of class
State and the property event of class Transitions is not.

3. Missing relavant combinations: Combining ranges of
properties is generally not sufficient to ensure the rele-
vance of test models. We often found it necessary to
include test models that cover combinations of ranges
for a single property for several objects. For example,
the 1944 combinations obtained for the state machine
meta-model do not ensure the existence of a single test
model that includes more than one composite state. This
is clearly not sufficient to test a transformation that flat-
tens composite states.

As naive strategies are not sufficient to provide satisfactory
support for the selection of relevant test models, we pro-
pose the notions of object and model fragments to define
specific combinations of ranges for properties that should
be covered by test models. The meta-model in Fig. 5 cap-
tures the notions of partition associated to properties as well
as model and object fragments. We distinguish two types of
partitions modelled by the classes ValuePartition and
MultiplicityPartition that respectively correspond to par-
titions for the value and the multiplicity of a property. For
a MultiplicityPartition, each range is an integer range
(class IntegerRange). For a ValuePartition, the type of
ranges depends on the type of the property. Here we consi-
der the three primitive types that are defined in EMOF for the
value of a property. Thus we model three different types of
ranges (StringRange, BooleanRange, IntegerRange).
Figure 6 shows how the partition part of the meta-model is
instantiated to represent the partitions associated with two
properties of the state machine meta-model.

To represent combinations of partition ranges, the meta-
model of Fig. 5 proposes the notions of model fragments
(ModelFragment), object fragments (ObjectFragment)
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Fig. 5 Meta-model for test criteria definition

Fig. 6 Partitions and ranges

and property constraints (PropertyConstraint). A model
fragment is composed of a set of object fragments. An object
fragment is composed of a set of property constraints which
specify the ranges from which the values of the properties of
the object should be taken from. It is important to note that
an object fragment does not necessarily define constraints
for all the properties of a class, but can partially constrain the
properties (like a template).

The model and object fragments are defined in order to
check that the set of test models covers the input meta-model
of a transformation. A model fragment is said to be covered
by a test model if, for each object fragment in the model frag-
ment, there exists one object in the test model that matches the
object fragment. An object in a test model is said to match
an object fragment if it satisfies every property constraint

of the object fragment. A property constraint is said to be
satisfied by an object if the value of the property for that
object is included in the range associated with the property
constraint.

Figure 7 presents a simple model fragment that combines
ranges for properties of the state machine meta-model. The
model fragment is composed of two object fragments which
specify that a test model must contain:

• a composite state with several inner states and an inco-
ming transition.

• a state labeled 0 with one incoming and several outgoing
transitions.

In the next sections we use a more compact textual nota-
tion for model fragments. Model fragments are represented
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Model Fragment

: CompositeState

#ownedStates {x | x>0}

#incomingTransition = 1

: State

#outgoing {x | x>0}
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label = 0

Object Fragments

PropertyConstraints

Fig. 7 A model fragment

by M F{of1,of2, . . . , ofn} where object fragments (ofi) are
represented by <Class Name > (c1,c2, . . . , cn). Using this
notation the model fragment of Fig. 7 is represented by : MF
{CompositeState(#ownedStates > 0,
#inTrans. = 1),
State(label = 0,#outTrans. > 0,#inTrans.
= 1)}

Using the model fragment representation, the particular
combinations that should be covered by the test models can be
easily represented. Yet, the selection of these combinations
is still an issue. In Sect. 4, we propose a set of strategies to
automate the generation of sets of model fragments. The idea
is to use these model fragments as a test adequacy criterion:
adequate test models must cover every model fragment. The
next section discusses this adequacy validation algorithm and
the associated test engineering process.

3.4 Qualification and selection of test models

Based on the concepts defined in the meta-model in the
previous section, it is possible to define an iterative engi-
neering process for selecting a set of input models intended
to test a model transformation. This process, described in
Fig. 8 takes two inputs (white ovals): the input meta-model
of the transformation under test and a set of test models.
From the input meta-model, the first step generates the default
partitions for all features contained in the meta-model. The
second step combines these partitions to build a set of model
fragments. This step takes a test criterion as its parameter
that defines how fragments are to be composed. Test crite-
ria will be detailed in Sect. 4. During both partitioning and
combination the tester may enrich the generated models to
take domain specificities of the transformation under test into
account.

When the model fragments are generated from the input
meta-model, step three checks that there is at least one test
model that covers each model fragment. If there are frag-
ments not covered by the test models, the tester should

Input
meta-
model

Partition
model

Model
Fragments

Test
Models

(1)

conforms to
Combine
partitions

Patitioning

(2)

check

(3)
improve 

test models

(4)

Diagnosis: covered and un-covered model fragments

models (white for input models and gray for intermediate models)

model processing (or model transformation)

automated process (implemented with the Kermeta language)

Fig. 8 Check and improve the quality of test models

improve the set of test models by adding new models to cover
the identified remaining fragments (step 4). This process does
not only allow for an estimate of the quality of a set of test
models but also provides the testers with valuable informa-
tion to improve the test set. As illustrated in Fig. 8, steps 1,
2 and 3 are implemented with the Kermeta language. The
implementation of the tool, Metamodel Coverage Checker
(MMCC), is discussed in Sect. 5.

