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Abstract. Global and regional numerical models for terrestrial ecosystem dynamics
require fine spatial resolution and temporally complete historical climate fields as input
variables. However, because climate observations are unevenly spaced and have incomplete
records, such fields need to be estimated. In addition, uncertainty in these fields associated
with their estimation are rarely assessed. Ecological models are usually driven with a
geostatistical model’s mean estimate (kriging) of these fields without accounting for this
uncertainty, much less evaluating such errors in terms of their propagation in ecological
simulations. We introduce a Bayesian statistical framework to model climate observations
to create spatially uniform and temporally complete fields, taking into account correlation
in time and space, spatial heterogeneity, lack of normality, and uncertainty about all these
factors. A key benefit of the Bayesian model is that it generates uncertainty measures for
the generated fields. To demonstrate this method, we reconstruct historical monthly pre-
cipitation fields (a driver for ecological models) on a fine resolution grid for a climatically
heterogeneous region in the western United States.

The main goal of this work is to evaluate the sensitivity of ecological models to the
uncertainty associated with prediction of their climate drivers. To assess their numerical
sensitivity to predicted input variables, we generate a set of ecological model simulations
run using an ensemble of different versions of the reconstructed fields. We construct such
an ensemble by sampling from the posterior predictive distribution of the climate field. We
demonstrate that the estimated prediction error of the climate field can be very high. We
evaluate the importance of such errors in ecological model experiments using an ensemble
of historical precipitation time series in simulations of grassland biogeochemical dynamics
with an ecological numerical model, Century. We show how uncertainty in predicted pre-
cipitation fields is propagated into ecological model results and that this propagation had
different modes. Depending on output variable, the response of model dynamics to uncer-
tainty in inputs ranged from uncertainty in outputs that matched that of inputs to those that
were muted or that were biased, as well as uncertainty that was persistent in time after
input errors dropped.

Key words: Bayesian inference; ecological numerical models; kriging; nonstationary process;
spatial statistics; variogram.

INTRODUCTION

The prediction of a spatial surface from irregularly
spaced observations that have a nonstationary spatial
dependency structure (in the sense that the spatial cor-
relation function is a function of location) is a common
problem in ecology and geosciences. In earlier work,
we constructed gridded monthly precipitation and tem-
perature fields for approximately 100 years of the his-
torical record for the coterminous United States (Kittel
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et al. 2004). In this paper, we review standard meth-
odology in spatial statistics and present some novel
approaches to efficiently predict fine resolution spatial
fields. We introduce a Bayesian framework to char-
acterize different sources of uncertainty in the pre-
dicted spatial surface. A Bayesian analysis (e.g., Gilks
et al. 1996) takes into account prior scientific knowl-
edge and historical data to update (through Bayes the-
orem) the distribution of the spatial field of interest
given all the available sources of information. In this
work we present the use of Bayesian statistical ensem-
bles as an alternative approach for characterizing spa-
tial fields, rather than the mean estimate (e.g., kriging
predictor) that is more commonly used. Each climate
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ensemble member is an equally likely representation
of what the actual climate could be accounting for mod-
el prediction error. Taken together, ensemble members
are then an expression of uncertainty in the estimation
of these fields. We evaluate whether this uncertainty
has important implications for ecological model sim-
ulations that depend on such estimated fields as inputs.
We propose that the use of input ensembles is a way
to incorporate these errors in ecological model exper-
iments. If ecological model responses to such ensem-
bles are quite variable, our Bayesian framework is ideal
for quantifying this variability and assessing the im-
plications of input uncertainty in ecological model re-
sults. The spatial-temporal modeling and characteriza-
tion of uncertainty in climate input fields and the eval-
uation of the propagation of this error in ecological
model output are together the emphasis of this paper.

Alternative Bayesian statistical computer
modeling approaches

There is an extensive literature about statistical com-
puter modeling. In a series of papers, O’Hagan and his
collaborators (e.g., O’Hagan et al. 1999) use a prom-
ising approach to characterize the uncertainty distri-
bution of computer model outputs. In their approach,
the output is treated as the variable of interest and it
is modeled as a smooth surface with a stationary co-
variance. This smooth behavior is the property that
gives the authors the opportunity to improve on Monte
Carlo sampling. In the work by Sacks et al. (1989), the
computer output is also modeled as a stationary smooth
spatial process. In our approach, we model the input
as a nonstationary spatial-temporal process and we
compare the model output to an observed process of
interest. We are trying to understand the properties and
behavior of the model output. Therefore, at this stage
we prefer not to make strong assumptions and state-
ments about the smooth potential behavior of the model
output. For complex computer models that can be run
at different levels of sophistication, the approach in-
troduced by Kennedy and O’Hagan (2000) can be used,
so runs from several levels of a code could be used to
make inference about the output from the most complex
code. The computer model used in this paper is rela-
tively simple, thus, this technique was not used.

Calibration and evaluation of computer models is
another important and related area of research. Bayarri
et al. (2002), Fuentes and Raftery (2005), and Fuentes
et al. (2003), among others, present different Bayesian
frameworks to evaluate complex computer models, in-
cluding a careful study of different sources of uncer-
tainty. Calibration consists of searching and estimating
a set of values of the unknown inputs such that the
observed data fit as closely as possible, in some sense,
to the corresponding outputs of the numerical model.
Kennedy and O’Hagan (2001) present a calibration ap-
proach for complex models using a Bayesian frame-

work. In our case the approach taken is different, the
input at some location is estimated from the known
values at other locations. We are avoiding fitting the
data closely to the output of the model, since the model
output might not be a good representation of the var-
iable of interest. In fact, one of the aims of this study
is to determine how realistic the model output might
be when the uncertainty of the input is taken into ac-
count. The book by Santner et al. (2003) provides an
excellent review of different methods and approaches
to evaluate and characterize uncertainty in computer
models.

