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Abstract

Consider the small area estimation when positive area-level data like income, rev-
enue, harvests or production are available. Although a conventional method is the log-
transformed Fay-Herriot model, the log-transformation is not necessarily appropriate.
Another popular method is the Box-Cox transformation, but it has drawbacks that the
maximum likelihood estimator (ML) of the transformation parameter is not consistent
and that the transformed data are truncated.

In this paper, we consider parametric transformed Fay-Herriot models, and clarify
conditions on transformations under which the ML estimator of the transformation is
consistent. It is shown that the dual power transformation satisfies the conditions. Based
on asymptotic properties for estimators of parameters, we derive a second-order approxi-
mation of the prediction error of the empirical best linear unbiased predictors (EBLUP)
and obtain a second-order unbiased estimator of the prediction error. Finally, perfor-
mances of the proposed procedures are investigated through simulation and empirical
studies.

Key words and phrases: Asymptotically unbiased estimator, Box-Cox transformation,
dual power transformation, Fay-Herriot model, linear mixed model, mean squared error,
parametric bootstrap, small area estimation, variable selection.

1 Introduction

The linear mixed models (LMM) with both random and fixed effects have been extensively
and actively studied from both theoretical and applied aspects in the literature. As specific
normal linear mixed models, the Fay-Herriot model and the nested error regression models have
been used in small-area estimation, where direct estimates like sample means for small areas
have unacceptable estimation errors because sample sizes of small areas are small. Then the
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model-based shrinkage methods such as the empirical best linear unbiased predictor (EBLUP)
have been utilized for providing reliable estimates for small-areas with higher precisions by
borrowing data in the surrounding areas. For a good survey on this topic, see Ghosh and Rao
(1994) and Rao (2003).

In this paper, we address the problem of transformation when positive area-level data like
income, revenue, harvests or production are available. To handle such positive data, one usually
makes the logarithmic transformation log(y) for positive y and applies log-transformed data
to the Fay-Herriot model (Slud and Maiti, 2006). Although this approach based on the log-
transformed Fay-Herriot model has been used as a standard method, the log-transformation is
not necessarily appropriate. An alternative method is the Box-Cox power transformation (Box
and Cox, 1964) given by

hBC(y, λ) =

{
(yλ − 1)/λ, λ ̸= 0,

log y, λ = 0,

and one can make a flexible transformation for the positive data through estimation of the trans-
formation parameter. However, we are faced with shortcomings that the maximum likelihood
(ML) estimator of the transformation parameter λ is not consistent and that the transformed
data are truncated. It is not necessarily suitable that one applies the truncated data to normally
distributed models.

A feasible recipe for treating these issues is the dual power transformation suggested by
Yang (2006), which is given by

hDP (y, λ) =

{
(yλ − y−λ)/2λ, λ > 0,

log y, λ = 0.

This transformation possesses properties similar to the Box-Cox transformation, but does not
suffer from the truncation problem, since it is a monotone function from R+ onto R, where R
and R+ denote the sets of real numbers and positive real numbers, respectively.

In this paper, we consider a class of parametric transformations including the dual power
transformation and suggest a parametric transformed Fay-Herriot model. The model has three
unknown parameters β, A and λ = (λ1, . . . , λq)

′ which are regression coefficients, variance of
a random effect and the transformation parameter, respectively. Given λ, the inference on the
parameters β and A and the prediction can be reduced to the results given in the literature.
Given λ, β is estimated by the generalized least squares estimator β̂(Â(λ),λ) for estimator

Â(λ) of A. For estimation of A, we have several methods, and well-known estimators Â(λ) are
the maximum likelihood (ML) estimator, the restricted maximum likelihood (REML) estima-
tor, the Fay-Herriot estimator and the Prasad-Rao estimator. The transformation parameter
λ can be estimated through the likelihood functions based on β̂(Â(λ),λ) and Â(λ). Thus, the

consistency of estimators λ̂ of λ depends on the transformation h(y,λ) and the estimator Â(λ).

In this paper, we shall clarify conditions on h(y,λ) and Â(λ) under which the estimator λ̂ is
consistent. Based on asymptotic properties of these estimators, we derive a second-order ap-
proximation of the mean squared error of the empirical best linear unbiased predictor (EBLUP)
and its second-order unbiased estimator using the parametric bootstrap method.
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The paper is organized as follows: In Section 2, the parametric transformed Fay-Herriot
model is described and the assumptions on the transformation are provided. As a useful
transformation, the dual power transformation is discussed. In Section 3, the methods for
estimating the transformation parameter are given, and the consistency and some asymptotic
properties which will be used for evaluation of the prediction error are shown. In Section 4, we
provide EBLUP for the small-area estimation and derive a second-order approximation of the
mean squared error (MSE) of EBLUP. It is interesting to note that the approximation of MSE
consists of five terms: the first three terms are the known terms of the MSE approximation
given λ and the last two terms come from randomness of estimation of λ. We also derive a
second-order unbiased estimator of the MSE using the parametric bootstrap method.

In Section 5, we investigate finite-sample performances of estimators of the parameters,
MSE of EBLUP and estimators of MSE through simulation. The suggested procedures are
applied to the data in the Survey of Family Income and Expenditure (SFIE) in Japan. The
parametric transformation suggested in the paper has parameters for adjustment, which enables
us to flexibly analyze the small-area positive data. In fact, the survey data treated there show
that the estimate of the transformation parameter is far from the log-transformed model. The
concluding remarks are given in Section 6, and the technical proofs are given in Appendix.

2 Parametric Transformed Fay-Herriot Models

2.1 Transformed Fay-Herriot models

Let h(y,λ) be a monotone transformation from R+ to R for positive y. It is noted that the
transformation involves unknown parameter λ = (λ1, . . . , λq)

′, where λ′ denotes the transpose
of λ. It is assumed that positive data y1, . . . , ym are available, where yi is an area-level data
like a sample mean for the i-th small area. For i = 1, . . . ,m, assume that the transformed
observation h(yi,λ) has a linear mixed model suggested by Fay and Herriot (1979), given by

h(yi,λ) = x′
iβ + vi + εi, (1)

where xi is a p-dimensional known vector, β is a p-dimensional unknown vector of regression
coefficients, vi is a random effect associated with the area i and εi is an error term. It is
assumed that vi, εi, i = 1, . . . ,m, are mutually independently distributed as vi ∼ N (0, A) and
εi ∼ N (0, Di), where A is an unknown common variance and D1, . . . , Dm are known variances
of the error terms. It is noted that this model is interpreted as a Bayesian model when the
distribution of vi is regarded as a prior distribution.