4 Black-box test criteria

As discussed previously, the issue of building relevant
model fragments cannot be resolved with a naive strategy,
such as creating all combinations of ranges for all properties
of the input meta-model. In general, finding the appropriate
combinations of values without a sound knowledge of the
transformation under test will be difficult. However, the input
meta-model of a transformation itself provides information
about the relationships between the properties it contains. In
this section we use structural information of the input meta-
model to propose a set of adequacy criteria for the construc-
tion of model fragments to be covered by the test models.
Test criterion for meta-model coverage: A test criterion
specifies a set of model fragments for a particular input
meta-model. These model fragments are built to guarantee
class and range coverage as defined in the following rules
(formally specified in OCL in Fig. 9).
Rule 1 (Class coverage): Each concrete class must be ins-
tantiated in at least one model fragment.
Rule 2 (Range coverage): Each range of each partition for
all properties of the meta-model must be used in at least one
model fragment.
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Class coverage Class.allInstances()->forAll( C | 
 ModelFragment.allInstances()->exists( MF | 
  MF.object->exists( OF | 
   OF.constraint->exists( PC | 
    PC.property.owningClass == C 
))))

Range coverage 

Partition.allInstances()->forAll( P | 
  P.range->forAll( R | 
   ModelFragment.allInstances()->exists( MF | 
    MF.object->exists( OF | 
     OF.constraint->exists( PC | 
      PC.range == R 
)))))

Fig. 9 Constraints for class and range coverage

AllRanges criterion 

Partition.allIstances()->forAll( P | 
 P.range->forAll( R | 
  ModelFragment.allInstances->.exists( MF | 
   MF.object->size == 1 
   MF.object->one.constraint->size == 1 
   MF.object->one.constraint->one.range == R
)))

AllPartitions criterion

Partition.allInstances()->forAll( P | 
 ModelFragment->exists( MF | 
  P.range->forAll( R | 
   MF.object->exists( OF | 
    OF.constraint->size == 1 
    OF.constraint->one.range == R 
))))

Fig. 10 Ranges and partitions coverage

Test criterion satisfaction for a set of test models: A set of test
models satisfies a test criterion if, for each model fragment
MF, there exists a test model M such that all object fragments
defined in MF are covered by an object in M. An object O
corresponds to an object fragment OF if, for each property
constraint in OF, the value for the property in O is included
in the range specified by OF.

The following sections propose several ways of combining
constraints in object and model fragments. These criteria all
ensure at least the coverage of these two requirements.

4.1 Simple coverage criteria

As a start, this section defines two criteria which both ensure
range coverage by combining property constraints in two dif-
ferent manners. The first criterion, AllRanges does not add
any constraints to the two rules defined in the previous sec-
tion. The second criterion, AllPartitions is a little stronger,
as it requires values from all ranges of a property to be used
simultaneously in a single test model. Figure 10 formalizes
these two criteria in pseudo-code constraints.

In order to illustrate these criteria Figs. 11 and 12 present
a set of model fragments that would be obtained from the
state machine meta-model. The partitions used to create these
model fragments are the ones shown in Fig. 4. For both crite-
ria the model fragments presented correspond to properties
of Transition and AbstractState. In the case of the All-
Ranges criterion (Fig. 11), each model fragment is made up of
only one object fragment which contains a single constraint.
In the case of the AllPartitions criterion (Fig. 12), a model
fragment is created for each property of the meta-model. This

MF{Transition(event = "")}, 
MF{Transition(event = "evt1")},
MF{Transition(event  .+)},
MF{Transition(#source = 1)},
MF{Transition(#target = 1)},
MF{AbstractState(label = 0)},
MF{AbstractState(label = 1)},
MF{AbstractState(label  2)}, 
...

Fig. 11 Model fragments for AllRanges criterion

model fragment contains one object fragment per range of
the partition associated with the property it corresponds to.

In practice these criteria can be used to create an initial
set of model fragments, but in most cases this set of model
fragments should be completed either by the tester or by using
a stronger criterion.

4.2 Class by class combination criteria

In a meta-model, properties are encapsulated into classes.
Based on this structure and on the way meta-models are desi-
gned, it is natural that properties of a single class usually
have a stronger semantic relationship with each other than
with properties of other classes. To take advantage of this,
we propose four criteria that combine ranges class by class.
These criteria differ on the one hand by the number of ranges
combinations they require and on the other hand by the way
combinations are grouped into model fragments.

Figure 13 proposes two strategies for combining the ranges
of the properties of a class. The first one is quite weak as
it only ensures that each range of each property is cove-
red at least once. The second is substantially stronger as it
requires one object fragment for each possible combination
of ranges for all the properties of a class. The operation get-
Combinations used for the definition of this strategy sim-
ply computes the Cartesian product for ranges of a set of
partitions. Its signature is the following: getCombination
(Set<Partition>) : Set<Set<Range»

Figure 14 presents the two strategies that we propose to
group combinations of ranges class by class. In both cases
the idea is to create object fragments that contain constraints
related to every property of a class. The two strategies differ
in the way these object fragments are organized in model
fragments. The first strategy (OneMFPerClass) forces grou-
ping of all object fragments related to a class into a single
model fragment whereas the second one requires a model
fragment for every object fragment.

Based on the strategies for combinations of ranges and for
building model fragments, we propose the four test criteria
displayed in Fig. 15.

To illustrate the differences between these four criteria,
Figs. 16, 17 and 18 present examples of model fragments
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MF{Transition(event = ""), Transition(event = "evt1"), 
   Transition(event  .+)}, 
MF{Transition(#source = 1)},
MF{Transition(#target = 1)},
MF{AbstractState(label = 0), State(label = 1), State(label 2)},
...

