
Software, Performance, or Engineering?

Daniel A. Menascé, ACM Fellow
Department of Computer Science, MS 4A5

George Mason University
Fairfax, VA 22030-4444

menasce@cs.gmu.edu

ABSTRACT
This paper discusses why Software Engineering (SE) meth-
ods often fail to produce software systems that meet their
performance requirements. Five issues are raised: lack of
required scientific principles and models in SE, lack of ed-
ucation in performance, IT workforce shortage, single-user
and small database mindsets.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Soft-
ware]: Software Engineering

Keywords
Software Performance Engineering, Software Engineering,
Performance models.

1. INTRODUCTION
Most software systems we care about are complex to de-
sign and to build. Their requirements are divided into func-
tional and non-functional requirements. The so-called non-
functional requirements include properties that systems are
supposed to exhibit with respect to security, availability, re-
liability, and performance (e.g., response time, throughput,
fraction of rejected requests).

The need to build software systems that function correctly,
adhere to non-functional requirements, and are cost-effective,
gave rise to a series of techniques and methods, patterned
on what engineers do, when they design systems. This dis-
cipline, called Software Engineering (SE), has been around
for over thirty five years and has had much success in de-
veloping methods for programming in the small and in the
large [7]. Most of the success of SE has been in taming the
complexity of the software development process through the
use of methods and tools to develop and manage designs,
requirements, tests cases, configurations, versions, and evo-
lution.

According to Carnegie Mellon’s Software Engineering In-
stitute (SEI), engineering is the systematic application of
scientific knowledge in creating and building cost-effective
solutions to practical problems in the service of mankind
and software engineering is that form of engineering that
applies the principles of computer science and mathematics
to achieving cost-effective solutions to software problems [2].
So, if SE is indeed a form of engineering, it should ap-
ply scientific principles to the design of software systems
in such a way that all of its requirements—functional and
non-functional—are met.

Unfortunately, with the exception of real-time applications,
performance requirements are rarely taken into account at
the design stage. This would never be allowed to happen in
any other form of engineering (e.g., civil, mechanical, aero-
nautical, etc.), which we refer to here as Conventional Engi-
neering (CE). Would a mechanical engineer design an engine
that is supposed to reach 4,000 RPM to find out when the
engine is built and tested that it does not go over 1,500
RPM? Or would a civil engineer design a bridge supposed
to withstand the load of sixty 3-ton vehicles at 60 mph only
to find out that it collapses when fifteen vehicles go over it?
Clearly not. The reason why one does not see this enormous
mismatch between requirements and results is that perfor-
mance, or efficiency, is an integral part of the design process
in any CE modality. In other words, the mechanical engi-
neer does not just design an engine that spins, but one that
can reach a certain speed with a given fuel consumption.

The fact that performance requirements are called non-func-
tional requirements in SE is a symptom of this problem.
How can a software system function properly if some of its
requirements (e.g., performance requirements) are not met?
In other words, all requirements should be functional. Oth-
erwise, they should not be requirements.

The difference in approach between CE design and SE de-
sign is illustrated in Fig. 1. Conventional engineers (bottom
part of Fig. 1) design systems with workload and environ-
ment considerations in mind. For example a civil engineer
takes into account the bridge workload (i.e., how many cars
will cross the bridge) as well as assumptions about the envi-
ronment in which the bridge will have to operate (i.e., high
wind forces at the top section of the bridge). Most soft-
ware engineers (top part of Fig. 1) design systems that meet
some of the requirements (usually the functional ones) and
then try to match the resulting system to the workload and

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
WOSP '02, July 24-26, 2002 Rome, Italy
© 2002 ACM ISBN 1-1-58113-563-7 02/07 …$5.00

239

SYSTEM

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

SYSTEM

Conventional Engineering

- design with workload and

 - design system and try to fit
 it into workload and environment.

WORKLOAD

WORKLOAD

ENVIRONMENT

ENVIRONMENT

Software Engineering approach:

 environment in mind.

approach:

Figure 1: Conventional engineering approach vs. software engineering approach.

environment in which they are supposed to operate.