When h(y,λ) = y, the model (1) is called the Fay-Herriot model suggested by Fay and
Herriot (1979). When y takes a value in real numbers R, the Fay-Herriot model may be
appropriate. Since y is positive, however, we need to transform y. A standard method is
the logarithmic transformation h(y,λ) = log(y). Slud and Maiti (2006) studied the small-
area estimation problem in the log-transformed Fay-Heriot model. However, the logarithmic
transformation is not necessarily suitable.

Alternative method is parametric transformations, and the well known method is the Box-
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Cox power transformation described by

hBC(y, λ) =

{
(yλ − 1)/λ, λ ̸= 0,

log y, λ = 0.

Although the Box-Cox transformation is very popular, it has drawbacks that the maximum
likelihood estimator of λ is not consistent and that hBC(y, λ) is truncated as hBC(y, λ) ≥ −1/λ
for λ > 0 and hBC(y, λ) ≤ −1/λ for λ < 0. This implies that the Box-Cox transformation is
incompatible with the normality assumption due to the truncation problem, unless the trans-
formation parameter λ equals to zero.

Taking it into account that transformed observations in (1) satisfy the normality assumption,
in this paper, we consider a class of transformations satisfying Assumption 1 given below. For
notational convenience, we use the notations described as

hy(y,λ) =
∂h(y,λ)

∂y
, hλ(y,λ) =

∂h(y,λ)

∂λ
, hλλ(y,λ) =

∂2h(y,λ)

∂λ∂λ′ ,

hyλ(y,λ) =
∂2h(y,λ)

∂y∂λ
, hyλλ(y,λ) =

∂3h(y,λ)

∂y∂λ∂λ′ .

(2)

Assumption 1. The following are assumed for the transformation h(y,λ):

(A.1) h(y,λ) is an monotone function of y (y > 0) and its range is R.

(A.2) The partial derivatives given in (2) exist and they are continuous.

(A.3) Transformation function h(y,λ) satisfies following integrability conditions.

E
[{
h(y,λ)− µ

}
hλ(y,λ)

]
= O(1), E

[
hλ(y,λ)

]
= O(1)

E
[
hλλ(y,λ)

]
= O(1), E

[ d

dλ

(hyλ(y,λ)

hy(y,λ)

)]
= O(1),

where h(y,λ) is normally distributed with mean µ and variance σ2, and the notation
O(1) means that each component in O(1) is of order O(1).

Assumption (A.1) means that the transformation is a one-to-one and onto function from R+

to R. Clearly, (A.1) is not satisfied by the Box-Cox transformation, but by log(y). Assumptions
(A.2) and (A.3) will be used to show consistency of estimators of λ and to evaluate asymptoti-
cally prediction errors of the empirical best linear unbiased predictors. A example of parametric
transformations with two parameters λ1 and λ2 is the sifted dual power transformation given
by

hSDP (y, λ1, λ2) =

{ {
(y + λ1)

λ2 − (y + λ1)
−λ2

}
/2λ2, λ2 > 0,

log(y + λ1), λ2 = 0.

Clearly, this transformation satisfies (A.1). In the case of λ1 = 0, it is the dual power transfor-
mation which will be treated in the next subsection.
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2.2 Dual power transformation

A parametric transformation treated as an example in this paper is the dual power transfor-
mation suggested by Yang (2006), which is described as

hDP (y, λ) =

{
(yλ − y−λ)/2λ, λ > 0,

log y, λ = 0.
(3)

Although the Box-Cox transformation does not satisfy assumption (A.1), the dual power trans-
formation satisfies (A.1). As shown later, the maximum likelihood estimator of λ for hDP (y, λ)
is consistent, while the MLE of the transformation parameter in the Box-Cox transformation
is not consistent. Thus, the dual power transformation is useful, and we provide some expla-
nations on it.

It is noted that for z = hDP (y, λ), the inverse transformation is expressed as

y =
(
λz +

√
λ2z2 + 1

)1/λ

for λ ̸= 0, and y = ez for λ = 0. Also note that some derivatives of hDP (y, λ) related to (A.2)
are written as

hDP
λ (y, λ) =

yλ + y−λ

2λ
log y +

hDP (y, λ)

λ
, hDP

y (y, λ) =
1

2
(yλ−1 + y−λ−1),

hDP
yλ (y, λ) =

1

2
log y(yλ−1 − y−λ−1), hDP

λλ (y, λ) = hDP (y, λ)(log y)2,

d

dλ

(hDP
yλ (y, λ)

hDP
y (y, λ)

)
=

4(log y)2

(yλ + y−λ)2
.

It is clear that hDP (y, λ) (λ > 0) satisfies (A.1) and (A.2), since it is continuous and
differentiable. We here check whether the dual power transformation satisfies the integrability
conditions in (A.3). Let z(= hDP (y, λ)) be a random variable normally distributed with mean
µ and variance σ2. Then,∣∣E[hDP

λ (y, λ)]
∣∣ = 1

λ2

∣∣∣E[√
1 + λ2z2 log

(
λz +

√
1 + λ2z2

)
+ λz

]∣∣∣
<

1

λ2

∣∣E[(1 + λ2z2)(λz + λ2z2)]
∣∣+ 1

λ
|E[z]| = O(1),

∣∣E [
{hDP (y, λ)− µ}hDP

λ (y, λ)
]∣∣

=
1

λ2

∣∣∣E[
(z − µ)

√
1 + λ2z2 log

(
λz +

√
1 + λ2z2

)
+ λz(z − µ)

]∣∣∣
<

1

λ2

∣∣E[
(z − µ)(1 + λ2z2)(λz + λ2z2)

]∣∣+ 1

λ

∣∣E[
z(z − µ)

]∣∣ = O(1),

∣∣E {
hDP
λλ (y, λ)

}∣∣ = ∣∣E[
hDP (y, λ)(log y)2

]∣∣
=

1

λ2

∣∣∣E[
z
{
log

(
λz +

√
1 + λ2z2

)}2]∣∣∣
< E

[
|z|3(1 + λz)2

]
= O(1),

5



and

0 < E
[ d

dλ

(hDP
yλ (y, λ)

hDP
y (y, λ)

)]
= E

[ 4(log y)2

(yλ + y−λ)2

]
= E

[ 2

λ2
√
1 + λ2z2

{
log

(
λz +

√
1 + λ2z2

)}2]
< E

[
2z2(1 + λz)2

]
= O(1).