Fig. 12 Model fragments for AllPartitions criterion

OneRangeCombination
each range for each 

property of a class needs 
to be used in at least one 

object fragment

Range.allInstances()->forAll( R | 
 ObjectFragment.allInstances()->exist( OF | 
  OF.constraint->exists( PC | 
   PC.range = R 
)))

AllRangeCombination

all possible 
combinations of ranges 
for the properties of a 

class must appear in one 
object fragment 

Class.allInstances()->forAll( C | 
 getCombinations( 
      Partition.allInstances()->select{ P | 
  C.ownedAttribute->contains(P.property)} 
 )->forAll( RSet | 
   ObjectFragment.allInstances()->exists( OF | 
    RSet->forAll( R | 
     OF.constraint->exists( PC | 
      PC.range == R and 
      PC.property == R.partition.property 
))))))

Fig. 13 Two strategies for ranges combination

OneMFPerClass

a single model fragment 
contains all 

combinations of ranges 
for a class

Class.allInstances()->forAll( C | 
 ModelFragment.allInstances()->select( MF | 
  MF.object->forAll( OF | 
   C.ownedAttribute->size ==
      OF.constraint->size and 
   C.ownedAttribute->forAll( P | 
    OF.constraint->exists( PC | 
     PC.property == P 
 ))))->size == 1) 

OneMFPerCombination

each model fragment 
contains a single 

combination of ranges 
for a class

ModelFragment.allInstances()->forAll( MF | 
 MF.object->size == 1 and 
 Class.allInstances()->exists( C | 
  MF.object->forAll( OF | 
   C.ownedAttribute->size ==
      OF.constraint->size and 
   C.ownedAttribute->forAll( P | 
    OF.constraint->exists( PC | 
     PC.property == P 
)))))

Fig. 14 Two strategies to create model fragments

obtained respectively using the Comb� criterion, the Class�
criterion and the Comb� criterion. Again, the input meta-
model considered is the state machine meta-model. The
model fragments represented only corresponds to class
AbstractState. This class contains three properties: label,
incomingTransition (inTrans.) and outgoingTransition (out-
Trans.). For each of these properties a partition made of
three ranges has been defined in Fig. 4. For both Comb�

and Class� criteria the expected value combinations are the
same: each range has to be covered once. As shown in Figs. 16
and 17 three object fragments have been defined to fulfill this
requirement. The difference between the two criteria is the
way the object fragments are encapsulated into model frag-
ments. In the case of the Comb� criterion there is one model
fragment per object fragment and in the case of the Class�
criterion there is only one model fragment per class.

Comb� and Class� criteria differ in the way object
fragments are arranged into model fragments, just like the
Comb � and Class� criteria. Figure 18 presents the model
fragments obtained for the Comb� criterion. The 27 model

Test criteria Definition
Comb
Comb
Class

Class

OneRangeCombination and OneMFPerCombination

AllRangesCombination and  OneMFPerCombination

OneRangeCombination and OneMFPerClass

AllRangesCombination and  OneMFPerClass

Fig. 15 Four test criteria based on class by class combinations

MF{AbstractState(label=0, #inTrans.=0, #outTrans.=0)},
MF{AbstractState(label=1, #inTrans.=1, #outTrans.=1)},
MF{AbstractState(label 2, #inTrans. 2, #outTrans. 2)},
...

Fig. 16 Model fragments for Comb� criterion

MF{
  AbstractState(label=0, #inTrans.=0, #outTrans.=0), 
  AbstractState(label=1, #inTrans.=1, #outTrans.=1), 
  AbstractState(label 2, #inTrans. 2, #outTrans. 2)
}
...

Fig. 17 Model fragments for Class� criterion

MF{AbstractState(label=0, #inTrans.=0, #outTrans.=0)}, 
MF{AbstractState(label=1, #inTrans.=0, #outTrans.=0)}, 
MF{AbstractState(label 2, #inTrans.=0, #outTrans.=0)},
MF{AbstractState(label=0, #inTrans.=1, #outTrans.=0)}, 
MF{AbstractState(label=1, #inTrans.=1, #outTrans.=0)}, 
MF{AbstractState(label 2, #inTrans.=1, #outTrans.=0)},
MF{AbstractState(label=0, #inTrans. 2, #outTrans.=0)}, 
MF{AbstractState(label=1, #inTrans. 2, #outTrans.=0)}, 
MF{AbstractState(label 2, #inTrans. 2, #outTrans.=0)},

MF{AbstractState(label=0, #inTrans.=0, #outTrans.=1)}, 
MF{AbstractState(label=1, #inTrans.=0, #outTrans.=1)}, 
MF{AbstractState(label 2, #inTrans.=0, #outTrans.=1)},
MF{AbstractState(label=0, #inTrans.=1, #outTrans.=1)}, 
MF{AbstractState(label=1, #inTrans.=1, #outTrans.=1)}, 
MF{AbstractState(label 2, #inTrans.=1, #outTrans.=1)},
MF{AbstractState(label=0, #inTrans. 2, #outTrans.=1)}, 
MF{AbstractState(label=1, #inTrans. 2, #outTrans.=1)}, 
MF{AbstractState(label 2, #inTrans. 2, #outTrans.=1)},

MF{AbstractState(label=0, #inTrans.=0, #outTrans. 2)},
MF{AbstractState(label=1, #inTrans.=0, #outTrans. 2)},
MF{AbstractState(label 2, #inTrans.=0, #outTrans. 2)},
MF{AbstractState(label=0, #inTrans.=1, #outTrans. 2)},
MF{AbstractState(label=1, #inTrans.=1, #outTrans. 2)},
MF{AbstractState(label 2, #inTrans.=1, #outTrans. 2)},
MF{AbstractState(label=0, #inTrans. 2, #outTrans. 2)},
MF{AbstractState(label=1, #inTrans. 2, #outTrans. 2)},
MF{AbstractState(label 2, #inTrans. 2, #outTrans. 2)},

...