STATEMENT OF THE SCIENTIFIC QUESTION

The main objective of this work is to evaluate wheth-
er errors in the spatial estimation of climate fields are
small or large relative to the sensitivity of ecological
models to their climate drivers. This would determine
the value of generating statistical ensembles of climate
data sets for regional and global ecological simulations
such as the Vegetation/Ecosystem Modeling and Anal-
ysis Project (VEMAP) and similar efforts (e.g., Cramer
1997, Neilson et al. 1997). VEMAP was a multi-in-
stitutional, international ecological model intercom-
parison to assess the response of biogeography and
biogeochemistry to environmental variability in cli-
mate and other drivers in both space and time domains
across the coterminous United States (VEMAP Mem-
bers 1995, Schimel et al. 2000, Gordon et al. 2004)
that used extensively mean estimated climate fields as
model drivers (Kittel et al. 2004).

In a statistical context, it is natural to construct sta-
tistical ensembles by sampling from the distribution of
possible estimated climate fields given historical data
(i.e., the posterior distribution based on model esti-
mated prediction error; see, e.g., Gilks et al. [1996]).
These ensembles then represent the uncertainty in the
prediction of climate fields. Because the validity of the
posterior distribution will depend on how well the spa-
tial process has been modeled, it is very important to
account for nonstationarity in space and time. We pre-
sent in this paper an approach to obtain statistical en-
sembles for precipitation fields taking into account the
complex spatial-temporal dependency structure of
these climate drivers.

We evaluate the importance of this approach by com-
paring the effect on ecological simulations of using
such an ensemble representation for model inputs over
using the mean estimate. The mean estimate is the mean
of the posterior distribution of climate field estimates
given observed (i.e., station) climate values and under
Gaussian standard assumptions. Determining the mean
estimate is actually equivalent to an objective analysis
procedure, kriging prediction, which is the process of
interpolating data from irregularly spaced locations to
a fixed grid. Kriging methods can be used to obtain
estimates of point values as well as estimates of block
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FIG. 1. Precipitation stations for the central and southern
Rocky Mountains and adjacent Great Plains region, USA, for
the period 1895–1996.

averages on a regular grid. To evaluate these two meth-
ods, we compare temporal and spatial patterns of the
statistical ensembles and the kriging predictor for pre-
cipitation fields, especially under conditions of having
years with a high number of missing input values. We
assess whether these differences significantly affect the
simulation of ecological processes. In particular, we
consider whether uncertainty (as represented by en-
sembles) in the mean estimate of input fields is prop-
agated in ecological model outputs with consequences
for interpreting the reliability of such simulations.

Description of the climate data

The cumulative number of recording stations for pre-
cipitation exceeds 16 000 sites in the coterminous Unit-
ed States. For this study, we selected data for the 102
year period from 1895 to 1996 (National Climatic Data
Center 1996). However, during this period not all sites
operated at the same time, especially at the beginning
when station densities were very low. For regional and
global simulations, ecological models are often imple-
mented on a regular grid, e.g., 0.58 longitude/latitude.
The driving variables for these models, for instance,
monthly precipitation, must then be available on the
same grid without gaps in space or time. However,
climate data are observed at irregularly spaced loca-
tions (see Fig. 1).

Fig. 1 shows the irregularly spaced distribution of
precipitation sites for the central and southern Rocky
Mountains and adjacent Great Plains region of the Unit-
ed States. Hereafter, we refer to this domain as the
Rocky Mountains study area. The methodology pre-

sented in this paper was developed and applied to create
fields for the coterminous United States. In this paper,
we present results and focus on a smaller, climatically
heterogeneous part of this domain, the Rocky Moun-
tains study area. Precipitation fields for this area have
been also reconstructed by Johns et al. (2003) using a
different statistical framework blending spatial tech-
niques, though without generating ensemble predic-
tions. In 1895, only around 6% of the sites in the Rocky
Mountains study area were operating, and by 1960,
most sites were reporting. However, even in the 1990s,
there are still a large number of missing values at any
given time (15%).

Century model description

We used a terrestrial biogeochemical model, Century
(Parton et al. 1994), to evaluate the use of climate field
ensembles. Century is a monthly time-step model of
carbon and nutrient states and flows originally devel-
oped for grassland and cropping systems (see, e.g.,
Parton et al. [1987]), but also implemented for woody
systems including forest and savanna environments.
Model comparison exercises such as that by VEMAP
members (1995) and Smith et al. (1997) have shown
Century to be among a group of highly effective sim-
ulation models. Century has been shown to be largely
responsive to changes in climate, soil texture, and plant
tissue chemistry. To run Century, we used 0.58 gridded
soil characteristics from the VEMAP database (Kittel
et al. 2004). Vegetation and other site parameters were
set based on field data and estimates which had been
applied before with success (Kelly et al. 2000). Gridded
climate inputs were ensembles of monthly precipitation
(developed in this paper) and kriging predicted monthly
mean minimum and maximum temperature (Kittel et
al. 2004) covering the 100-yr period. Century requires
an initialization period to equilibrate soil organic mat-
ter pools to vegetation and management or disturbance
patterns. Because soil organic matter represents a rel-
atively large reservoir of carbon with a long turnover
time, a 3000-year equilibration is standard for grass-
land systems.

TOOLS IN SPATIAL STATISTICS

Local semivariograms

In this section, we present a useful visualization tool
for spatial problems to detect lack of stationarity, we
call it the local semivariogram, which is different from
the local relative semivariogram introduced by Cressie
(1985a) to handle spatial heteroscedascity. First, we
introduce some definitions and valuable tools in spatial
statistics.