These evaluations show that the dual power transformation satisfies (A.3).

3 Consistent Estimators of Parameters

In this section, we derive consistent estimators of the parameters β, A and λ in model (1).
Especially, it is important how to obtain consistent estimators for the transformation parameter
λ under Assumption 1. It is noted that the maximum likelihood estimator of the transformation
parameter in the Box-Cox transformation is not consistent, since it has the truncation problem
as mentioned before.

3.1 Estimation of β and A given λ

We begin by estimating β and A when λ is given. In this case, the conventional procedures
given in the literature for the Fay-Herriot model can be inherited to the transformed model.
Thus, for given A and λ, the maximum likelihood (ML) or generalized least square (GLS)
estimator of β is

β̂(A,λ) =
{ m∑

j=1

(A+Dj)
−1xjx

′
j

}−1
m∑
j=1

(A+Dj)
−1xjh(yj,λ). (4)

Concerning estimation of A given λ, we consider a class of estimators Â(λ) satisfying the
following assumption:

Assumption 2. The following are assumed for the estimator Â(λ) of A:

(A.4) Â(λ) = A + Op(m
−1/2), where the notation Op(m

−1/2) means that each component in
Op(m

−1/2) is of order O(m−1/2).

(A.5) ∂Â(λ)/∂λ = Op(1),

(A.6) ∂Â(λ)/∂λ− E
[
∂Â(λ)/∂λ

]
= Op(m

−1/2).

Assumption (A.1) implies that the estimator Â(λ) is consistent. Assumptions (A.2) and

(A.3) will be used for approximating prediction errors of EBLUP. Let us define β̂(λ) by

β̂(λ) = β̂(Â(λ),λ),

which is provided by substituting A(λ) into β̂(A,λ) in (4). Asymptotic properties of β̂(λ) can
be investigated under conditions on Di and xi.
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Assumption 3. The following are assumed for Di and xi:

(A.7) m−1
∑m

j=1 xjx
′
j converges to a positive definite matrix.

(A.8) There exist constants D and D such that D ≤ Di ≤ D for i = 1, . . . ,m, and D and D
are positive constants independent of m.

Since β̂(A,λ) ∼ Np(β, {
∑m

j=1(A + Dj)
−1xjx

′
j}−1), it is clear that β̂(A,λ) is consistent

and β̂(A,λ) − β = Op(m
−1/2) under Assumption 3. Some asymptotic properties on β̂(λ) =

β̂(Â(λ),λ) are given in the following lemma which will be proved in Appendix. This lemma
will be used in Lemma 2 for showing the condition (A.6) for each estimator of A.

Lemma 1. Assume the conditions (A.4) and (A.5) in Assumption 2 and Assumption 3. Then

it holds that β̂(λ)− β = Op(m
−1/2) and

∂β̂(λ)/∂λ− E
[
∂β̂(Â(λ)/∂λ

]
= Op(m

−1/2).

We here demonstrate that several estimators Â(λ) suggested in the literature satisfy As-
sumption 2. A simple moment estimator of A due to Prasad and Rao (1990) is given by

ÂPR(λ) = (m− p)−1
{ m∑

j=1

(h(yj,λ)− x′
jβ̂

OLS
)2 −

m∑
j=1

Dj

{
1− x′

j(X
′X)−1xj

}}
, (5)

where X = (x1, . . . ,xm)
′, and βOLS is the ordinary least squares (OLS) estimator β̂LS =

(
∑m

j=1 xjx
′
j)

−1
∑m

j=1 xjh(yj,λ). Another moment estimator due to Fay and Herriot (1979),

denoted by ÂFH(λ), is given as the solution of the equation

m∑
j=1

(A+Dj)
−1

{
h(yj,λ)− x′

jβ̂(A,λ)
}2

= m− p. (6)

The maximum likelihood estimator (ML) of A, denoted by ÂML(λ), is obtained as the solution
of the equation

m∑
j=1

(A+Dj)
−2

{
h(yj,λ)− x′

jβ̂(A,λ)
}2

=
m∑
j=1

(A+Dj)
−1. (7)

Also the restricted maximum likelihood estimator (REML) of A, denoted by ÂREML(λ), is
given as the solution of the equation

m∑
j=1

{
h(yj,λ)− x′

jβ̂(A,λ)
}2

(A+Dj)2
=

m∑
j=1

1

A+Dj

−
m∑
j=1

x′
j {

∑m
k=1(A+Dk)

−1xkx
′
k}

−1
xj

(A+Dj)2
. (8)

Then, it can be verified that the above four estimators satisfy Assumption 2. The proof will
be given in Appendix.

Lemma 2. Under Assumption 3, the estimators ÂPR(λ), ÂFH(λ), ÂML(λ) and ÂREML(λ)
satisfy Assumption 2.
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3.2 Estimation of transformation parameter λ

We provide a consistent estimator of the transformation parameter λ. For estimating λ, we
use the log-likelihood function, which is expressed as

L(λ, A,β) ∝ −1

2

m∑
j=1

log(A+Dj)−
1

2

m∑
j=1

{h(y,λ)− x′
iβ}

2

A+Dj

+
m∑
j=1

log hy(yj,λ). (9)

The derivative with respect to λ is written as

F (λ, A,β) ≡ ∂L(λ, A,β)

∂λ

=
m∑
j=1

hyλ(yj,λ)

hy(yj,λ)
−

m∑
j=1

(A+Dj)
−1 {h(yj,λ)− xjβ}hλ(yj,λ).

Then, we get an estimator λ̂ as the solution of the equation:

F (λ̂, Â(λ̂), β̂(λ̂)) = 0, (10)

where Â(λ) is an estimator of A satisfying Assumption 2.

When Â(λ) is the ML estimator of A, the resulting estimator from (10) is the ML estimator
of λ, which implies that it has consistency and asymptotic normality under suitable conditions.
For the variance component A, however, the Prasad-Rao, Fay-Herriot and REML estimators
have been used in the literature instead of the ML of A. In this case, it is not necessarily
guaranteed that the estimator derived from (10) is consistent. The following lemma shows that

the estimator derived from (10) is consistent provided Â(λ) satisfies Assumption 2. The proof
will be given in Appendix.