Fig. 18 Model fragments for Comb� criterion

fragments correspond to the 27 combinations of ranges
obtained from the three ranges associated to each of the three
properties of AbstractState.
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MF{Composite(label=0, #inTrans.=0, #outTrans.=0, #ownedState=0)}, 
MF{Composite(label=0, #inTrans.=0, #outTrans.=0, #ownedState=1)}, 
MF{Composite(label=0, #inTrans.=0, #outTrans.=0, #ownedState 2)},
MF{Composite(label=0, #inTrans.=0, #outTrans.=1, #ownedState=0)}, 
MF{Composite(label=0, #inTrans.=0, #outTrans.=1, #ownedState=1)}, 
MF{Composite(label=0, #inTrans.=0, #outTrans.=1, #ownedState 2)},
MF{Composite(label=0, #inTrans.=1, #outTrans.=1, #ownedState=0)}, 
MF{Composite(label=0, #inTrans.=1, #outTrans.=1, #ownedState=1)}, 
MF{Composite(label=0, #inTrans.=1, #outTrans.=1, #ownedState 2)},
...

Fig. 19 Model fragments for IF-Comb� criterion

4.3 Criteria and inheritance

The criteria presented in the previous section combine the
properties of a single class. However, as we have seen for
the state machine meta-model in Sect. 3, it might be neces-
sary to consider inherited properties. For instance, in order to
test the transformation that flattens state machines properly
it is necessary to ensure that some input models have a pair
of composite states that have various numbers of incoming
and outgoing transitions. In the meta-model (Fig. 2) the only
property of Composite is ownedState. The properties inco-
mingTransition and outgoingTransition are inherited from
State. This section proposes four criteria based on the same
combination principles as the ones defined in the previous
section but taking inherited properties into account.

These criteria not only combine ranges for properties
owned by each class but also ranges for inherited properties.
With this new strategy, we obtain four additional criteria:
IF-Comb�, IF-Comb�, IF-Class� and IF-Class� defined
analogously to the four criteria of previous section (The IF
prefix stands for Inheritance Flattening).

Note that using these criteria, it is unnecessary to create
model fragments corresponding to abstract classes. Using
the previous set of criteria this step was mandatory to ensure
the coverage of the partitions associated to the properties
of abstract classes. With the IF criteria, these partitions are
implicitly covered for each concrete sub-class of an abstract
class.

Figure 19 presents some model fragments obtained for
Composite using the IF-Comb� criterion. Only a sub-set
of the model fragments is presented. Composite owns one
property and inherits three properties from State. For each
of the four properties, the associated partition contains three
ranges. This leads to a total of 81(34) combinations for Com-

posite.

4.4 Comparison of the test criteria and discussion

This section concludes the definition of test criteria by com-
paring the criteria defined in the three previous sections.
Figure 20 presents the subsumption relationship between the

Fig. 20 Topology of the subsumption relationship

criteria. A criterion is said to subsume another one if any set
of models that satisfies the first criterion satisfies the second
criterion. By this definition, the subsume relationship is tran-
sitive. The relation allows comparing the strength of the cri-
teria with respect to one another. In Fig. 20, criteria AllRange
and AllPartition appear as the weakest ones. Above them the
remaining criteria are represented from bottom to top as they
consider the encapsulation and inheritance.

To illustrate and compare the criteria presented in the pre-
vious sections, Fig. 21 gives the minimal number of model
fragments, object fragments and property constraints requi-
red to verify each criterion with the state machine meta-
model based on the partitions shown in Fig. 4. The number
of model fragments gives an indication of the number of test
models and the number of object fragments gives an indica-
tion of the size of the test models. As a comparison, the last
line of the table corresponds to the naïve Cartesian product
strategy (AllCombinations) discussed in Sect. 3.
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Fig. 21 Comparison of test criteria on the state machine example

It is interesting to notice that all the proposed criteria
significantly reduce the number of fragments compared to
the naive strategy. However, for all criteria that require the
Cartesian product on ranges, the number of fragments is still
quite high. Future work should investigate and compare the
fault detection power of these criteria and may propose more
efficient criteria that not only use the information provided
by the meta-model but also some knowledge of the model
transformation under test.

A general issue with test criteria is that they define some
objectives that cannot be satisfied by any test case. For
example, structural test criteria for programs specify infea-
sible paths [13], or mutation analysis produces equivalent
mutants [14]. In the same way, the criteria we have defined
here may specify uncoverable model fragments (e.g., frag-
ments that violate well-formedness rules). A further investi-
gation would consist of detecting such fragments to remove
them from the set of fragments to be covered. In practice,
such fragments will have to be identified by the tester. To
limit the search effort, the tester can look for the uncoverable
fragments in the set of uncovered fragments detected after
step three of the process shown in Fig. 8.

5 Tool and experiments

This section introduces MMCC the tool that we have imple-
mented to check that a set of models satisfies a test criterion.
The implementation uses the Kermeta language and manipu-
lates models stored in an EMF repository. We subsequently
present two examples to illustrate how MMCC is used to
improve a set of test models.