Definition of semivariogram.—Consider a spatial
process {Z(x), x ∈ R2} where R2 is the set of real
numbers in two dimensions. The process Z is said to
be second-order stationary, or weakly stationary, if the



102 INVITED FEATURE Ecological Applications
Vol. 16, No. 1

FIG. 2. An exponential semivariogram model (solid line)
vs. distance (km), fitted to the empirical semivariogram values
(circles) for the squared root of the monthly precipitation (in
millimeters) in the Rocky Mountains study area in February
1996.

mean is constant and the covariance function C satisfies

2cov[Z(x ), Z(x )] 5 C(x 2 x ) for all x , x ∈ R .1 2 1 2 1 2

In general, the covariance is a function of location,
i.e., C(x1, x2), but for a second-order stationary pro-
cess it is only a function of the relative distance be-
tween x1 and x2. The covariance is a useful tool to
study the local spatial-dependency structure of a spa-
tial process. Other distance-based measures of spatial
correlation include the correlogram and semivario-
gram. The semivariogram measures the local spatial
variation of a random field by describing how sample
data are related to each other as a function of distance
and direction and is a key parameter in geostatistics
(Journel and Huijbregts 1978). The semivariogram is
also needed to obtain the kriging predictor (see Cres-
sie 1993). In general, a semivariogram shows increas-
ing variance with distance, reflecting that two closely
neighboring points are more likely to have similar
values than two points farther apart. The semivario-
gram function g is defined as

1
g (v) 5 var[Z(x 1 v) 2 Z(x)] (1)

2

where v is the vector distance (considering direction)
separating two points in space. Where the covariance
function, C, of the process Z exists, the semivariogram
can also be written as

g(v) 5 C(0) 2 C(v). (2)

The observational or empirical semivariogram can be
efficiently computed for data on a regular grid from
the spectral density function (the Fourier transform of
the covariance) using the fast Fourier transformation
(FFT) and smoothed periodogram. Unfortunately, the
FFT cannot be applied, at least easily, on most geo-
physical datasets, which are often characterized by un-
equally spaced sampling or incomplete grids. In these
cases, we can use the traditional empirical semivariogram
estimate suggested by Matheron (1971), which isĝ

1
2ĝ (v) 5 [Z(x ) 2 Z(x )] (3)O i j2N(v) N(v)

where N(v) are the number of data pairs xi and xj sep-
arated by v. In Fig. 2, we present the empirical semi-
variogram for the square root of the monthly precipi-
tation values in the Rocky Mountains study area in
February 1996.

A main goal of geostatistical analysis is to construct
a semivariogram model that best estimates the auto-
correlation structure of the underlying process. Journel
and Huijbregts (1978) present several parametric se-
mivariogram models. In this paper, we work with an
exponential model:

0 if h 5 0
g (h) 5

25c 1 (s 2 c )[1 2 exp(2h /r)] if h . 0.0 0 0

(4)

The parameter c0 is the nugget (c0 $ 0), that represents
intrinsic microscale variation or measurement error. It
can be estimated from the empirical semivariogram as
the value of g(h) for h → 0, where h is distance. In
cases where replicate samples exist and/or the variation
in instrument accuracy is documented, this information
is used to estimate the nugget more precisely. The pa-
rameter denotes the sill, and it is the value of g(h)2s0

for h → `, representing the variance of the random2s0

field, i.e., at distances with no autocorrelation. The
range parameter is r, and it is the distance at which the
data are no longer autocorrelated at some specified lev-
el (this level depends on the model). The range for the
exponential model is the distance at which the covari-
ance drops 1/e of its value at zero. The difference 2s0

2 c0 is generally referred to as the partial sill. In Fig.
2, we fitted an exponential model to the empirical se-
mivariogram values. The nugget parameter is 1.6 mm,
the range is 300 km, and the partial sill is 11 mm.
These parameters are estimated using weighted non-
linear least squares WNLS (Cressie 1985b). The WNLS
method provides the best semivariogram model, in the
least squares sense, that fits the empirical semivario-
gram values.

Visualization tools for spatial problems: local se-
mivariograms.—The semivariogram is a useful tool to
summarize the spatial continuity of certain random
field. Fig. 2 is a common representation of a semiva-
riogram function plotted versus distance in a region of
interest. However, with this kind of graph, we do not
get an appreciation of possible nonstationarity in space
within the region.

We define a local semivariogram in a neighborhood
L as follows:
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FIG. 3. Semivariograms for precipitation anomalies (units
for the anomalies are , 1 inch 5 2.54 cm) andÏ1/100 inches
for standardized anomalies at a fixed distance of 40 km (with
a tolerance of 5 km) in the Rocky Mountains study area. The
semivariogram for the anomalies is shown for (a) January
1995 and (b) July 1996. The semivariogram for the stan-
dardized anomalies is shown for (c) January 1995 and (d)
July 1996. We used a spline smoothing to smooth the image.
The horizontal axis is longitude (8 W), and the vertical axis
is latitude (8 N).

1
2ĝ (v) 5 [Z(x ) 2 Z(x )] (5)OL i j2N (v) N (v)L L

where NL(v) are the number of data pairs xi, xj ∈ L,
separated by a distance v. We could add some tolerance
vector « to the distance v in case there are not enough
points in L separated by exactly a vector distance v.

A useful display to analyze the possible spatial non-
stationarity in a region R is a map of the values of L(v)ĝ
for neighborhoods Li which will cover the domain R,
for a fixed value of v.

Fig. 3a and b shows some local semivariograms for
the Rocky Mountains study area, where we fixed the
distance v to 40 km and tolerance « to 5 km. We se-
lected neighborhoods Li in the Rocky Mountains study
area, the neighborhoods Li are circles with a radius of
at least 0.38 (we increased the radius in some situations
to have at least 25 observations in the neighborhood)
centered in a regular grid of 0.58 3 0.58 in the region
of interest.

The local semivariogram introduced here is different
from the semivariogram surface (e.g., Gribov et al.
2005), which shows the value of the average squared
differences for data points that are in a distance bin

corresponding to the distance to the center of the se-
mivariogram surface graph and in a direction matching
their location in the graph.

Computational methods for large spatial problems

In this section, we present an approach to efficiently
compute the optimal spatial interpolator (e.g., based on
a semivariogram model) for large data sets. The ap-
proach presented here uses an iterative algorithm to
approximate the inverse of a large matrix.

Spatial prediction refers to predicting Z at a new
location x0 from data Z(x1), . . . , Z(xn) observed at
known spatial locations x1, . . . , xn Kriging is an op-
timal spatial predictor, in the sense that the kriging
predictor minimizes the mean-squared prediction error,

2n

E Z(x ) 2 l Z(x ) (6)O0 i i[ ]i51

for the class of linear predictors

n

Ẑ(x ) 5 l Z(x ) (7)O0 i i
i51

where li for i 5 1, . . . , n are the parameters, that satisfy
li 5 1. Because the kriging predictor is determinednSi51

by the second-order covariance (semivariogram) prop-
erties of the process Z, the validity of kriging will de-
pend on how well the semivariogram g for the process
Z has been modeled. To guarantee that the kriging pre-
dictor is optimal, in the sense that it minimizes the
mean squared error, we need to assume that Z is a
stationary Gaussian random field.