Lemma 3. Let λ̂ be the solution of (10). Then, λ̂− λ = Op(m
−1/2) and E[λ̂− λ] = O(m−1)

under Assumptions 1 and 2.

4 EBLUP and Evaluation of the Prediction Error

We now provide the empirical best linear unbiased predictor (EBLUP) for small-area estima-
tion and evaluate asymptotically the prediction error of EBLUP. Since EBLUP includes the
estimator of the transformation parameter in the transformed Fay-Herriot model, it is harder
to evaluate the prediction error than in the non-transformed Fay-Herriot model. To this end,
the asymptotic results derived in the previous sections are heavily used.

4.1 EBLUP

We here consider the problem of predicting ηi = x′
iβ+ vi, which is the conditional mean of the

transformed data given vi, namely, E[h(yi,λ)|vi]. The best predictor of ηi corresponds to the
Bayes estimator given by

η̂Bi (β, A,λ) = x′
iβ +

A

A+Di

{
h(yi,λ)− x′

iβ
}
. (11)
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Since β, A and λ are unknown, we need to use the estimators suggested in Section 3. Substi-
tuting β̂(A,λ), given in (4), into η̂Bi (β, A,λ) yields the estimator

η̂EB0
i (A,λ) = x′

iβ̂(A,λ) + A(A+Di)
−1
{
h(yi,λ)− x′

iβ̂(A,λ)
}
,

which is the best linear unbiased predictor (BLUP) as a function of h(yi,λ), i = 1, . . . ,m.

For the parameters A and λ, we can use the estimators Â(λ̂) and λ̂ suggested in Section 3.
Substituting their estimators into the BLUP, we get the empirical best linear unbiased predictor
(EBLUP)

η̂EB
i = x′

iβ̂(λ̂) +
Â(λ̂)

Â(λ̂) +Di

{
h(yi, λ̂)− x′

iβ̂(λ̂)
}
. (12)

In the Bayesian context, it corresponds to the empirical Bayes estimator of ηi.

4.2 Second-order approximation of the prediction error

As prediction error of EBLUP, we employ the mean squared error (MSE) of η̂EB
i defined as

(12), which is defined as
MSEi(A,λ) = E

[
(η̂EB

i − ηi)
2
]
,

for i = 1, . . . ,m. It is seen that the MSE can be decomposed as

E
[
(η̂EB

i − ηi)
2
]
= E

[
(η̂EB

i − η̂Bi )
2
]
+ E

[
(η̂Bi − ηi)

2
]

= E
[
(η̂EB

i − η̂EB1
i )2

]
+ 2E

[
(η̂EB

i − η̂EB1
i )(η̂EB1

i − η̂Bi )
]

+ E
[
(η̂EB1

i − η̂Bi )
2
]
+ E

[
(η̂Bi − ηi)

2
]
, (13)

where

η̂EB1
i = x′

iβ̂(λ) +
Â(λ)

Â(λ) +Di

{
h(yi,λ)− x′

iβ̂(λ)
}
.

It is noted that the first two terms in the r.h.s. of (13) are affected by estimation error of λ̂, but
the last two terms are not affected, namely, E[(η̂EB1

i − η̂Bi )
2] and E[(η̂Bi −ηi)

2] do not depend on

randomness of λ̂. Thus, it follows from the well-known result in small area estimation (Datta,
Rao and Smith (2005)) that under Assumption 3,

E[(η̂EB1
i − η̂Bi )

2] + E[(η̂Bi − ηi)
2] = g1i(A) + g2i(A) + g3i(A) +O(m−3/2), (14)

where g1i(A) = ADi/(A + Di), g2i(A) = Di(A + Di)
−2x′

i

(∑m
j=1 xjx

′
j(A + Dj)

−1
)−1

xi and

g3i(A) = 2−1Di(A+Di)
−2Var(Â). Thus, we need to evaluate the first two terms.

Note that λ̂−λ = Op(m
−1/2) given in Lemma 3. Then, the first term can be approximated

as

E[(η̂EB
i − η̂EB1

i )2] = E
[
(λ̂− λ)′

( ∂

∂λ
η̂EB1
i

)( ∂

∂λ
η̂EB1
i

)′
(λ̂− λ)

]
+O(m−3/2).

To estimate this term, the following lemma is helpful.
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Lemma 4. Under Assumptions 1, 2 and 3, the derivative of η̂EB1
i is approximated as

∂

∂λ
η̂EB1
i = R1i +Op(m

−1/2),

where

R1i =
A

A+Di

hλ(yi,λ) +
Di

A+Di

x′
i

( m∑
j=1

xjx
′
j

A+Dj

)−1
m∑
j=1

xj

A+Dj

E[hλ(yj,λ)]

+
Di

(A+Di)2
{h(yi,λ)− x′

iβ} r(A),

and r(A) is a leading term of E
[
∂Â(λ)/∂λ

]
.

It follows from Lemma 4 that E[(η̂EB
i − η̂EB1

i )2] = g4i(A,λ) +O(m−3/2), where

g4i(A,λ) = E
[
(λ̂− λ)′R1iR

′
1i(λ̂− λ)

]
. (15)

For some specific cases, we can calculate values of r(A). For ÂFH(λ), ÂML(λ) and ÂREML(λ),
the values of r(A) are given by

r(A) =
( m∑

j=1

(A+Dj)
−k
)−1( m∑

j=1

(A+Dj)
−kE

[{
h(yj,λ)− x′

jβ
}
hλ(yj,λ)

])
,

where k = 1 corresponds to ÂFH(λ), and k = 2 corresponds to ÂML(λ) and ÂREML(λ). For

ÂPR(λ), the value of r(A) is given by

r(A) =
2

m− p

m∑
j=1

E
[{

h(yj,λ)− x′
jβ

}
hλ(yj,λ)

]
.

For the second term, note that λ̂−λ = Op(m
−1/2), Â(λ)−A = Op(m

−1/2) and β̂(λ)−β =
Op(m

−1/2). Then it follows from Lemma 4 that

2E[(η̂EB
i − η̂EB1

i )(η̂EB1
i − η̂Bi )] (16)

=2E
[( ∂

∂λ
η̂EB1
i

)′
(λ̂− λ)

{(∂η̂Bi
∂β

)′
(β̂ − β) +

(∂η̂Bi
∂A

)
(Â− A)

}]
+O(m−3/2)

=2E
[
(λ̂− λ)′R1i

(∂η̂Bi
∂β

)′
(β̂ − β)

]
+ 2E

[
R′

1i

(∂η̂Bi
∂A

)
(λ̂− λ)(Â− A)

]
+O(m−3/2)

=g5i(A,λ) +O(m−3/2), (17)

where
g5i(A,λ) = 2E[(λ̂− λ)′Ri1R

′
i2(β̂ − β)] + 2E[Ri1Ri3(λ̂− λ)(Â− A)]

for

Ri2 =
∂η̂Bi
∂β

=
Di

A+Di

x′
i, Ri3 =

∂η̂Bi
∂A

=
Di

(A+Di)2
{h(yi,λ)− x′

iβ} .

