
ARTICLE IN PRESS
www.elsevier.com/locate/imavis

Image and Vision Computing xxx (2007) xxx–xxx
Subspace manifold learning with sample weights

Nathan Mekuz *, Christian Bauckhage, John K. Tsotsos

Department of Computer Science and Engineering, Center for Vision Research, York University, CSE 3031, 4700 Keele Street, Toronto, Ont.,

Canada M3J 1P3

Received 10 November 2005; received in revised form 16 August 2006; accepted 20 October 2006
Abstract

Subspace manifold learning represents a popular class of techniques in statistical image analysis and object recognition. Recent
research in the field has focused on nonlinear representations; locally linear embedding (LLE) is one such technique that has recently
gained popularity. We present and apply a generalization of LLE that introduces sample weights. We demonstrate the application of
the technique to face recognition, where a model exists to describe each face’s probability of occurrence. These probabilities are used
as weights in the learning of the low-dimensional face manifold. Results of face recognition using this approach are compared against
standard nonweighted LLE and PCA. A significant improvement in recognition rates is realized using weighted LLE on a data set where
face occurrences follow the modeled distribution.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problems of dimensionality reduction and subspace
learning are active research topics in machine learning and
statistical image analysis [1]. In this context, the goal has
often been related to mitigating the effects of the curse of
dimensionality [2], compression (e.g., [3]) or the uncovering
of latent variables (e.g., blind source separation [4], factor
analysis [5]). Specialized dimensionality reduction tech-
niques have also been developed for visualization of high-
dimensional data (e.g., [6]).

Subspace learning techniques have also been successful-
ly applied in machine vision, especially in the context of
face recognition where they have gained considerable pop-
ularity [7,8]. The strong interest in face recognition has
been motivated by applications ranging from authentica-
tion and security to expression recognition and user inter-
face design. While humans are highly adept at
recognizing faces, this task remains a significant challenge
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for machines. Typically, a face recognition system is
trained offline with a set of labeled images prior to being
presented with a novel image to recognize. The challenge
is to maximize the amount of relevant detail learned from
the training data with minimum sensitivity to transforma-
tions such as pose and illumination.

Face images are especially suitable for subspace learning:
faces are mostly symmetrical, contain many textured and
smooth surfaces and have a fairly constant appearance,
resulting in strong correlation. Faces normally appear
upright, and in many applications a frontal view is avail-
able. For these reasons, most face recognition systems have
used image-based representations, where faces are repre-
sented with characteristic images, and dimensionality
reduction techniques are applied for increased storage and
comparison efficiency. These techniques effectively learn a
subspace of the space spanned by the original input, on
which the face images in the training data (approximately)
lie. By extension, novel face images are expected to lie close
to this manifold.

Some face recognition systems are holistic and use a sin-
gle model to represent the entire face (e.g., [9]) while others
fold learning with sample weights, Image Vis. Comput. (2007),
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use geometrical configurations of local features (recogni-
tion by parts, e.g., [10]). Our empirical evaluation takes
the former approach, but subspace learning also plays a
role in parts-based systems, where it may be applied to each
part.

1.1. Relationship to previous research

Face recognition has been an extremely fertile research
area, and has resulted in many specialized techniques. A
complete review is beyond the scope of this paper, but
Zhao et al. [8] survey many of the popular techniques in
the field. Here, we limit our discussion to the main sub-
space-based approaches.

Kirby and Sirovich [3] first proposed a low-dimensional
representation for face images, based on principal compo-
nent analysis (PCA, [11]). PCA is a linear transformation
into a lower-dimensional coordinate system that preserves
maximum variance in the data, thus minimizing mean-
square error, computed as a subset of the Karhunen–Loeve
rotation [12]. Turk and Pentland later applied this tech-
nique to face recognition and detection [13], and intro-
duced the notion of face space – the space spanned by
the transformation, and the faceness of novel images was
measured by their distance to face space. The database con-
sisted of low-dimensional PCA projections of the training
data, and face recognition was performed by applying a
nearest-neighbor classifier in the reduced subspace.