2. SOFTWARE PERFORMANCE ENGINEE-
RING

Thirteen years after the term software engineering was in-
troduced [7], Connie Smith coined the term Software Per-
formance Engineering (SPE) in her seminal paper published
in 1981 [9]. That paper brought attention to the fact that
software development was carried out with the “fix-it-later”
attitude when it came to performance. In other words,
performance was never a design consideration, but an af-
terthought. Since 1981, many people contributed relevant
research ideas and some software systems were developed,
in industry and in academe, to support SPE processes.

A question that comes to mind is whether the term Perfor-
mance in Software Performance Engineering is redundant?
If SE is engineering, the design of software systems using en-
gineering methods should produce efficient systems. Would
it make sense to talk about Efficient Mechanical Engineer-
ing? Clearly not. Mechanical engineers strive to design ef-
ficient engines and mechanisms. For them, it is not enough
to just do it; it has to be done efficiently.

The reason why Performance in SPE is not yet redundant is
that twenty years after Smith’s introduction of the concepts
behind SPE, SPE has not been incorporated into the prac-
tices of Software Engineering. Therefore, it is still important
to talk about SPE until the P of SPE becomes redundant,
i.e., until it really blends into SE.

3. WHERE IS THE P IN SE?
This section presents some issues that may foster discussions
in both the performance and software engineering communi-
ties regarding the reasons why performance does not receive
proper attention during software design.

1. Lack of scientific principles and models. Conventional
engineers must use scientific principles and models based

on mathematics, physics, and computational science,
to support their design processes. This allows CE to
model the effects of the workload and the environment
on the systems being designed. Software engineers do
not need to rely on formal and quantitative models as
part of the software development life cycle. In other
words, software designers and developers can design
and write code without using any formalism.

There have been many developments in terms of for-
mal models to support the software life cycle. Most of
this work is centered around methodologies to manage
the complexity of the process of software development,
testing, maintenance, and evolution. Some of these
developments have made it to tools that gained some
widespread level of acceptance. However, there are no
universally agreed upon formalisms and quantitative
models that support the core of SE.

The SE community has devoted most of its energies to
the development of formalisms and methods that sup-
port the functional requirements aspects of SE. In fact,
over 80% of the papers published in the IEEE Trans-
actions on Software Engineering (TSE) since 1989 fall
into this category. The remaining papers are perfor-
mance-related. The vast majority of these deal with
the performance of algorithms (e.g., concurrency con-
trol methods in databases systems, resource schedulers
in operating systems and distributed systems), per-
formance of multiprocessor systems, and even papers
on performance evaluation techniques, including vari-
ous forms of Stochastic Petri Nets. The percentage of
papers that directly address performance problems in
software systems is much smaller.

The performance community, for the most part, has
addressed issues of system performance from a resource
demand point of view. For example, the input param-
eters of queuing network (QN) models fall into two
categories: workload intensity and resource demands
for each transaction type at each physical resource.
The resource demand is a function of the intrinsic per-

240

formance characteristics of the physical resource and
of the application itself. If the application is not ex-
plicitly modeled, performance models cannot be easily
used to evaluate the performance impact of changes in
the structure of the application. Traditional QN mod-
els have been extended by layered QNs to allow for
explicit software modeling. These models are not yet
as widely-known and -adopted as conventional QNs,
which gained popularity due to their simplicity.

The Workshop on Software and Performance (WOSP)
is an important venue to bridge the gap between soft-
ware engineering people and performance people and
between industry and academe [1, 8, 10].

2. Education. Graduates of computer science and related
engineering programs are often unprepared to address
the software engineering problems faced by industry.
majority of undergraduate computer science and CS-
related curricula do not include any required course
in computer system performance evaluation and offer
only minimal performance-related hours, generally in
operating systems and computer network courses. The
Joint IEEE Computer Society/ACM Task Force on
the “Model Curricula for Computing” (CC) [5] pub-
lished very recently its draft CS undergraduate cur-
riculum. The CC2001 report divides CS into 14 areas,
of which Software Engineering is one of them. The
area of SE is divided into eight core areas—software
design, using APIs, software tools and environments,
software processes, software requirements and speci-
fications, software validation, software evolution, and
software project management—and four elective areas—
component-based computing, formal methods, software
reliability, and specialized systems development. No
explicit mention to performance appears in the de-
tailed description of any of the twelve subareas of SE.