It is noted that g4i(A,λ) and g5i(A,λ) are of order O(m−1) and that g4i(A,λ) and g5i(A,λ)
generally cannot be expressed explicitly. Combining the above calculations gives the following
theorem.
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Theorem 1. Under Assumptions 1, 2 and 3, the prediction error of EBLUP given in (12) is
approximated as

MSEi = g1i(A) + g2i(A) + g3i(A) + g4i(A,λ) + g5i(A,λ) +O(m−3/2),

where gki, k = 1, . . . 5 are defined in (14), (15) and (17).

4.3 Second-order unbiased estimator of the prediction error

For practical applications, we need to estimate the mean squared error of EBLUP. Although
g4i(A,λ) and g5i(A,λ) are not expressed explicitly, we can provide their estimators using the
parametric bootstrap method..

Corresponding to model (1), random variable z∗i can be generated as z∗i = x′
iβ̂ + v∗i + ϵ∗i

for β̂ = β̂(Â(λ̂), λ̂), where v∗i ’s and ε∗i ’s are mutually independently distributed random errors

such that v∗i |y ∼ N (0, Â) and ε∗i ∼ N (0, Di). Let us define y∗i as the solution of the equation

z∗i = h(y∗i , λ̂), i = 1, . . . ,m.

The estimators λ̂
∗
, β̂

∗
and Â∗ can be obtained from y∗i , i = 1, . . . ,m, by using the same manners

as used in λ̂, β̂ and Â.

Since g2i(A) + g3i(A) = O(m−1), it is seen that g2i(Â) + g3i(Â) is a second order unbiased

estimator of g2i(A) + g3i(A), namely E[g2i(Â) + g3i(Â)] = g2i(A) + g3i(A) +O(m−3/2).

For estimation of g1i(A), g1i(Â) has a second-order bias, since g1i(A) = O(1). Thus, we

need to correct the bias up to second order. By the Taylor series expansion of g1i(Â(λ̂)), it is
observed that

E
[
g1i(Â(λ̂))

]
= E

[
g1i(A) + {Â(λ̂)− A} d

dA
g1i(A)

]
+O(m−1)

= g1i(A) + E
[
Â(λ̂)− A

] D2
i

(A+Di)2
+O(m−1),

and that

Â(λ̂)− A = Â(λ)− A+ (λ̂− λ)
∂

∂λ
Â(λ) +Op(m

−1)

= (λ̂− λ)
{ ∂

∂λ
Â(λ)− E

[ ∂

∂λ
Â(λ)

]}
+ (λ̂− λ)E

[ ∂

∂λ
Â(λ)

]
+Op(m

−1).

Then it follows from Assumption 2 and Lemma 3 that E
[
Â(λ̂)−A

]
= O(m−1), which implies

that
E
[
g1i(Â(λ̂))

]
= g1i(A) + bi(A,λ) +O(m−3/2),

where bi(A,λ) is a bias with order O(m−1). Hence, based on the parametric bootstrap, we get

a second-order unbiased estimator of g1i(Â(λ̂)) given by

g1i(Â, λ̂) = 2g1i(Â(λ̂))− E∗[g1i(Â∗)|y
]
. (18)
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In fact, it can be verified thatE[g1i(Â, λ̂)] = g1i(A)+O(m−3/2), since E∗[g1i(Â
∗)|y] = g1i(Â(λ̂))+

bi(Â(λ̂), λ̂) +Op(m
−3/2).

For g4i(A,λ) and g5i(A,λ), their estimators based on the parametric bootstrap are given
by

g4i(Â, λ̂) =E∗
[
(η̂EB∗

i − η̂EB1∗
i )2

∣∣y],
g5i(Â, λ̂) =2E∗

[
(η̂EB∗

i − η̂EB1∗
i )(η̂EB1∗

i − η̂B∗
i )

∣∣y],
where

η̂B∗
i =x′

iβ̂(λ̂) +
Â(λ̂)

Â(λ̂) +Di

{
h(y∗i , λ̂)− x′

iβ̂(λ̂)
}
,

η̂EB1∗
i =x′

iβ̂
∗
(λ̂) +

Â∗(λ̂)

Â∗(λ̂) +Di

{
h(y∗i , λ̂)− x′

iβ̂
∗
(λ̂)

}
,

η̂EB∗
i =x′

iβ̂
∗
(λ̂

∗
) +

Â∗(λ̂
∗
)

Â∗(λ̂
∗
) +Di

{
h(y∗i , λ̂

∗
)− x′

iβ̂
∗
(λ̂

∗
)
}
.

Combining the above estimators yields the estimator of MSEi given by

M̂SEi

∗
= g1i(Â, λ̂) + g2i(Â) + g3i(Â) + g4i(Â, λ̂) + g5i(Â, λ̂). (19)

Theorem 2. Under Assumptions 1, 2 and 3, M̂SEi

∗
is a second order unbiased estimator of

MSEi, that is

E[M̂SEi

∗
] = MSEi +O

(
m−3/2

)
.

5 Simulation and Empirical Studies

In this section, we investigate finite-sample performances of estimators of the parameters, MSE
of EBLUP and estimators of MSE through simulation. We also applied the suggested procedures
to the data in the Survey of Family Income and Expenditure (SFIE) in Japan.

5.1 Finite sample behaviors of estimators

We first investigate finite sample performances of the estimators of λ, A through simulation in
the model (1) without covariates, namely x′β = µ, where the transformation function is a dual
power transformation given in (3). In the simulation implemented here, we set µ = 0.