Turk and Pentland’s technique has been very influential
but PCA’s linear model is suboptimal for image data. Mur-
ase and Nayar [14] present an extension of Turk and Pent-
land’s technique that represents continuous appearance
variations of objects using spline interpolation. The test
image is first projected onto a low-dimensional space, in
order to identify the object. Once the object is identified,
the image is projected onto a new subspace, defined specif-
ically for that object. The resulting subspaces are nonlinear
and appear as manifolds in high-dimensional space.

Other linear dimensionality reduction techniques that
have been successfully applied to face recognition include
independent component analysis (ICA, [15]) and linear dis-
criminant analysis (LDA, [16]). ICA seeks components that
are statistically independent (rather than de-correlated). It
is argued to provide a more localized decomposition than
PCA. LDA is a linear transformation related to the Fisher
linear discriminant (FLD, [17]), that seeks to maximize
class separability in the projection, based on known class
labels [12].

As a least-squares technique, PCA suffers from sensitiv-
ity to outliers. Several approaches have been proposed to
increase the robustness of PCA. De la Torre and Black pro-
pose using M-estimators [18]. Skočaj et al. [19] use a gener-
alized version of PCA that introduces image and pixel
weights, and the effect of outliers in the data is reduced
by reducing their weights. The weights control the learning
of the subspace (the training phase) and are also used in the
recognition classifier. Weighted subspace learning is also a
Please cite this article in press as: N. Mekuz et al., Subspace mani
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central element of our technique, although the motivation
for introducing the weights is different.

The space spanned by images of an object under differ-
ent variations is highly nonlinear, and the application of
linear dimensionality reduction techniques to image data
results in suboptimal object recognition performance [20–
23]. Several of the recently proposed subspace learning
techniques model the subspace manifold as a connected
patchwork of locally linear surfaces. These models are
especially well suited to manifolds where the intrinsic
dimensionality varies in different areas of the manifold or
where the locally intrinsically low-dimensional patches
have a globally varying orientation. Also, in cases where
the manifold is discontinuous, these techniques make it
possible to model clusters separately. One popular tech-
nique from this category is locally linear embedding
(LLE, [21]), which is particularly appealing due to its sim-
plicity and the existence of a closed-form solution (dis-
counting the computation of the eigenvectors). LLE
computes the local structure around each input point based
on its neighbors. LLE has been applied to face recognition,
and the resultant face manifold has been shown to provide
better classification opportunities than the face space pro-
duced by PCA. This suggests that for the purpose of face
recognition, the local structure of the manifold is a better
discriminant than the global Euclidean structure.

1.2. Weighted manifold learning

In addition to controlling the effect of outliers, weighted
input data can also be used to tune the learning of the man-
ifold, so that data samples can be considered according to
their reliability or significance. This can be useful in a face
recognition system that is trained with a large number of
appearances for each face, where a likelihood function
can be defined for the occurrence of the different appear-
ances in a novel image. In nonweighted subspace learning
algorithms, the user needs to balance the need for a suffi-
cient number of training samples with the risk that includ-
ing uncommon and infrequent appearances in the training
data may adversely affect the representation of the com-
mon appearances. Our approach extends a popular nonlin-
ear manifold learning technique, namely LLE, to work
with sample weights. If the probability of occurrence for
different face appearances is known (or can be estimated),
then our technique eliminates this dilemma, and effectively
models the subspace based on the available weights.

1.3. Overview

We propose a locally linear dimensionality reduction
technique based on locally linear embedding (LLE), where
the input data is labeled with weights, which are used to
bias the transformation to model certain parts of the input
more effectively than others. This paper consists of four
sections. The first section has motivated the need for
sample weights in dimensionality reduction and for local
fold learning with sample weights, Image Vis. Comput. (2007),
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learning of the manifold. Section 2 describes our technical
approach and the algorithm used. In Section 3 we present
empirical results of our algorithm applied to face recogni-
tion. Section 4 summarizes our work. Finally, Section 5
suggests directions for future research.

2. Sample weights

Our technique extends LLE to allow for weighted sam-
ples in the training phase where the weights bias the trans-
formation to favor certain input points over others. If input
data represents observations from an unknown manifold,
then weights may be used to represent the reliability of
the observations.