The value of the parameter l0 5 (l1, . . . , ln) for the
kriging predictor (Eq. 7) can be obtained (see, e.g.,
Cressie 1993:121) by solving the following linear equa-
tion (which is a function of the semivariogram):

G l 5 g0 0 0 (8)

where G0 is a symmetric n 3 n matrix,

(G ) [ g (x 2 x )0 i j i j

g 5 [g (x 2 x ), . . . , g (x 2 x )].0 0 1 0 n

Thus, G0 and g0 are simply a function of the second-
order moments of Z, as measured by the semivario-
gram. Because the parameter l0 is the solution of the
linear system (Eq. 8), we have l0 5 g0. However,21G0

for large data sets, obtaining the inverse of l0 is gen-
erally difficult.

We propose here to minimize the function w(x), de-
fined by

1
l lw(x) 5 x G x 2 x g . (9)0 02

The minimum value of w is g0/2, obtained byl 212g G0 0

setting x 5 . Thus, minimizing w and solving Eq.21l0
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8 are equivalent problems. The conjugate gradient al-
gorithm is an iterative method used to minimize Eq. 9
(see, e.g., Golub and Van Loan 1989:516). If l0 is a n
3 n matrix the conjugate gradient algorithm will con-
verge in n iterations to the solution. This method con-
siders the successive minimization of w along a set of
directions {p1, p2, . . . }. If xk21 is the current approx-
imation to the solution in Eq. 9 for a direction pk, then
xk 5 xk21 1 apk will be the new conjugate gradient
iterate, where we choose a to minimize Eq. 9. It is easy
to show that to minimize w(xk21 1 apk) with respect to
a, we merely set

l la 5 a 5 p (g 2 G x )/p G p .k k 0 0 k21 k 0 k

The convergence rate of the algorithm will depend on
the starting vector. The method of conjugate gradients
works well on matrices that are either well conditioned
(with condition numbers near 1) or have just a few
distinct eigenvalues (Axelsson 1985). If needed, we
could precondition a linear system so that the matrix
of coefficients assumes one of these nice forms (see
Axelsson 1985).

Bayesian spatial prediction

Kriging is the name frequently used for spatial pre-
diction, though as commonly used, that term refers only
to the construction of a spatial predictor in terms of
known semivariogram parameters. A Bayesian ap-
proach, on the other hand, takes into account uncer-
tainty arising from estimating the covariance parame-
ters used in the spatial prediction, and in that sense, it
is more general than traditional kriging. The Bayesian
approach leads to the same answers as the standard
kriging predictor when the model parameters are
known, but also extends to the case where these pa-
rameters are unknown.

The problem may be stated in the following form:
given observations of a vector field Z 5 {Z(x1), Z(x2),
. . . , Z(xn)}, predict the value Z(x0), for some x0 {x1,∈/
. . . , xn}.

The Bayesian approach, which leads to the same an-
swers as the standard kriging predictor when the model
parameters u are known, but it also extends to the case
where these parameters are unknown.

In the simplest case, where u (covariance parameters)
are all known,

{Z(x ) z Z, u} ; N (normal distribution).0 (10)

Kriging is the expected value (mean) of this normal
distribution. We shall now improve upon Eq. 10 by
removing the conditioning on u. We integrate over u
to obtain the posterior predictive distribution (given
the data Z):

p[Z(x ) z Z] 5 p[Z(x ) z Z, u] p(u z Z) du (11)0 E 0

where p(Z(x0) z Z,u) is the posterior predictive distri-

bution of Z at location x0 and p(u z Z) is the posterior
distribution of u. We often use Monte Carlo methods
to approximate this integral:

k
(i)p[Z(x ) z Z] ø p[Z(x ) z Z, u ]O0 0

i

where u(i) are simulated values from p(u z Z).
All the statistical tools and methods presented in this

section are used to conduct our exploratory analysis.
Local empirical semivariograms are a powerful tool to
understand the spatial structure of the process. Kriging
and Bayesian techniques are used to model and predict
data fields. Optimization methods and Markov Chain
Monte Carlo algorithms simplify numerical solution of
these spatial models when working with large data sets.

SPATIAL-TEMPORAL STRUCTURE OF THE INPUT

FIELDS: EXPLORATORY ANALYSIS

We present here an exploratory analysis of precipi-
tation data. First, we transform monthly precipitation
data by taking the square root. This transformation was
chosen based on a preliminary analysis that revealed
an increasing linear relationship between the mean field
and spatial and temporal variability for precipitation
fields in the study area. Then, at each location, the
transformed precipitation series is centered (converted
into an anomaly series) by subtracting from trans-
formed values their long-term mean seasonal cycle,
obtained by taking the corresponding station’s means
for each month across its record (some sites have less
than 102 years of data due to missing values). The
seasonal mean pattern observed in precipitation con-
tains most of the spatial behavior which is driven by
topography and other physiographic processes. Also,
by using anomalies we obtain higher spatial continuity
(that is, a smoother field than just using raw precipi-
tation values) and we focus our analysis on spatial pro-
cesses that are linked to temporal (e.g., interannual)
variability.

Monthly anomalies at a fixed location are not highly
correlated in time, so we can focus just on their spatial
structure for prediction. Spatial covariance structure,
however, changes from month to month, which indi-
cates the presence of a spatial-temporal interaction
(e.g., Fig. 3a, b). To make the semivariograms station-
ary with time, we standardize the anomalies at each
location by simply dividing the anomaly value by the
corresponding monthly standard deviation. As with the
calculation of long-term seasonal means, the monthly
standard deviation is that of year values for each month
at the station of interest across the corresponding re-
cord. Semivariograms for standardized anomalies are
reasonably stationary over time (e.g., Fig. 3c, d); we
observed that the same spatial structure persisted for
periods of about 15 years. We did not find any evidence
of anisotropy.
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FIG. 4. (a) Time series for the anomalies (units ; 1 inch 5 2.54 cm) for a site in Colorado for 15 yearsÏ1/100 inches
(January 1982–December 1996). (b) Autocorrelation function (ACF) and (c) partial autocorrelation function for the same
time series. The lag unit is one year. Dotted horizontal lines delineate the 95% confidence region.