In the simulation experiments, we generate 100,000 data sets of yi = h−1(vi + εi, λ), i =
1, . . . ,m, where m = 30 and λ = 0.2, 0.6 and 1.0 to investigate performances of estimators. The
random effect vi is generated from N (0, 1) with A = 1, and the sampling error εi is generated
from N (0, Di). For Di’s, we treat the three patterns:

(a) 0.1, 0.2, 0.3, 0.4, 0.5; (b) 0.1, 0.3, 0.5, 0.8, 1.0; (c) 0.1, 0.4, 0.7, 1.1, 1.5.
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There are five groups G1, . . . , G5 and six small areas in each group. The error variance Di is
common in the same group.

For estimation of A and λ, we use four methods of the maximum likelihood estimator
(ML), restricted maximum likelihood estimator (REML), Prasad–Rao estimator (PR) and Fay–
Herriot estimator (FH). We also apply the log-transformed model for the simulated data, which
corresponds to the case of λ = 0 in the dual power transformation. For estimation A and µ of
this model, we use the maximum likelihood method.

The average values of estimates of λ, A and µ are reported in Table 1. For small λ such
as λ = 0.2, the logarithmic transformation gives slightly better estimates for A. For relatively
large λ such as λ = 0.6 and λ = 1.0, the estimates of A in the logarithmic transformed case
tends to underestimate and their performances are not as good as the performances in the
parametric transformed case. Comparing the four methods for estimating A, we can see that
the REML method gives the closest estimates for the true value of A. Concerning estimation of
λ, the suggested estimator gives good estimates for λ = 1. Although it overestimates λ slightly
for λ = 0.2, it seems to work as a whole.

5.2 Numerical properties of MSE and its estimators

We next investigate MSE of EBLUP η̂EB
i and performances of estimators of MSE, where REML

estimator is used for A. The simulation experiments are implemented in the same framework
as used in the previous subsection. Let {Y (s)

i , i = 1, . . . ,m} be simulated data in the s-th

replication for s = 1, . . ., S = 100, 000. Let η̂
EB(s)
i be EBLUP and let η̂

B(s)
i be the best predictor

for the s-th replication. Also let h(y
(s)
i , λ̂

(s)
) be the direct predictor for the s-th replication.

Then the true values of MSE of EBLUP and the direct predictor h(yi, λ̂) can be numerically
obtained by

MSE(η̂EB
i ) ≈ S−1

S∑
s=1

(
η̂
EB(s)
i − η̂

B(s)
i

)2

+ ADi/(A+Di),

MSE(h(yi, λ̂)) ≈ S−1

S∑
s=1

(
h(y

(s)
i , λ̂

(s)
)− η̂

B(s)
i

)2

+ ADi/(A+Di),

and their averages over six small areas within group Gi are denoted by MSEEBLUP (Gi) and
MSEDP (Gi) for i = 1, . . . , 5. The true values of MSEEBLUP (Gi) and the percentage relative
gain in MSE defined by 100×

{
MSEDP (Gi)−MSEEBLUP (Gi)

}
/MSEDP (Gi) are reported in

Table 2, where values of percentage relative gain in MSE are given in parentheses. It is noted
that EBLUP is a shrinkage predictor and h(yi, λ̂) is the non-shrinkage direct predictor. Thus,
large values of the relative gain in MSE mean that the improvements of EBLUP over the direct
predictor are large. Table 2 reveals that for all groups, the prediction error of EBLUP is smaller
than that of the direct predictor. Especially, the improvement of EBLUP seems significant in
G3, G4 and G5. This implies that EBLUP works well still in the transformed Fay-Herriot
model.

The averages of estimates of MSE are obtained based on 5,000 simulated datasets with 1,000
replication for bootstrap, where the estimator of MSE is given in (19). Then the bias and the
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Table 1: Average values of the estimators of µ,A and λ for m = 30, µ = 0, A = 1, Di-patterns
(a), (b) and (c). We used four types of estimators of A and log-transformed mode (the value
of µ̂ is multiplied by 100)

Pattern (a) Pattern (b) Pattern (c)

λ̂ Â µ̂ λ̂ Â µ̂ λ̂ Â µ̂

λ = 0.2

ML 0.40 1.25 -0.12 0.37 1.26 -0.22 0.35 1.24 0.23
REML 0.36 1.14 -0.12 0.34 1.14 -0.21 0.32 1.14 0.23
PR 0.41 1.32 -0.39 0.38 1.33 0.17 0.36 1.38 -0.18
FH 0.41 1.25 0.21 0.37 1.26 0.05 0.35 1.24 -0.26
log — 0.90 -0.04 — 0.88 -0.10 — 0.86 0.04

λ = 0.6

ML 0.72 1.26 -0.13 0.71 1.26 -0.21 0.70 1.26 0.24
REML 0.67 1.11 -0.13 0.67 1.12 -0.19 0.67 1.11 0.24
PR 0.72 1.31 -0.39 0.71 1.32 0.15 0.70 1.37 -0.20
FH 0.72 1.26 0.20 0.71 1.26 0.05 0.70 1.25 -0.20
log — 0.66 -0.04 — 0.61 -0.06 — 0.58 0.08

λ = 1.0

ML 1.12 1.30 -0.14 1.12 1.31 -0.20 1.11 1.31 0.24
REML 1.06 1.12 -0.15 1.07 1.13 -0.19 1.07 1.13 0.24
PR 1.10 1.24 -0.41 1.15 1.36 0.14 1.11 1.41 -0.20
FH 1.12 1.30 0.20 1.12 1.30 0.05 1.11 1.30 -0.30
log — 0.46 -0.03 — 0.41 -0.03 — 0.38 0.11

relative bias of the MSE estimator are reported in Table 3. From this table, it seems that the
MSE estimator gives good estimates for MSE of EBLUP although it tends to overestimate.

5.3 Application to the survey data

We now apply the suggested procedures to the data in the Survey of Family Income and Expen-
diture (SFIE) in Japan. In this study, we use the data of the disbursement item ’Education’
in the survey in November 2011. The average disbursement (scaled by 10,000 Yen) at each
capital city of 47 prefectures in Japan is obtained by yi for i = 1, . . . , 47, and each variance
of Di is appropriately calculated based on the data of the disbursement ’Education’ at the
same city every November in the past ten years. Although the average disbursements in SFIE
are reported every month, the sample size are around 100 for most prefectures, and data of
the item ’Education’ have high variability. On the other hand, we have data in the National
Survey of Family Income and Expenditure (NSFIE) for 47 prefectures. Since NSFIE is based
on much larger sample than SFIE, the average disbursements in NSFIE are more reliable, but
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Table 2: True values of MSE of EBLUP multiplied by 100 and percentage relative gain in MSE
for m = 30, µ = 0, A = 1 and Di-patterns (a), (b) and (c) (values of percentage relative gain
in MSE are given in parentheses).