Why is computer performance not included in the list
of disciplines taught to future software engineers? There
are many possible reasons including 1)lack of train-
ing in performance issues by faculty who teach SE; 2)
lack of universally agreed upon methods and models to
be used by software engineers to address performance
issues—while conventional engineers can rely on the
well-established disciplines of physics and mathemat-
ics, there is no equivalent counterpart in SE; 3)faculty
resistance to change, and 4)limits on the total number
of credits in existing curricula. Every time something
is added, something has to go.

In order to gauge how students assess the importance
of software in the performance of a computer system,
I prepared a simple 5-question test that was answered
by 59 students at George Mason University. Nineteen
were senior students in our BS in CS program and
the remaining 39 were graduate students in the MS in
CS and MS in SE programs. Forty four percent of the
graduate students took at least one SE course and 84%
of the undergraduate ones took an SE course.

Table 1 summarizes the results of this test. The first
four questions were aimed at assessing the students
understanding of very basic performance concepts: 1)
Define Response Time (RTDef), 2) What units are
used to indicate response time? (RTU), 3) Define

throughput (XDef), and 4) What units are used to in-
dicate throughput? (XU). The last question (RT Fac-
tors) asked students to identify possible factors that
could contribute to the time taken by a Web search
engine to return a reply to a browser.

Most students were able to answer correctly questions
1 and 2 and a smaller percentage were able to cor-
rectly answer the two throughput questions. A very
large percentage of students were able to identify fac-
tors that could affect the response time of a search
engine. However, very few of them included software-
related issues in their lists (see last column of Table 1).
This survey is, admittedly, not comprehensive enough
to allow one to take very general conclusions. But,
I have strong reasons to believe that similar results
would be obtained if this test were applied to other
groups of students.

3. IT Workforce. U.S. Information Technology (IT) work-
force estimates range from 2 to 10 million depending
on the source and definition of IT worker. A more
accurate estimate for “core IT workforce” that only
includes computer engineers, computer system ana-
lysts and scientists, computer programmers, and com-
puter science teachers places the number at 2.5 mil-
lion people in 1999 in the U.S. [6]. The U.S. Bureau
of Labor Statistics (BLS) projects that, between 1998
and 2008, IT jobs will grow slightly over 7 percent a
year, far quicker than the 1.4 percent average across
all jobs. This represents a need to graduate 175,000
people a year in IT. This number far exceeds the esti-
mated 42,000 bachelor’s degrees in CS and engineering
awarded in the US and Canada in 2,000.

Using BLS data, one analyst examined the educational
credentials among people in four important IT pro-
fessions (computer scientists, computer engineers, sys-
tem analysts, and computer programmers) in 1998 [4].
The results can be summarized as follows: two thirds
hold a BS or higher degree, one third (mostly pro-
grammers) had a two-year degree or only a high-school
diploma, less than 50% had a bachelor’s or other de-
gree with a major or minor in CS or CS-related dis-
cipline! So, many individuals without formal training
are employed in IT fields and learn on the job. There-
fore, it is not surprising that many of the software
systems built today exhibit performance problems.