Fig. 4 shows the time series and estimated temporal
autocorrelation and partial autocorrelation functions
for a site in Colorado for 15 years of data. The partial
autocorrelation function at lag k is the correlation co-
efficient between Z(t) and Z(t 1 k), where Z(t) is a
temporal process at time t, after removing the linear
dependence of Z(t) and Z(t 1 k) on the other intervening
variables (the values of the process at other times).
Both autocorrelation and partial autocorrelation values
are within the 95% confidence regions. Thus, the data
do not show any evidence of temporal structure for this
time window. We observed similar behavior at other
sites and for other 10–15 year time windows.

The standardized anomalies are not a spatial sta-
tionary process when time is fixed (i.e., when evaluated
for any given month), as Fig. 3c and d suggests. How-
ever, it is a temporally stationary process for periods

of about 15 years, so once we identify the spatial struc-
ture (using semivariograms) for one month, we can take
it to be the same in a 15-yr time window. This simplifies
considerably the calculations in the reconstruction of
precipitation fields across time. Spatial nonstationarity
in the standardized anomalies (e.g., Fig. 3c, d) was
highly related to changes in elevation (Fig. 5). We can
make use of this relationship in the spatial model that
we construct in the next section. We also refer to Cra-
mer (1997) for other exploratory analysis of climate
drivers.

GENERATING STATISTICAL ENSEMBLES OF THE INPUT

FIELDS FOR ECOLOGICAL MODELS

We generate a statistical ensemble of different ver-
sions of the precipitation fields to represent uncertainty
in the spatial modeling process. In the next section, we
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FIG. 5. Elevation (in meters) for the Rocky Mountains
study area.

introduce a statistical model for precipitation (as the
climate driver of interest) and then we explain how to
generate the statistical ensembles.

Space-time statistical model

We developed a statistical model for precipitation
fields supported by the exploratory data analysis. If
Z(x, t) is the space-time process of interest, the anomaly
of the square root of precipitation at location x 5 (x1,
x2) and time t, we propose the following model:

Z(x, t) 5 m(x, t) 1 s(x) 3 «(x, t) (12)

where m is the spatially varying temporal trend (spatial-
temporal trend) that explains the location-specific long-
period (.15 years) nonstationarity with time, s cap-
tures the time-independent spatial heteroscedascity
(which is associated to elevation E), and « is the spa-
tially correlated error term.

The function s is modeled as follows:

log[s(x)] 5 b E(x) 1 « (x)x s

where the error term «s is white noise and bx is a spa-
tially varying coefficient. To avoid overparametrization
we model bx as a linear function of location (invariant
over time):

b 5 a 1 a x 1 a xx 0 1 1 2 2

where a, a1, and a2 are unknown parameters. We use
a normal distribution as the prior distribution for these
three parameters.

The spatially correlated error term « (in Eq. 12) is
stationary in space but shows different variability over
time (i.e., the sill changes over time):

2cov[«(x, t), «(y, t)] 5 C(x 2 y)st (13)

where st is the sill and is time dependent. The covari-
ance model used for « is an exponential model. The
prior distribution for the range parameter is a uniform
distribution defined on [50 km, 500 km]. For the partial
sill, we use an inverse prior, i.e.,

2 2p(s ) } 1/s .t t

For the nugget we use a uniform prior with support [0
mL, 10 mL]. The prior distributions are based on pre-
vious experience obtained by analyzing similar precip-
itation data sets.

The spatial-temporal trend is modeled using a space-
time dynamic model:

m(x, t) 5 g 1 gx,t t

where gt is an overall (spatially averaged) temporal
trend, and gx,t is the point-specific deviation from that
trend, modeled as

1
g 5 Z(x, t )Ox, t izM(t) z t ∈M(t)i

where M(t), if for instance t 5 January 1995, are all
the January months over the 100-year period, and zM(t)z
is the cardinal of that set. The function gt is modeled
as a linear function of time, because there was no ev-
idence that more complex temporal structure was need-
ed.

We use u to denote the parameter vector with all the
mean and covariance parameters in the statistical model
in Eq. 12.

Bayesian spatial prediction: ensemble generation.—
We sample values from the posterior predictive distri-
bution:

p[Z(x , t) z Z]0

at locations x0 on a fine-resolution grid (0.58), where
Z 5 {Z(x1, t1), . . . , Z(xn, ti), 1 # T}, T is the number
of observations over time, and n is the number of lo-
cation sites. Each sampled value (at locations x0 of
interest) constitutes a statistical ensemble of Z and is
obtained using a multiple-stage Gibbs sampling ap-
proach (e.g., Gilks et al. 1996). We cycle through three
stages. In stage 1, we estimate the posterior distribution
of the covariance parameters for the error term «. In
stage 2, we estimate the parameters that explain the
spatial heteroscedascity, s. And in stage 3, we obtain
the posterior distribution of the parameters that explain
the mean of the process m. Thus, we obtain ,(i) N{u }i51

which are N simulated values from the posterior dis-
tribution of the vector parameter u. The posterior pre-
dictive distribution of process Z at the location x0 and
time t0 given all the available data Z is



February 2006 107CONTEMPORARY STATISTICS AND ECOLOGY

p[Z(x , t ) z Z] } p[Z(x , t ) z Z, u]P(u z Z) du.0 0 E 0 0

This posterior predictive distribution is approximated
by the following (see Gelfand and Smith 1990):

N1
(i)p[Z(x , t ) z Z] 5 p[Z(x , t ) z Z, u ].O0 0 0 0N i51

The sample values from this posterior predictive dis-
tribution are obtained by conditioning on u(i), which for
i 5 1, . . . , k are k plausible values of the parameters
in the statistical model. Thus, we approximate p(Z(x0,
t) z Z) using p(Z(x0, t) z Z,u(i)) as in Bayesian spatial
prediction. The sample values from the posterior pre-
dictive distribution in Eq. 13 constitute a statistical
ensemble of Z, in our case, the climate input for our
ecological model runs. A corresponding ensemble of
ecological model output is obtained by running Cen-
tury for each simulated ensemble member of Z.