Pattern (a) Pattern (b) Pattern (c)

λ 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

G1 12.9 14.3 16.1 12.8 14.3 15.6 12.7 14.1 15.5
(13.8) (9.5) (6.0) (12.9) (7.6) (10.1) (12.7) (8.3) (6.9)

G2 21.2 23.0 25.0 28.6 31.2 32.9 35.2 37.7 40.0
(20.8) (16.3) (13.5) (25.5) (19.5) (19.2) (28.7) (24.5) (22.9)

G3 28.4 30.6 32.7 40.3 43.4 45.7 50.0 53.0 55.8
(26.4) (20.5) (17.8) (34.5) (29.1) (27.4) (40.2) (36.7) (33.3)

G4 34.6 36.9 39.3 53.2 56.5 59.0 62.9 66.3 68.9
(31.1) (26.0) (22.9) (44.8) (39.6) (37.8) (51.4) (48.2) (45.8)

G5 39.9 42.4 45.0 59.5 63.3 65.4 71.4 74.7 77.2
(35.4) (29.4) (27.5) (50.1) (44.8) (43.5) (59.0) (55.7) (54.0)

Table 3: Average of estimates of MSE multiplied by 100 and their relative biases for m = 30,
µ = 0, A = 1 and Di-patterns (a), (b) and (c) (percentage relative biases of MSE estimators
are given in parentheses).

Pattern (a) Pattern (b) Pattern (c)

λ 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

G1 15.1 16.5 18.7 15.1 16.6 18.8 14.5 16.3 18.9
(17.2) (16.0) (16.4) (18.2) (16.1) (20.4) (15.8) (15.5) (22.0)

G2 23.8 25.4 27.8 31.4 33.3 35.9 37.5 39.8 43.1
(11.9) (10.1) (11.8) (9.9) (7.2) (8.9) (6.7) (5.6) (7.8)

G3 31.2 32.9 35.6 43.8 45.7 48.3 52.6 55.1 58.7
(9.9) (7.4) (8.8) (8.5) (5.4) (5.7) (5.4) (3.9) (5.3)

G4 37.7 39.3 42.1 57.2 59.1 61.5 66.1 68.5 72.3
(8.8) (6.7) (6.9) (7.4) (4.5) (4.3) (5.1) (3.4) (4.9)

G5 43.2 44.9 47.7 63.9 65.7 67.8 75.1 77.4 81.2
(8.2) (5.8) (5.8) (7.4) (3.8) (3.6) (5.2) (3.5) (5.2)

this survey has been implemented every five years. In this study, we use the data of the item
’Education’ of NSFIE in 2009, which is denoted by Xi for i = 1, . . . , 47. Thus, we apply the
dual power transformed Fay-Herriot model (1) described in Section 2, that is

yλi − y−λ
i

2λ
= x′

iβ + vi + εi, i = 1, . . . , 47,
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where x′
i = (1, Xi),β = (β1, β2)

′.

We used the REML estimators for estimation of A and λ, and their estimates are λ̂ = 1.44
and Â = 0.11. The GLS estimates of β1 and β2 are β̂1 = −1.09 and β̂2 = 0.75, so that the
regression coefficient on Xi is positive, namely there is a positive correlation between yi and
Xi. The values of EBLUP in seven prefectures around Tokyo are reported in Table 4 with
the estimates of their MSEs based on (19). Note that the estimate of λ is 1.44, which is far
away from 0. This means that the logarithmic transformation does not seem appropriate for
analyzing the data treated here.

It is interesting to investigate what happen when one uses the log-transformed model for
the same data. The log-transformed model is

log(yi) = x′
iβ + vi + εi, i = 1, . . . , 47.

When the REML estimator is used for estimation of A and β, their estimates are given by
Â = 0.06, β̂1 = −0.90 and β̂2 = 0.61. Note that the estimate of A in the log-transformed

model is smaller than that in the dual power transformed model. Remember that Â determines
the rate of shrinkage of yi toward x′

iβ̂, namely, the rate is larger as the value of Â is larger. Thus,
yi in the log-transformed model are not shrunken as much as in the dual power transformed
model.

Table 4: Values of second EBLUP and their estimated MSE.

prefecture Di h(yi, λ̂) x′
iβ̂ η̂2EB

i M̂SEi

Ibaraki 0.112 -0.215 -0.161 -0.188 0.075
Tochigi 0.444 0.002 -0.158 -0.125 0.111
Gunma 0.110 -0.752 -0.092 -0.429 0.073
Saitama 0.056 0.213 0.461 0.294 0.058
Chiba 0.536 1.681 0.187 0.451 0.120
Tokyo 0.026 0.464 0.315 0.437 0.030

Kanagawa 0.188 1.068 0.235 0.551 0.097

6 Concluding Remarks

In this paper, we have suggested the parametric transformed Fay-Herriot model motivated
from analysis of data with positive values like income, revenue, harvests or production. We
have provided the estimation procedures for unknown parameters including the transformation
parameter as well as the regression coefficients and the variance component. Their consistency
and some other asymptotic properties have been shown and used to evaluate the prediction
error of EBLUP asymptotically. It has been illustrated through simulation that the proposed
procedures work in the estimation of the parameters, the performance of MSE of EBLUP and
the estimation of MSE.
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Although the well-known transformation is the Box-Cox transformation, it has drawbacks
that the ML estimator of the transformation parameter is not consistent and that the trans-
formed data are truncated. As an alternative method, the dual power transformation has been
suggested, and it has been shown that all the results including consistency derived in this paper
can be applied.

A conventional model for analyzing positive data is the log-transformed Fay-Herriot model.
However, the logarithmic transformation is not necessarily appropriate. The parametric trans-
formation suggested here has parameters for adjustment, which enables us to flexibly analyze
the small-area positive data. In fact, the survey data treated in this paper show that the
estimate of the transformation parameter is far from the log-transformed model.