5.1 Tool

In order to validate the feasibility of the process shown in
Fig. 8 and to experiment with the test criteria, we have imple-
mented the Metamodel Coverage Checker (MMCC [15]).
MMCC automates (1) the generation of partitions from a
source metamodel, (2) the generation of model fragments

according to a particular test criterion and (3) the qualifica-
tion of test models with respect to these model fragments.
MMCC is implemented using EMF, and Kermeta [16]. Ker-
meta is well suited as the implementation language for two
reasons. First, Kermeta is designed for the manipulation of
models and metamodels, and is thus well suited to implement
model transformations (steps 1 and 2 are model transforma-
tions). Second, and most importantly, Kermeta is an exten-
sion of EMOF with an action language, and as such it allows
the user to add operations in metamodels that are modeled
with EMOF. This feature of Kermeta was very useful in the
implementation of MMCC. The Fig. 22 displays the meta-
model of MMCC. It is very similar to the one shown in Fig. 5,
extending it with three classes, and a number of operations.
This substantially simplifies the implementation of MMCC.
For example it is easy to check that the value of a property is
contained in a range by invoking the operations of Range.
The additional classes PartitionModel and Fragments

were added as top-level “containers” for the model, as custo-
mary in EMF. PropertyPartition was added to decouple
the MMCC metamodel from EMOF. This class contains the
names for the feature and class for which a partition is defi-
ned. This prevents us from keeping a direct relationship to
the actual feature in the input metamodel.

As described in Fig. 23, MMCC is composed of two
separate programs. The first one generates the partitions and
model fragments and the second one checks if a set of models
satisfies a test criterion.

The first part of MMCC realizes steps 1 and 2 of the pro-
cess of Fig. 8. It is implemented as a model transformation
that takes two input parameters: the source metamodel (SM)
of the transformation under test, and a test criterion. The test
criteria have been defined using a hierarchy of classes in the
implementation of the tool. Because the tool is implemented
in EMF, the source metamodel must conform to Ecore, the
meta-meta-model of EMF. The output is a model containing
a set of partitions and fragments that conform to the test cri-
teria metamodel. In practice this transformation is divided
into two model transformations that are executed sequen-
tially. The first one processes the source metamodel SM and
generates a set of default partitions and ranges. The second
one generates a set of model fragments using the partitions
and ranges according to the test criterion that has been selec-
ted.

The second part of MMCC implements step 3 of the pro-
cess to check if a set of models satisfies the test criterion.
It takes two input parameters: a set of models that conform
to the source metamodel SM and the set of model fragments
produced in steps 1 and 2. The output is the set of model frag-
ments that are not covered by the set of test models. If it is
empty, the set of models satisfies the test criterion. Otherwise,
it is necessary to manually analyze the remaining fragments
to understand why they are not covered.
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Fig. 22 Metamodel for the Metamodel Coverage Checker tool

SMM : source metamodel for the transformation under test
TCMM : test criteria metamodel

Automatic processing

SMM

Ecore TCMM

partitions/
fragmentssteps 1 + 2

+
test criterion

SMM

M1
M2

M3M4

M1
M2

M3M4

TCMM

model
fragments

steps 3

TCMM

model
fragments

+

Fig. 23 Tools chain for the MMCC

5.2 Discussion with the state machine metamodel

This section illustrates the use of the tool for the improve-
ment of a set of test data. We illustrate this discussion with
the SMFlatten transformation. To test this transformation, it
is necessary to build a set of state machines according to the
metamodel of Fig. 24. Since MMCC is implemented in EMF,
all classes of the metamodel must be contained in a “root”
class. This explains the presence of StateChart that is not
in the metamodel of Fig. 2, and the presence of Partition-

Model and Fragments in Fig. 22. Figure 25 displays a pos-
sible set of test models as an example. It contains three state
machines, each having specific characteristics: the first one
has only one transition, the second one has two transitions and
the third one has a composite state. Now, let us use MMCC
to evaluate the quality of this set of models according to the
AllRanges and AllPartitions test criteria.

We start with the AllRanges test criterion. When MMCC
runs with the metamodel of Fig. 24 and the AllRanges cri-
terion, it generates 30 model fragments. When we run the
second stage of MMCC with the three test models on these
30 model fragments, it computes that 25 fragments are cove-
red. MMCC also provides the 5 exposed model fragments:
MF{AbstractState(label = 0)}
MF{Composite(ownedState = 0)}
MF{Statechart(transitions = 0)}
MF{Statechart(states = 0)}
MF{Statechart(states = 1)}
When looking at the set of exposed model fragments, it

appears that the initial set of test models misses some bou-
dary cases. In order to satisfy the AllRanges criterion, it is
necessary to add corresponding test models in the set. When
adding the two test models shown in Fig. 26, the criterion is
completely satisfied. All model fragments are covered. The
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Fig. 24 State machine metamodel in EMF

Fig. 25 Test models for the SMFlatten transformation

Fig. 26 Two models added to satisfy the AllRanges criterion

first model is a state machine with only an empty composite
state and the second one is an empty state machine (no state,
transition or composite state).