An ensemble of precipitation fields

In a geostatistical framework, reconstructed precip-
itation fields would be the kriging spatial predictor for
the anomalies transformed back to the original scale at
some locations of interest. In a Bayesian framework,
we create a statistical ensemble of different versions
of the anomaly fields, by simulating values from the
posterior distribution for the anomalies. The transfor-
mation of the anomaly ensembles gives us a suite of
reconstructed precipitation fields in the original scale.
Figs. 6 and 7 show six statistical ensemble members
for February 1996 and 1895 precipitation, respectively,
for the Rocky Mountains study area.

Analysis of spatial and temporal variation
of ensemble members

Given that the number of climate stations generally
increased over time, most observations are missing at
the beginning of our data set. Fig. 8 shows the ob-
servations (as anomalies) for February 1895 and Feb-
ruary 1996 in the Rocky Mountains study area. Fig.
8 also shows the corresponding kriging point predictor
for these months. The values on this graph are point
predictions in a fine resolution grid (0.58). This krig-
ing predictor is expected to be more spatially ho-
mogeneous when we have fewer observations. In
1895, there were too few observations for the kriging
predictor to capture the level of detailed spatial struc-
ture of the anomalies as found in 1996. The space-
time model used here (Eq. 12) has a range of auto-
correlation for the exponential semivariogram func-
tion that is invariant over time (see Eq. 13). Therefore,
the spatial behavior of the predictive surfaces in Fig.
8 is not due to a change in the range parameters,
because the semivariograms of the standardized pre-
cipitation anomalies used to generate the graphs in
Fig. 8 had the same range of autocorrelation over time

(150 km). That is the reason why we do the spatial
analysis and prediction of the stationary standardized
anomalies and then we transform back to the original
scale, rather than working directly with nonstationary
precipitation values. The prediction error for the krig-
ing predictor in 1895 at any fixed location should be
much larger than in 1996, due to the lack of infor-
mation in 1895 to obtain an accurate prediction. This
is reflected in greater variability among ensemble
members for any given month in 1895 (Fig. 9a) than
in 1996 (Fig. 9b). The statistical ensembles are sim-
ulations from the posterior distribution. Thus, we
should expect to observe less consistency in the spa-
tial pattern among ensemble members in 1895 than in
1996. In Fig. 7 we can clearly appreciate the larger
variation from statistical ensemble to statistical en-
semble, due to the larger prediction error in 1895. On
the other hand, the statistical ensembles in Fig. 6 are
very similar, this suggests less prediction error in
1996.

Ensemble estimation versus standard
kriging prediction

In this section, we compare the features of individual
statistical ensemble members with the kriging predic-
tor. Fig. 9 shows clearly the larger prediction error in
early years for a grassland site in northeastern Colorado
(40.88 N, 104.88 W).

The top panels in Fig. 9 present the values of 10
statistical ensembles for each month in 1895 and 1996.
There is more variability among statistical ensembles
in 1895 than in 1996. However, the time series of the
mean estimator (the mean of ensemble members; Fig.
9, bottom panel) for this site shows more temporal
variability at the end of the dataset than at the begin-
ning. In the VEMAP historical data set, this behavior
was also common for kriging predicted climate fields
early in the record in areas where station densities were
very low (Kittel et al. 2004). This is expected because
there are few observations at the beginning of the data
set (Fig. 8, top left). The kriging predictor becomes
more spatially heterogeneous at the end when there are
more observations. This kriging predictor, the mean of
the posterior, is approximately the same as the mean
of the statistical ensembles, that are simulated values
from the posterior. Fig. 10 presents monthly precipi-
tation values transformed back from the statistical en-
semble of square-root precipitation anomalies for this
site. We have 11 versions of this input from the 10
statistical ensemble members and from the mean of the
statistical ensemble. The bottom right time series
shows the square root of the estimated mean squared
error (MSE) for precipitation, calculated from the en-
semble members. We can clearly appreciate in Fig. 10
that the largest errors, as represented by the MSE val-
ues, occur at the beginning of the time series when
there are the fewest observations. Greater errors arise
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FIG. 6. Ensemble members for precipitation anomalies (units ; 1 inch 5 2.54 cm) for February 1996 inÏ1/100 inches
the Rocky Mountains study area.

when station density is low because the prediction mod-
el becomes based on a sparser, more dispersed network
of observations, so that the signal from different cli-
mate variability regimes are mixed together to predict
points in between. This mixing results in a dampened
anomaly signal in the mean estimate, as seen in Fig.
9c. On the other hand, the individual ensemble mem-

bers are more successful than the mean predictor at
capturing interannual variability during the early re-
cord, as seen in the plots in Fig. 10 for the ensemble
members. The trade-off is that there is instead a large
uncertainty associated with each ensemble represen-
tation (Fig. 10, MSE plot). This reflects a major benefit
of using ensembles.
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FIG. 7. Ensemble members for precipitation anomalies (units ; 1 inch 5 2.54 cm) for February 1895 inÏ1/100 inches
the Rocky Mountains study area.

SENSITIVITY OF ECOLOGICAL MODELS TO CLIMATE

FIELD PREDICTION ERROR

The spatial prediction error for reconstructed pre-
cipitation fields can be very large in some situations
(Fig. 10). Thus, simulated responses by ecological
models, such as Century, of carbon and nutrient dy-

namics for different types of ecosystems could be in-
accurate and lead to misleading conclusions about the
historical behavior of an ecosystem. Therefore, it is
crucial to assess the sensitivity of the ecological models
to uncertainty in their inputs and then to determine what
is the tolerance region for the prediction error of the
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FIG. 8. (a) Observed values and (b) kriging predictor for precipitation anomalies (units ; 1 inch 5 2.54Ï1/100 inches
cm) for February 1895 and (c,d) analogous plots for February 1996.

reconstructed fields. These regions will depend on the
scientific questions being addressed by a given model
experiment.