4. Single-user mindset.

Most system designers and programmers develop sys-
tems with the “single-user” mindset. This means that
software developers do not consider that the code they
are writing will, in most cases, be instantiated by many
concurrent requests. Concurrency generates contention
for physical resources (e.g., processors, storage devices,
and networks) and software resources (e.g., database
locks, critical sections, and software threads). Soft-
ware contention can be a significant portion of the to-
tal response time as illustrated in Fig. 2, which shows
the percentage of the total response time spent by a
request waiting to enter a critical section as a function
of the number of concurrent processes. The graph as-
sumes that each request spends 0.2 sec at the CPU ex-
ecuting non-critical section code and 0.1 sec executing

241

% Took % Took Percent Answered Correctly
Level Number of System SE RTDef RTU XDef XU RT Software

Students Courses Courses Factors Factors
Senior BS in CS 19 100% 84% 100% 74% 58% 63% 84% 21%
Graduate 39 95% 44% 87% 82% 74% 54% 87% 5%

Table 1: Test Results.

critical section code. As it can be seen, as the concur-
rency level increases, contention for software resources
dominates the response time of a process.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60

Multithreading Level

%
 S

o
ft

w
ar

e
C

o
n

te
n

ti
o

n
 T

im
e

Figure 2: Percent of Software Contention Time vs.
Multithreading Level

5. Small database mindset. The “small database” mind-
set means that code that accesses a database is usu-
ally written without taking into account the size of
the database. The performance of an SQL call on a
database with 1,000 rows is certainly different than
that on a table with one million rows. One may need
to use auxiliary tables and different ways to query a
very large database.

4. CONCLUDING REMARKS
This paper raised five possible causes for the fact that soft-
ware systems rarely meet their performance requirements:
1) lack of scientific models that must be used in software de-
velopment, 2) no performance education in the vast major-
ity of undergraduate CS curricula, 3) shortage of IT workers
leading to poorly trained individuals developing software, 4)
the “sngle-user” mindset of many programmers leading to
a total neglect of performance problems arising from con-
tention issues, and 5) the “small database” mindset that
leads programmers to ignore the effects of queries to very
large databases.

Software complexity often leads to inefficiencies. It has been
observed that the most important factor in attacking com-
plexity lies in improving the quality of programmers as op-
posed to the tools and techniques they use [3]. Therefore,
the most effective way to generate high-performance soft-
ware is through properly educating software designers and
programmers on performance issues. Also, efficiency is often

a matter of good design rather than good coding. Therefore,
efficiency must be considered early on in the life cycle [3].
This observation implies that the benefits of being aware
about the performance impacts of a software system tend to
be higher at the design stage.

Acknowledgements
This work was partially supported by a National Science
Foundation grant number EEC-0080379. The author would
like to thank Hakan Aydin, Peter Denning, and Larry Ker-
schberg for applying the test reported here, and Hassan Go-
maa for his comments on this paper.

5. REFERENCES
[1] S. Balsamo, P. Inverardi, and B. Selic, Proc. Third

ACM Workshop on Software and Performance, Italy,
Rome, July 24-27, 2002.

[2] G. Ford, 1990 SEI Report on Undergraduate
Engineering Education, Software Engineering
Institute, Carnegie Mellon University, Technical
Report CMU/SEI-90-TR-003.

[3] R. L. Glass, “Frequently Forgotten Fundamental
Facts about Software Engineering,” IEEE Software,
May/June 2001, pp. 110–112.

[4] M. Hilton, “Information Technology Workers in the
New Economy,” Monthly Labor Review, June 2001,
pp. 41–45.

[5] IEEE/ACM, “Model Curricula for Computing,”
Joint IEEE Computer Society/ACM Task Force,
Computer Science Volume, Final Draft, Dec 15,
2001, www.computer.org/education/cc2001

[6] National Research Council, “Building a Workforce
for the Information Technology,” National Academy
Press, Washington, DC, 2001.

[7] P. Naur and B. Randell, (eds.), Software
Engineering: report of a conference sponsored by the
NATO Science Committee Garmisch, Germany, 7-11
Oct. 1968, 231 pages.

[8] C. U. Smith, P. Clements, and M. Woodside, Proc.
First ACM Workshop on Software and Performance,
Santa Fe, NM, October 12-16, 1998.

[9] C. U. Smith, “Increasing Information Systems
Productivity by Software Performance Engineering,”
Proc. CMG XII International Conference, December
1981.

[10] M. Woodside, H. Gomaa, and D. A. Menascé, Proc.
Second ACM Workshop on Software and
Performance, Ottawa, Canada, September 17-20,
2000.

242