Now, we look at the AllPartitions test criterion. When
MMCC runs with the metamodel of Fig. 24 and the AllParti-
tions criterion, it generates 14 model fragments. When run-
ning the MMCC’s second stage with the three test models
on these 14 model fragments, the result of the analysis is
that 9 fragments are covered. MMCC provides the 5 exposed
model fragments:
MF{AbstractState(label=0),Abstract

State (label = 1),
AbstractState(label ≥2)}
MF{Composite(ownedState = 0),

Composite(owned State = 1),
Composite(ownedState ≥2),}

MF{Transition(event = ""), Transition
(event ∈ .+)}

Fig. 27 Additional test model to satisfy the AllPartitions criterion

MF{Statechart(transitions = 0), State
(transitions = 1),

State(transitions ≥2)}
MF{Statechart(states = 0), State

(states = 1), State (states ≥2)}
In order to improve the initial set of test models according

to the AllPartitions criterion, we add the model displayed in
Fig. 27. Again, these data miss boudary cases: a composite
with no ownedState and a transition with no event label.
When running MMCC again with this additional model in
the set of test models, 12 fragments are covered. However,
the following fragments are still exposed:
MF{Statechart(transitions = 0), State

(transitions = 1), State
(transitions ≥ 2)}

MF{Statechart(states = 0), State
(states = 1), State(states ≥2)}

When looking at the missing model fragments, it appears
that they can not be covered by any test model. It is impossible
to build a state machine that has 0 transition AND 1 transition,
or a state machine that has exactly 1 state AND more than 2
states. This illustrates a limitation of almost all test adequacy
criteria: they generate constraints that can not be satisfied.
The criteria have the same limitation, but they are still useful
to improve a set of test data. The model in Fig. 27 is an
interesting case that was not present in the initial set.
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Fig. 28 Meta-model for classes

When looking at these two results we notice that in both
cases the missing model fragments concern boundary cases
that are usually forgotten when generating test data. We also
notice that the model that we added to satisfy the AllPartitions
criterion is more complex than the models added to satisfy
the AllRanges criterion. This confirms that the AllPartitions
criterion which is stronger than the other one (according to
the subsume relationship) also leads to the identification of
more complex data and thus should improve the quality of
testing. Indeed, checking that the transformation runs cor-
rectly with complex input data improves our confidence in
the transformation more than if it runs with small simple test
models.

5.3 Case study

In this section we illustrate another application of MMCC
with another model transformation example that was propo-
sed at the Model Transformation in Practice (MTIP) work-
shop at the Models’05 conference [17]. As a benchmark for
transformation techniques, the organizers of the workshop
provided a precise specification of several model transforma-
tions. The first one consisted in transforming class diagrams
into database tables. The input meta-model is given in Fig. 28.
The organizers of the workshop also provided an example for
this transformation that gave a class model in the form of a
graph of objects and the expected output database. For illus-
tration purposes, we consider this class model (Fig. 29) as a
test model for the transformation.

:Association

name=« customer »

:Association

name=« address »

:Class

name=« Order »
is_persitent = true

:Class

name=« Customer »
is_persitent = true

:Class

name=« Address »
is_persitent = false

:Attribute

name=« order_no »
is_primary = true

:Attribute

name=« Order »
is_primary = true

:Attribute

name=« addr »
is_primary = true

:PrimitiveDataType

name=« int »

:PrimitiveDataType

name=« String »

srcdestsrc dest

attrs attrs attrs

type typetype

:ClassModel

Fig. 29 One source model

It appears that the model does not satisfy any of the cove-
rage criteria defined in the previous sections, not even the
simplest AllRanges. The test model misses 15 ranges for
several properties of the model:

Classifier(name = “”),
Class(isPersistent = false), Class

(parent = 1), Class
(attrs = 0), Class(attrs ≥ 2)
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:Class

name=« »
is_persitent = false

:ClassModel

:Class

name=« A »
is_persitent = true

:ClassModel

:Association

name=« c »

src

:Class

name=« A »
is_persitent = true

:ClassModel

:Association

name=« c »

dest

:ClassModel

:Association

name=« customer »

:Class

name=« A »
is_persitent = true

:Class

name=« C »
is_persitent = false

:Class

name=« B »
is_persitent = false

:Attribute

name=« a »
is_primary = true

:Attribute

name=« b »
is_primary = false

:PrimitiveDataType

name=« int »

:PrimitiveDataType

name=« String »

destsrc

attrs attrs

type type

:ClassModel

parent

M1

M2

M3

M4

M5

Fig. 30 Five models to cover the Allranges criterion

Attribute(isPrimary = false),
Attribute(name = “”), Attribute

(type = 0),
Association(name = “”), Association

(destination = 0), Association
(source = 0)

classModel(classifiers = 0), class
Model(classifiers = 1),

classModel(associations = 0), class
Model(associations = 1)

This means that for any test criterion, there will be unco-
vered model fragments. When running MMCC with the All-
Ranges criterion, 33 model fragments are generated (each
one containing one range) and 15 fragments are exposed.
The five models of Fig. 30 can be added to the set of test
models to satisfy the AllRanges criterion.

When running MMCC with the AllPartitions criterion,
none of the 15 model fragments is found to be covered by
the test model. The information on exposed ranges and model
fragments helps testers to improve the test models, while
providing them with flexibility in the design of the test suite:
the tester may opt to add all possible cases to a single model
or to create several models focusing on particular fragments.
It should be noted that the framework currently does not
enforce the requirement that the type of the Attribute is never
a Class.

6 Related work

Model transformations are the essential feature in model-
driven development (MDD). However, works concerned with
the validation of these pivotal programs are just beginning to
emerge. This section presents the state of the art on model
transformation validation and then broadens the scope to look
at other works that deal with validation issues in MDD.

Steel et al. [18] present testing issues encountered when
developing a model transformation engine, and the solutions
adopted to cope with them. They note the similarity bet-
ween the task of testing the transformation engine and the
testing of transformations themselves, and address a number
of important technical issues associated with using models
as test data. In particular, they discuss the use of coverage
criteria based on metamodels for the generation of test data.
In their study, the criteria are applied by hand, and not in the
systematic, generalized way presented in this work.