In this work, we focus on the Century model, the
impact of spatial prediction error in precipitation fields,
and simulated biogeochemical responses for the grass-
land site in northeastern Colorado. However, the same
analysis could be done with other ecological models,
other spatial inputs (e.g., temperature), and other lo-
cations and ecosystem types. We used mean estimators
for other climate inputs required by Century, monthly
mean maximum and minimum temperature (see Cen-
tury model description). In addition to spatial predic-
tion error considered here, we note that there are other
sources of error in climate datasets that are associated
with data collection and transcription (including in-
strumentation biases and station changes); these must
also be considered in a full evaluation of uncertainty
in ecological model inputs.

Research sites and output variables

The main goal is to study the sensitivity of the mod-
els in different ecosystems. Thus, we selected some
sites representative of different climates and vegeta-
tion. In this paper, we only discuss model results for
the grassland site in northeastern Colorado. This is the
location of the USDA Central Plains Experimental
Range and the Shortgrass Steppe Long-Term Ecolog-
ical Research (LTER) site. Output variables from Cen-
tury that we analyze here are net primary productivity,
evapotranspiration, total stored carbon, vegetation car-
bon, and net nitrogen mineralization. These variables
reflect the dynamics of different aspects of biogeo-
chemical cycling in ecosystems and are each controlled
by different complex interactions among plant and soil
processes, often with different responses (and response
times) to changes in moisture and temperature.
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FIG. 9. (a) Monthly statistical ensembles (units ; 1 inch 5 2.54 cm) at the grassland site in northeasternÏ1/100 inches
Colorado for 1895 and (b) monthly statistical ensembles at the same site for 1996. (c) Time series for the mean of the
simulated statistical ensembles (units ; at the site in Colorado from January 1895 to December 1996.Ï1/100 inches

Statistical analysis of the variability
in the models output

For the Colorado grassland site, we ran the Century
model on the 10 precipitation ensemble members and
on the mean of the ensemble for 1188 months from
1895 to 1993 (the period was limited because the tem-
perature data only ran through 1993) (Fig. 10). We
study the sensitivity of the model outputs with respect
to precipitation fields, by estimating the coefficient of
variation (CV) of the outputs from the different statis-
tical ensemble members. The CV is a statistical measure
of the deviation of a variable from its mean (standard
deviation divided by the mean) and is presented here
in units of decibels (dB). The dB is a logarithmic unit
used to describe a ratio, in this case the ratio of the
standard deviation to the mean:

dB 5 10 log(CV)

where the log is base 10. The dB can describe very

large ratios using numbers of modest size. In our ap-
plication, due to the large variability in the CV values
for the different variables, the logarithmic scale made
the comparison easier. The result of this logarithmic
basis for the scale is that increasing the CV by a factor
of 10 raises its level by 10 dB; increasing it by a factor
of 100 raises its level by 20 dB; by 1000, 30 dB; and
so on. We present here how the CV (rather than the
standard deviation) changes over time for different
model outputs, with the objective of making more clear
the comparison between different outputs in terms of
understanding the temporal variability, because the out-
puts have very different means and different units.

Fig. 11 shows 11 versions of simulated net primary
production at the Colorado site from the 10 different
precipitation ensemble members and from the mean of
the statistical ensemble. The bottom right panel in Fig.
11 shows the square root of the estimated MSE (SQRT
MSE) for this variable. Fig. 12 shows the coefficient
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FIG. 10. Precipitation (PPT) input for the Century model for the site in Colorado (11 versions of this input from 10
statistical ensemble members [panels 1–10] of anomaly fields and from the mean of the ensemble). The bottom right panel
shows the square root of the estimated mean squared error for PPT. Each graph is a time series with 1188 months of data
(from January 1895 to December 1993). Note the different y-axis scales for PPT.

of variation across time for the five Century outputs
we consider here and the precipitation field ensemble.
The variability, over time, in the output variables is
always higher at the beginning of the record, largely
reflecting the influence of the instability (due to the
lack of observations) of the ensembles during this pe-
riod. We analyze in the next section the sensitivity of
the output with respect to the variability in the pre-
dicted input.

Ecological model response to uncertainty in pre-
dicted precipitation.—As noted earlier, we see in Fig.
10 that the SQRT MSE for the precipitation ensemble
is high early in the record relative to precipitation val-
ues. The coefficient of variation (CV) of precipitation
varies around 22 dB at this time, or roughly 60%, and
generally declines to the vicinity of 25 dB (;30%) by
the end of the record (Fig. 12). We evaluate the eco-
logical model response to the high level of uncertainty
in this input (and time dependence in this uncertainty)
in terms of the following questions:

1) Do ecological outputs have comparable levels of
uncertainty to that of the precipitation inputs, or are
they amplified or muted?

2) Does uncertainty in ecological dynamic have a
nonlinear, biased, or threshold response to uncertainty

in inputs, such that there are disproportional responses
at certain levels of uncertainty in precipitation?

3) Are there long-term effects of uncertainty in pre-
cipitation inputs early in the record, that are reflected
in the latter part of the record?

The coefficients of variation for net primary pro-
duction (NPP) and net nitrogen mineralization (NNM)
are muted relative to that for precipitation, but follow
a similar, proportional pattern of decline from 210 to
213 dB (10% to 5%, a decrease of roughly half as
found for precipitation) (Fig. 12). The CV of evapo-
transpiration (EVAP) is at the same level as precipi-
tation CV and its long-term decline is in proportion to
that for precipitation (from on order of 22 to 25 dB;
Fig. 12). This is expected given the strong dependence
of EVAP on precipitation in this dryland ecosystem.
At a fine temporal scale, however, evapotranspiration
CV appears to have a nonlinear, skewed response with
frequently repeating low values (to 220 to 230 dB or
1.0–0.1%). How this nonlinear response is tied to pre-
cipitation uncertainty requires a more detailed model
analysis than we undertake here, but we note that EVAP
response to precipitation in a given month can be
strongly constrained by temperatures, which do not
vary among ensemble runs.
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FIG. 11. Net primary production (NPP; units are g C·m22·mo21) output from the Century model for the site in Colorado
(11 versions of this output from 10 statistical ensemble members [panels 1–10] of precipitation fields and from the mean of
the ensemble). The bottom right panel shows the square root of the estimated mean squared error for NPP. Each graph is a
time series with 1188 months of data (from January 1895 to December 1993). Note the different y-axis scales for NPP.