Assigning weights to training samples can come in useful
in various scenarios. For example, in a face recognition
application, higher weights may be assigned to areas of
the face considered more important for recognition, such
as the eyes. Lower weights can be used to reduce the effect
of outliers (e.g., using weighted PCA, [19]). Weights may
also be applied to images in the training set, for example
assigning a higher weight to more recent images of an indi-
vidual, or images that are considered more likely to be
encountered in the test set. The latter application requires
a model of the probabilities of occurrence of different
appearances. In this paper, we present an extension of
LLE – a promising nonlinear dimensionality reduction
technique especially effective for face recognition [21] – that
allows weighted training data.

2.1. The use of weights

Generalized PCA, and specifically weighted PCA is a
common multivariate statistical technique [11]. Skočaj
et al. use weighted PCA in their object recognition system
[19]. Weights are applied to individual pixels (spatial

weights) and images (temporal weights). Spatial weights
are used to describe the reliability (e.g., missing pixels, out-
liers) or importance of different parts of the image, while
temporal weights are used to bias the learning of the sub-
space in favor of more recent images of each subject. The
technique works by maximizing the weighted variance in
the low-dimensional space (face space) in order to achieve
lower reconstruction error for certain target images or pix-
els. Image weights may also be used to tune a user authen-
tication system to achieve better recognition rates for
individuals that require more reliable recognition
performance.

There are also other situations where image weights may
be useful. Face images are subject to variation due to scale,
orientation (i.e., rotation with respect to the camera’s opti-
cal axis) and pose (relative to the camera), facial expres-
sion, occlusion, and lighting conditions, and the presence
or absence of features such as beards, glasses, or articles
of clothing such as scarfs and hats. To account for these
variations, face recognition systems are typically trained
with multiple images of each subject. Nonweighted tech-
Please cite this article in press as: N. Mekuz et al., Subspace mani
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niques present a dilemma for users. On the one hand, it
is desirable to train the system with as many appearance
variations as possible to facilitate good recognition under
different conditions. On the other hand, the inclusion of
training samples which represent extreme deviations from
the norm and which are not very likely to occur in test data
may taint the representation of the higher-likelihood sam-
ples, and adversely affect their recognition.

Skočaj et al. propose weighted PCA algorithms for pro-
cessing weighted images and images with weighted pixels,
both as a batch process, and as an EM-based adaptive
online algorithm [19].

The batch technique incorporates the weights both in
the computation of the sub-space and in the classification
of the test image. Given image weights fgig

N
i¼1, the subspace

is computed by transforming the input vectors fx
!

igN
i¼1 lying

in data space RM , after subtracting the mean, as follows:

x
!0

i ¼
ffiffiffiffi
gi
p ðx!i �~�xÞ; i ¼ 1; . . . ; N ð1Þ

where x
!0

i are the transformed images from which the
covariance matrix and its eigenvectors are computed. Sim-
ilarly, spatial weights fpjgM

j¼1 are introduced as follows:

x0ij ¼
ffiffiffiffiffi
pj
p ðxij � �xj; i ¼ 1; . . . ;N ; j ¼ 1; . . . ; M ð2Þ

where x
!0

i are the images adjusted for spatial weights. Com-
bining the two, a set of images modified to reflect both im-
age and spatial weights, fx

!0
ig

N
j¼1 is computed as follows:

x0ij ¼
ffiffiffiffiffiffiffiffi
gipj
p ðxij � �xj; i ¼ 1; . . . ; N ; j ¼ 1; . . . ; M ð3Þ

These modified images are used as an input to nonweighted
PCA to obtain a weight-adjusted subspace.

Our weighted learning technique incorporates sample
weights into the learning process. These weights can be
set to the test images’ probability of occurrence to bias
the learning process in favor of certain face appearances
at the expense of others. For instance, we may assume that
of all variations caused by in-plane rotation, upright faces
are most likely. Our empirical testing used a Gaussian dis-
tribution model to represent the probability of occurrence
of face images transformed by in-plane rotation, where
the mean was centered around the upright position.
2.2. Locally linear manifold learning

Nonlinear manifold learning techniques (e.g., [20–23])
have been developed for a variety of applications. Roweis
and Saul [21] demonstrate several synthetic visualization
examples where three-dimensional data (such as the Swiss
roll example depicted in Fig. 1) is reduced to two dimen-
sions. Variance in the depicted examples does not align
along any specific linear axis, and consequently PCA fails
to produce a meaningful projection. Empirical evidence
shows that the space of face images is indeed highly nonlin-
ear. Other research (e.g., [18]) points out and illustrates
PCA’s extreme sensitivity to outliers. Outliers present an
even more severe problem in techniques which de-correlate
fold learning with sample weights, Image Vis. Comput. (2007),



Fig. 1. The Swiss roll manifold depicted here is highly nonlinear. In cases
such as this, techniques that seek dimensionality reduction (such as PCA)
will fail to discover the manifold’s shape.
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higher order statistics such as ICA or general projection
pursuit.