Küster [19], addresses the problem of model transforma-
tion validation in a way that is very specific to graph transfor-
mation. He focuses on the validation of the rules that define
the model transformation with respect to termination and
confluence. His approach aims at ensuring that a graph trans-
formation will always produce a unique result. Küster’s work
is an important step for model transformation validation, but
contrary to the approach presented here, it does not aim at
validating the functionality of a transformation (i.e., it does
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not aim at running a transformation to check if it produces a
correct result). Küster et al. [20] also consider graph transfor-
mation rules, but in the paper they leverage the specificities of
the implementation to propose a white-box testing approach.
First, they propose a template language which they use to
define generic rules that can be used to automatically generate
a set of rules that serve as input data. The second contribution
of this work consists in identifying model elements that are
transformed and that are also manipulated by constraints on
the model. In this way, they identify constraints that might
be violated after the transformation and they build test data
that aims at validating that these constraints are not viola-
ted. Darabos et al. [21] also investigate the testing of graph
transformations. They consider graph transformation rules as
the specification of the transformation and propose to gene-
rate test data from this specification. Their testing technique
focuses on testing pattern matching activity that is conside-
red the most critical of a graph transformation process. They
propose several fault models that can occur when computing
the pattern match as well as a test generation technique that
targets those particular faults.

Baldan et al. [22] propose a technique for generating test
cases for code generators. The criterion they propose is based
on the coverage of graph transformation rules. Their approach
allows the generation of test cases for the coverage of both
individual rules and rule interactions but it requires the code
generator under test to be fully specified with graph trans-
formation rules. Heckel et al. [23] apply the same ideas for
automatically generating conformance tests for web services.
One of their contributions is to apply partition testing on the
WSDL specification of the inputs of the web services under
test in order to select the test data.

All these approaches to model transformation validation
and testing consider a particular technique for model trans-
formation and leverage the specificities of this technique to
validate the transformation. This has the advantage of having
validation techniques that are well-suited to the specific faults
that can occur in each of these techniques. The results of these
approaches are difficult to adapt to other transformation tech-
niques (that are not rule-based). None of these approaches
has proposed a clear and precise model for the definition of
test criteria of test data generation and qualification. In this
paper, we have considered a very generic approach for model
transformation and have proposed a framework to express
test criteria to test any transformation, based on its source
meta-model.

Mottu et al. [24], propose a methodology to evaluate the
trust in a model transformation by qualifying the efficiency
of test cases and contracts that specify the transformation.
The idea of this approach is that the quality of a transforma-
tion can be evaluated by checking the consistency between
the test data, the implementation of the transformation and
the specification of the transformation refined as executable

contracts. The consistency between those aspects is measu-
red using mutation analysis [25]. This technique consists of
seeding faults in a program and checking whether the test data
or the contracts can detect them. In these study, the faults that
were injected were specific faults that typically occur when
developing a model transformation. Mottu et al. [26] ana-
lyzed the process of model transformation to define generic
fault models and showed how these generic faults mapped to
actual faults in different languages.

Giese et al. [27] focuses on the formal verification of
model transformation critical properties. The authors use
triple graph grammars (TGG) to represent both systems and
transformations in order to formalize transformations and
allow critical properties to be verified through the use of a
theorem prover. Such a verification technique could be used
in combination with testing when a formal specification is
available.

Although there are few works that focus on model trans-
formation testing or verification, a number of other topics are
connected to this filed of research. In particular, we discuss
testing of compilers and model validation in the following.

The problem of model transformation can be connected
to existing work on testing compilers. Compilers are spe-
cific transformations which translate programs written in a
particular programming language into another programming
language. The input domain of a compiler is usually specified
using grammars and test data (programs fed as input to the
compiler) are represented as trees. Like for model transfor-
mations the correctness of compilers is critical to the reliabi-
lity of programs that are developed using them. Borjarwah et
al. [28] present a survey of existing compiler test case genera-
tion methods. Most of these testing techniques propose to use
the grammar for selecting test programs. In previous work
[29], we have used such techniques for generating tests for
parsers. There are very few recent works on the generation
of test data for compilers. Currently, compilers are verified
and tested using ad hoc and very specific techniques and with
large benchmarks developed on a long period of time. This
is a very costly approach for validation but it is acceptable
for compilers for two reasons: first, compilers and program-
ming languages have a slow evolution rate and second they
are used by a large community of developers.

Such an approach can not be used for model transfor-
mation testing and validation because they typically target
a smaller community and require constant evolutions and
adaptations.

Another important issue related to model transformation
validation is model validation. The works in [12,30] deve-
lop approaches to support model testing. These works focus
on testing executable UML design models. The models they
consider for testing consist of a class diagram, OCL pre and
post conditions [31] for methods and activity diagrams to
specify the behaviour of each method. From this model, the
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authors generate an executable form of the model, which can
be tested. In [30], they propose to model test cases using
UML2.0 sequence diagrams. From these test cases speci-
fications and the class diagram, they generate a graph that
corresponds to all possible execution paths defined in the
different scenarios. The authors then use test criteria defined
in [12] and automatically generate test data and an initial
system configuration to cover each execution path.

Gogolla et al. [32] propose an approach that detects errors
in the early development stages of UML model develop-
ment. The authors present the USE tool which aims at ani-
mating and testing UML class diagrams and their associated
OCL constraints. In a USE specification, OCL constraints
specify invariants on the structure of the system as well as
the behaviour of the methods. The authors define the notion
of a snapshot for testing UML designs. A snapshot is an
object diagram that represents system states at any time with
objects, attribute values and links. Snapshots can be declara-
tively defined using a language called ASSL. In USE, a test
consists of defining a snapshot that represents an expected
object configuration and then checking that it can actually
be constructed without violating any model-immanent OCL
constraints in the process.