The overall pattern of vegetation carbon (VEGC) CV

is similar to that of NPP and NNM (Fig. 12). This
follows because NPP directly (and NNM indirectly)
contributes to the accumulation of vegetation carbon.
However, high frequency variability in vegetation car-
bon CV is much reduced. This likely reflects that VEGC
(or plant biomass) is a slower-moving variable than
production and mineralization, changing at seasonal
and longer time scales, so that its response to precip-
itation uncertainty is going to be in these time frames.

The CV of total carbon (TOTC, which includes veg-
etation and soil carbon) shows a similar reduced high
frequency response. However, the long-term pattern is
quite different from that of precipitation and other re-
sponse variables. Total carbon CV exhibits a decrease
in the first half of the record which roughly follows
that of precipitation, from on the order of 23 dB to
24.5 dB, but then stays in the range of 24 to 25 dB,
rather than continuing to decrease as does precipitation
CV. This is because in the first third of the period (up
to month 400), when precipitation uncertainty is high
(Fig. 10, MSE plot), TOTC traces of the 10 ensemble
members are quite different (Fig. 13). As precipitation
differences among ensemble members decrease the
traces start to parallel each other (especially by the
midpoint, month 600), but are offset because they have

different starting points coming out of the period of
high uncertainty. After the midpoint, the CV stays in a
set range because of the offset (Fig. 13). This indicates
that critical differences in precipitation among ensem-
ble runs early in the period sets the level of carbon
accumulation for the rest of the period.

Analysis of variability in the model’s output.—Using
the various precipitation ensembles, Century effec-
tively simulated ecosystem characteristics of the Cen-
tral Plains Experimental Range in Colorado. Measured
net nitrogen (N) mineralization is approximately 2.0 to
2.5 g N·m22·yr21, and our simulations range between
1.75 and 3.0 g N·m22·yr21. Simulated aboveground net
primary production (NPP) is between 60 and 120 g
C·m22·mo21 and the field observations fall within the
same range (Lauenroth and Sala 1992). Century esti-
mates soil organic matter between 2200 and 2300 g C/
m2. Soil organic matter measurements generally en-
compass a wide range that includes those simulated by
Century. Our simulations of total soil organic matter
indicate a slow but steady increase that may indicate
that the system was not completely equilibrated by the
beginning of the simulation, rather than a response to
climate drivers. Total system carbon, influenced pri-
marily by the increase in soil organic matter (partic-
ularly the slow response soil organic matter pool), in-
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FIG. 12. The coefficient of variation, CV (in decibels) for the Century outputs: net primary production (NPP), evapo-
transpiration (EVAT), net nitrogen mineralization (NNM), vegetation carbon (VEGC), and total carbon (TOTC). The CV is
a measure of relative dispersion and is given by the standard deviation divided by the mean. We also present the CV for
precipitation ensemble members (PPT), inputs to the Century simulations. Each graph is a time series with 1188 months of
data (from 1895 to 1993) for the site in Colorado.

creased over the period of simulation. Measurements
of actual evapotranspiration (Lapitan and Parton 1996)
range between 1 to 10 cm H2O/mo, with annual peaks
between 8 and 10 cm/mo. Results of the 11 simulations
indicate sometimes higher peaks, but generally fall
within the same range. Therefore, the suite of simu-
lations all result in reasonable output when compared
to observations. We surmise that Century gives a rea-
sonable output (within expected ranges) despite vari-
ability in these simulations derived from uncertainty
in predicted inputs (as driven by the precipitation en-
semble).

SCIENTIFIC CONCLUSIONS AND FINAL REMARKS

From a statistical perspective, we would like to em-
phasize the effectiveness of the computational and vi-
sualization tools presented in this paper, such as the
local semivariogram, to study nonstationarity patterns
and then determine the validity of the posterior distri-
bution used to simulate the ensembles. The flexibility
of the Bayesian framework proposed here allows us to
model and efficiently estimate different sources of un-
certainty about the data and the parameters in the sta-
tistical model.

From a biogeosciences view, our key finding is that
ecological model simulations driven by an ensemble

of estimated precipitation values show that uncertainty
in this input can have subtle and not so subtle impacts
on model response. The resultant uncertainty (i.e., the
propagated error) in fast-response biogeochemical var-
iables (net primary production, net nitrogen minerali-
zation, and evapotranspiration) tended to track that of
precipitation, in some cases with a reduced overall level
of uncertainty and others with a skewed response. Un-
certainty in slower-response variables (vegetation and
total carbon) tended to have muted high-frequency re-
sponses relative to that of precipitation. In addition,
total carbon response was sensitive to high precipita-
tion uncertainty early in the record that was carried
forward to periods of low uncertainty in predicted pre-
cipitation (Fig. 13).

This study shows how to estimate uncertainty in the
prediction of spatial climate inputs and how these es-
timates can be used to elucidate uncertainty in resulting
ecological simulations. Our results indicate that un-
certainty in precipitation fields can be high (such as
when station densities are low) with important con-
sequences for interpreting the reliability of ecological
model results. In contrast, the mean spatial estimate
(i.e., the kriging predictor) of climate fields masks such
input errors, precluding an assessment of error prop-
agation, and also generates fields that poorly represent
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FIG. 13. Ensemble plots of total carbon (TOTC; units are g C/m2). Each graph is a time series with 1188 months of data
(from 1895 to 1993) for the site in Colorado.

spatial heterogeneity and temporal variability under
conditions of low station density. Further work needs
to be done to determine how many statistical ensembles
of the input fields are needed to obtain a good repre-
sentation of the model input posterior distribution. In
situations in which we can assume that the model out-
put is a smooth stationary spatial surface, the meth-
odology proposed by Oakley and O’Hagan (2002) (see
Alternative Bayesian statistical computer modeling ap-
proaches) can be used to reduce the total number of
model runs needed. The appropriateness of this tech-
nique in our spatial-temporal setting is being investi-
gated.
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