Locally linear embedding (LLE) is a locally linear data
reduction technique which appears to be especially effective
for face recognition. This is confirmed by independent
studies (e.g., [24]). LLE computes dimensionality reduction
that preserves the local neighborhood structure of the input
data in the low-dimensional transformation. The transfor-
mation models the subspace manifold as a connected
patchwork of locally linear surfaces. The local nature of
the learning results in a robust representation, since outliers
only affect the learning in their immediate neighborhood.
On the other hand, LLE requires that the manifold be ade-
quately sampled.

If the manifold is sufficiently sampled, then in small
neighborhoods, points lie on nearly linear patches of the
manifold. This is commonly justified using Taylor’s theo-
rem [25] which states that any differentiable function is lin-
ear at the limit in a small area around a point. LLE works
by identifying local neighborhood distance relationships,
and finding a mapping into a lower dimensionality that
preserves them as much as possible. The neighborhood
configuration is expressed as the set of coefficients for each
point, that best reconstructs it as a linear combination of its
neighbors.

Two formulations to define a data point’s neighborhood
have been proposed. The simpler formulation defines the
neighborhood as the k nearest neighbors in the Euclidean
sense. The other formulation defines the neighborhood of
a point as all data points that fall within distance t from
it. The advantage of the former approach is that the entire
neighborhood configuration may be represented as a sparse
Please cite this article in press as: N. Mekuz et al., Subspace mani
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matrix, with a number of nonzero elements that is known
ahead of time. Our empirical testing follows Roweis [21]
and uses the k nearest neighbors approach, but the tech-
nique may be applied to the e-radius ball formulation
easily.
2.3. Extending LLE with weights

Our goal is to extend LLE with sample weights similarly
to the weighted PCA technique described above. The non-
weighted LLE computation performs the following steps:

(a) Define each data point’s neighborhood, either by
identifying the k nearest Euclidean neighbors, or by
finding all data points that are within distance e from
it. An efficient implementation using kd-trees or ball
trees can perform this step in O(N log N) time, but
even with a brute force O(MN2) implementation, this
step is relatively inexpensive.

(b) For each data point x
!

i, compute a set of coefficients
n
!

i that best reconstruct it from its neighbors. Togeth-
er these sets can be combined into a sparse N · N

matrix. This step can be performed in O(MNk3) time,
where M is the input dimensionality and k is the
(amortized) neighborhood size.

(c) Compute low-dimensional vectors fy
!gN

i¼1 in data
space Rm which best reproduce the coefficients
obtained in the previous step, in a new low-dimen-
sional space of the desired target dimensionality.
The computational complexity of this step is
O(mN2), where m is the target dimensionality.

Our research extends LLE to work with weighted
samples, where the weights control the degree to which
each input point affects the construction of the low-
dimensional embedding, or the learned manifold. If the
input points represent observations, then the weights
can be used to represent their reliability. Since the local
shape of the manifold at each point is learned from its
neighbors, the neighbors’ weights have to be included
in the computation in a way that increases the influence
of neighbors with high weights. This requires modifying
the first two steps of the algorithm.