Rutherford et al. [33] report on an experiment to gene-
rate test code in parallel with a system whose development
is model-driven. The experiment uses a generative program-
ming tool called MODEST. The paper reports the costs and
benefits of developing additional templates for test code for
the MODEST tool, so it can generate as much test code as
possible. The study reported that developing templates for
test code enhanced the development process and benefited
the developers by increasing their familiarity with the code
generation approach used by MODEST. The costs are eva-
luated with an analysis of the complexity of templates for
test-code generation.

Heckel et al. [34] also explicitly address the problem of test
generation in a MDA context and propose to develop model-
driven testing. In particular, their work focuses on the sepa-
ration of platform-independent models and platform-specific
models for testing. The generation of test cases from the
model, as well as the generation of an oracle are considered
to be platform-independent. The execution of the test cases in
the test environment is platform-specific. A case study based
on model-driven development of web applications illustrates
their approach.

The last important research field that is very much rela-
ted to our work is the area of model-based testing [35,36].
Although it is very difficult to assimilate model-based testing
to a single homogeneous set of works, we can compare some
important trends in model-based testing with the approach
proposed in this work. The book by Utting and Legeard [36]
identifies four main approaches known as model-based tes-
ting. The first one is the “generation of test input data from a

domain model”. In that case, the approach presented in this
paper is clearly model-based testing. Our approach for model
transformation testing uses a model (i) to generate objectives
for test data (model and object fragments), (ii) to evaluate the
quality of test data and (iii) it should be possible to use the
same model to automatically generate test data. The model
used to drive all these testing activities is the input metamodel
for the transformation.

As pointed out by Utting and Legeard, this approach is
only one specific approach to model-based testing. They cite
three other well-known approaches, among which “genera-
tion of test cases and oracles form a behaviour model”. Their
book focuses mainly on this approach. We believe that this is
also the most commonly accepted definition of model-based
definition. In that context, the approach proposed in this paper
is not model-based testing since the model we consider is not
behavioural and does not model the system under test, but
specifies the input domain of the transformation.

7 Conclusion and future work

At the heart of model-driven engineering are model transfor-
mations. Transformations are complex programs; they must
be made reliable to have model-driven engineering deliver its
promises. Therefore, as for any complex program, thorough
testing is required to gain confidence in model transforma-
tions.

Testing transformations is typically performed by apply-
ing a transformation to a set of input models, and then by
comparing actual results with expected results. Defining the
right set of input models is a non-trivial task.

In this paper we defined test adequacy criteria to qualify
input test models for model transformation testing. These cri-
teria are based on the partitioning of metamodel properties
domains. Each criterion defines a set of model fragments that
has to be covered by input test models. The notions of parti-
tion for properties and model fragments are formally captured
in a metamodel. Since these criteria only rely on the struc-
ture of the input metamodel of the transformation under test,
they can be applied to validate test data for transformations
implemented in any language.

We have developed a prototype tool that computes a set of
model fragments for any metamodel, according to a particu-
lar criterion. For a set of input models, the tool can identify
the fragments that remain to be covered. This is valuable
information that allows the tester to incrementally improve
the initial set of test models. We used a transformation from
the MTIP workshop at MoDELS’05 as an illustration of the
test improvement process.

There is still a lot of research work ahead us, most impor-
tantly in the area of criteria definition and tuning. First, it
is important to validate the proposed criteria with respect to
their ability to produce test models that can detect faults in
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a model transformation. This is immediate future work that
will consist in generating test models that satisfy the criteria
and run a mutation analysis to evaluate their fault detection
capabilities. The mutation analysis could be done using the
operators defined by Mottu [26] for imperative transforma-
tion languages or by Darabos [21] for rule-based transforma-
tion languages.

An important perspective of this work consists in automa-
ting the generation of test models that satisfy the criteria. A
first experiment is proposed in [37]. This work proposes an
algorithm that processes a set of model fragments, generated
with a particular criterion, to generate a set of test models. The
algorithm proposes several strategies to build objects from
model fragments and combine those objects into a complete
model. This algorithm shows that it is possible to automati-
cally generate models that satisfy a test criterion. However,
there are still some limitations: the major difficulty is to gene-
rate models that satisfy all constraints that can be placed on
the input metamodel, that is well-formedness rules of the
metamodel itself, plus the pre conditions of the transforma-
tion. A possible solution to this problem is to adapt constraint-
solving techniques and evolutionary techniques to take all
these constraints (metamodel, constraints, pre-condition and
test criterion) into account for efficient model synthesis. A
first step in that direction is presented in [38] in which Sen et
al. define mutation operators to build models incrementally
by applying small mutations on models to create new models.

Another important future work consists in having more
precise criteria to capture more information that is neces-
sary for automatic generation. This work proposes black-
box criteria to evaluate the adequacy of test models. This
has the benefit of having a solution which is independent of
any transformation technology and that leverages the input
metamodel as a description of the input domain. However, the
limitation of these criteria is that, alone, they will not enable
the automatic generation of test models. This is because a
large amount of information is not present in the metamodel
alone. To design a fully automated test model generator, it is
necessary to analyze information from the specification of the
transformation and to use white-box criteria that will ensure
the coverage of the transformation. This raises two important
future work: (i) investigate what could be a good language
for specification of requirements for transformation and how
theses requirements could be analyzed for test generation; (ii)
propose white-box criteria for specific model transformation
techniques as proposed in the work of Küster [20].
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