In its first step, the algorithm selects representative
points for each input point’s neighborhood (nearest
Euclidean neighbors). Next, a set of coefficients is
computed for each data point that reconstructs it opti-
mally from its neighbors. Given neighbors {neigh-

bor1, . . .,neighbork} at point x
!

p, in order to compute
coefficients at x

!
p, the local covariance matrix C of the

neighbors is computed, about x
!

p, where the elements cij

of C are defined as follows:

ci;j ¼ ðx
!

p � x
!

iÞT ðx
!

p � x
!

jÞ ð4Þ

for i, j e 2 {neighborl1, . . .,neighbork}. This results in a sym-
metric semipositive definite Gram matrix which defines the
fold learning with sample weights, Image Vis. Comput. (2007),
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Fig. 2. The first two dimensions of the weighted LLE projection of face
images, using k = 7, d = 15. Each marker type represents the face image of
a different subject.
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difference vectors x
!

i � x
!

jÞ up to isometry. Next, optimal
coefficients fnigk

i¼1 that minimize x
!

p ’s reconstruction error
from its neighbors can be easily computed using Lagrange
multipliers, or equivalently by solving,

C n
!
¼ ½1; 1; . . . ; 1�T ð5Þ

for n
!

and normalizing so that
Pk

i¼1ni ¼ 1. This is repeated
for each input point x

!
p.

Therefore, the computation of Euclidean distances
affects both the choice of points used to represent each
input point’s neighborhood and the formation of the local
covariance matrices in the second step. With weighted sam-
ples, weighted distances need to be computed which com-
bine Euclidean distances with the points’ weights. Given
weights wi P 0 for data points x

!
i, respectively, the adjusted

distance d 0ij between points x
!

i and x
!

j is given by,

d 02ij ¼
d2

ij

wiwj
¼ ðx

!
p � x

!
iÞTðx

!
p � x

!
jÞ

wiwj
ð6Þ

The adjusted distances d 0ij are used both for selecting neigh-
bors at each input point in the first step of the algorithm
and for the computation of the Gram matrix in the second
step. Point x

!
i’s neighbors in the weighted scheme are there-

fore the k 0 points with the smallest d 0ij or alternatively all
points for which d 0ij 6 e0, where k 0 and e 0 are adjusted
parameters. Any nonnegative values may be used for the
weights. Note that the transformation effected by the
weights is linear and therefore only their relative values
are important. In other words, multiplying all weights by
a constant has no effect on the algorithm’s output.

Similar to the computation of the distances, the compu-
tation of the local covariance matrix C 0 for x

!
p is modified

as follows,

c0i;j ¼
ffiffiffiffiffiffiffiffiffi
wiwj
p ðx!p � x

!
iÞTðx

!
p � x

!
jÞ ð7Þ

where i, j 2 {neighbor1, . . . neighbork}. Now replacing C
with C 0 in equation [5] after normalization, yields weight-
adjusted reconstruction coefficients n

!
0 that incorporate

sample weights, formally,

C0n
!
0 ¼ ½1; 1; . . . ; 1�T ð8Þ

Once the weight-adjusted coefficients n
!
0 have been comput-

ed, the final step computes the embedding based on these
adjusted coefficients, and therefore no changes are required
in the final step of the algorithm.

It is not clear how to select good values for k or e in
weighted or non-weighted LLE, other than empirically.
The neighborhood size effectively controls how local
the features preserved by the LLE transformation will
be. Whatever values are chosen, the introduction of
weights changes the calculation of distances and there-
fore different values need to be used for k 0 and e 0. These
values will likely be higher than in the nonweighted case,
since the weighting creates unequal dependence of each
point on its different neighbors, and greater sensitivity
to noise.
Please cite this article in press as: N. Mekuz et al., Subspace mani
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3. Empirical evaluation

We have designed a series of empirical tests to analyze
the effectiveness of our method. We used a standard data-
base of face images and added images of faces rotated in-
plane by small angles. We chose in-plane rotation as a
mutator since it can be easily generated synthetically and
since faces normally appear more or less upright. The face
images in the resulting database were assigned normally-
distributed probabilities of occurrence with respect to the
rotation angle, with a mean at the upright position, as
depicted in Fig. 3. We used m-fold cross validation, mean-
ing one data set was used for both training and testing.
While the modeled probabilities were input as weights in
the training phase, the test images appeared at probabilities
that followed the modeled distribution. The goal of our
evaluation was to assess the effectiveness of our method
against other subspace learning techniques on this scenario.

Fig. 2 depicts a two-dimensional plot of the projection
created by weighted LLE given the weighted face images
we used in our experiments. Different markers in the plot
represent face images of different individuals. Clusters are
visible in the plot suggesting that the resulting projection
should be conducive to good classification.
3.1. Methodology

In our tests we used the Yale face database [16], which
consists of 165 images of 15 subjects recorded under differ-
ent lighting conditions and depicting a variety of facial
expressions. Each face was rotated by hl 2 {�8�, �4�, 0�,
4�, 8�}, creating a total of 825 face images. We cropped
and aligned the images to a final size of 80 · 80, and to fur-
ther reduce the cost of computations, we preprocessed the
resulting images with PCA, retaining 100 principal compo-
fold learning with sample weights, Image Vis. Comput. (2007),
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Fig. 3. A Gaussian probability distribution model for the probability of occurrence of faces mutated using in-plane rotation.
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nents, capturing well over 99 percent of all variance
present.

Recognition rates were measured using the leave one out
strategy (m-fold cross validation). The system was trained
with all images but one, and classification was attempted
on the remaining image. This process was repeated for all
images in the database, and error (misclassification) rates
were recorded for four subspace learning algorithms:

• PCA on the original upright faces only.
• Nonweighted LLE (k = 3) on the original upright faces

only.
• Nonweighted LLE (k = 7) on all 825 images.
• Weighted LLE (k = 7) on all images where the weights

wi were set to the images’ probability of occurrence
using a Gaussian model.
Fig. 4. Recognition errors of four dimensionality reduction configurations
using the Yale faces [16] database.
3.2. Results

We compared the recognition error rates achieved by the
above four methods, at various dimensionality settings.
The results are summarized in Fig. 4, which plots the error
rate as a function of the target dimensionality of the
embedding space.

The results are consistent across all target dimensional-
ities. The error rates realized by weighted LLE are consis-
tently lower than those of the other three algorithms.

The error rates achieved by PCA are consistently the
highest. Interestingly, this observation contradicts other
tests [21] that find a crossover point around d = 18 above
which PCA actually achieves better recognition rates than
LLE.
3.3. Discussion

The results support our hypothesis that in cases where
training samples have an unequal but known likelihood of
occurring in test data, weighted LLE successfully learns a
Please cite this article in press as: N. Mekuz et al., Subspace mani
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subspace manifold which takes these probabilities into
account, and this manifold results in superior classification
ability. Weighted LLE achieved superior recognition rates
against the other three techniques at all dimensionalities,
with improvement ranging from 2.5% to 7%. However, while
the other three techniques show better recognition results at
higher target dimensionalities, weighted LLE seems to have
a constant error rate of around 10 percent across all dimen-
sionalities, although we did not test at dimensionalities high-
er than 30. Also, it may be possible to improve these results
with further tuning of the parameters.

4. Summary

We have presented a novel approach to weighted mani-
fold learning, by extending the locally linear embedding
(LLE) algorithm with sample weights. The weights influ-
ence the computation of the low dimensional embedding
by biasing the modeling of the neighborhoods in favor of
data points with higher weights. This technique may be
used where input observations have associated measures
fold learning with sample weights, Image Vis. Comput. (2007),
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of reliability, significance or probability of occurring in a
test data point.

We tested our technique on face recognition using an
extended database of face images with unequal frequencies
of occurrence and compared recognition results against
nonweighted LLE as well as PCA. Our algorithm produced
embeddings which emphasized the more frequently occur-
ring faces, and realized significantly superior recognition
rates against the other techniques, in all target
dimensionalities.

5. Future work

The selection of neighbors at each point has a significant
effect on the transformation (both in the weighted and non-
weighted case). To date, little research has been done on
techniques for selecting these neighborhood graphs, and
values for k or e are often chosen empirically. The intro-
duction of weights further complicates this issue. With
weights, the neighborhood size is no longer dictated only
by the locality of the features to be preserved by the trans-
formation. Care must also be taken to ensure that each
neighborhood sufficiently represents the local shape of
the manifold when weights are included.

Also, neighborhood formulations that rely solely on
Euclidean relationships do not enforce selection of points
in general position. In extreme cases, the selection of collin-
ear points may result in singularity conditions. Traditional
approaches such as Delaunay triangulations are computa-
tionally impractical in high dimensionality and tend to
select neighbors which are geodesically far apart.

Finally, LLE does not generalize as well as PCA. Pro-
jecting a novel data point requires a re-computation of
the embedding to include the new point.
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