Although the uncertainty of the predictor is measured in this paper based on the predic-
tion error E{(η̂EB

i −ηi)
2}, it may be natural to measure the uncertainty with E[{h−1(η̂EB

i , λ̂)−
h−1(ηi, λ̂)}2], which is not tractable, however. Concerning this respect, it seems to us that MSE
behaviors due to E{(η̂EB

i − ηi)
2} are associated with performances due to E[{h−1(η̂EB

i , λ̂) −
h−1(ηi, λ̂)}2]. Thus, we can guess a feature of basic performances of EBLUP in terms of
E[{h−1(η̂EB

i , λ̂)− h−1(ηi, λ̂)}2] from the behavior based on E{(η̂EB
i − ηi)

2}.
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Appendix

A.1 Proof of Lemma 1. Since it can be easily seen that β̂(Â(λ),λ) − β = Op(m
−1/2), we here

give the proof of the second part. Straightforward calculation shows that

∂β̂(Â(λ),λ)

∂λ
=

( m∑
j=1

xjx
′
j

Â(λ) +Dj

)−1
m∑
j=1

xjx
′
j

(Â(λ) +Dj)2

(
β̂ − β̂

∗)(∂Â(λ)
∂λ

)
+

( m∑
j=1

xjx
′
j

Â+Dj

)−1
m∑
j=1

xj

Â+Dj

hλ(yj ,λ), (20)

where

β̂
∗
=

{ m∑
j=1

xjx
′
j

(Â+Dj)2

}−1
m∑
j=1

xj

(Â+Dj)2
h(yj ,λ). (21)

Since β̂
∗
− β = Op(m

−1/2), it is seen that

β̂ − β̂
∗
= β̂ − β − (β̂

∗
− β) = Op(m

−1/2).

Thus from Assumption 2, the expectation of the first term in (20) is O(m−1/2). For the second term
in (20), we have

E
[( m∑

j=1

xjx
′
j

Â+Dj

)−1
m∑
j=1

xj

Â+Dj

hλ(yj ,λ)
]

=
( m∑
j=1

xjx
′
j

A+Dj

)−1
m∑
j=1

xj

A+Dj
E[hλ(yj ,λ)] +O(m−1/2),
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where the order of the leading term of the last formula is Op(1). Then,

E[∂β̂(Â(λ),λ)/∂λ] =
( m∑
j=1

xjx
′
j

A+Dj

)−1
m∑
j=1

xj

A+Dj
E[hλ(yj ,λ)] +O(m−1/2). (22)

Therefore we obtain

√
m
{
∂β̂(Â(λ),λ)/∂λ− E[∂β̂(Â(λ),λ)/∂λ]

}
=

( 1

m

m∑
j=1

xjx
′
j

A+Dj

)−1( 1

m

m∑
j=1

xjx
′
j

(A+Dj)2

)√
m
(
β̂ − β̂

∗)(∂Â(λ)
∂λ

)
+

( 1

m

m∑
j=1

xjx
′
j

A+Dj

)−1 1√
m

m∑
j=1

xj

A+Dj

{
hλ(yj ,λ)− E[hλ(yj ,λ)]

}
+Op(1). (23)

Since ∂Â(λ)/∂λ = Op(1) from (A.5) in Assumption 2, the first term in (23) has Op(1). For the second
term in (23), from the central limit theorem, we have

1√
m

m∑
j=1

xj

A+Dj

{
hλ(yj ,λ)− E

[
hλ(yj ,λ)

]}
= Op(1),

which, together with Assumption 3, implies that the second term in (23) is of order Op(1). Therefore

we can conclude that ∂β̂(Â(λ),λ)/∂λ− E[∂β̂(Â(λ),λ)/∂λ] = Op(m
−1/2).

A.2 Proof of Lemma 2. It is clear that the condition (A.4) is satisfied for the estimators of A from
the results given in the literature, so that we shall verify the conditions (A.5) and (A.6) of Assumption
2.

For ÂPR defined in (5), it is seen that

∂ÂPR(λ)

∂λ
=

2

m− p

m∑
j=1

{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ)−

2

m− p

m∑
j=1

x′
j(β̂

OLS
− β)hλ(yj ,λ)

− 2

m− p

m∑
j=1

{
h(yj ,λ)− x′

jβ
}
x′
j

(∂β̂OLS

∂λ

)
+

2

m− p

m∑
j=1

x′
j(β̂

OLS
− β)x′

j

(∂β̂OLS

∂λ

)
,

and that

∂β̂
OLS

∂λ
=

( 1

m

m∑
j=1

xjx
′
j

)−1 1

m

m∑
j=1

xjhλ(yj ,λ)
′ = Op(1)

by the law of large numbers. Since β̂
OLS

− β = Op(m
−1/2), we have ∂ÂPR(λ)/∂λ = Op(1), which

shows (A.5). For (A.6), note that

E
[∂ÂPR(λ)

∂λ

]
=

2

m− p

m∑
j=1

E
[{

h(yj ,λ)− x′
jβ

}
hλ(yj ,λ)

]
+O(m−1/2). (24)

Then, it is observed that

√
m
{∂ÂPR(λ)

∂λ
− E

[∂ÂPR(λ)

∂λ

]}
=

2

m− p

m∑
j=1

Zj +Op(m
−1/2)
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where
Zj =

{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ)− E

[{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ)

]
. (25)

Since it is clear that E[Zj ] = 0, j = 1, . . . ,m, and Z1, . . . , Zj are independent, by central limit theorem,
we have

√
m
{∂ÂPR(λ)

∂λ
− E

[∂ÂPR(λ)

∂λ

]}
= Op(1),

which shows (A.6), and Assumption 2 is satisfied for ÂPR.

We next show Lemma 2 for ÂFH , ÂML and ÂREML. For the proofs, we first demonstrate that
the condition (A.5) is satisfied. Then we can use Lemma 1, which is guaranteed under (A.4), (A.5)
and Assumption 3. Using Lemma 1, we next show the condition (A.6) for the estimators.

Since ÂFH , ÂML and ÂREML are defined as the solutions of the equations (6), (7) and (8), it
follows from the implicit function theorem that

∂

∂λ
Â(λ) = −Gλ(λ, Â)

GA(λ, Â)
, (26)

where G(λ, A) = 0 is the equation defining the estimator of A, and

Gλ(λ, Â) =
∂

∂λ
G(λ, A)

∣∣∣∣
A=Â

, GA(λ, Â) =
∂

∂A
G(λ, A)

∣∣∣∣
A=Â

For ÂFH , ÂML and ÂREML, the function Gλ(λ, Â) has the following form:

Gλ(λ, Â)

=
∂

∂λ

{ m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ̂
}2

}
= 2

m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ)− 2

m∑
j=1

(Â+Dj)
−kx′

j(β̂ − β)hλ(yj ,λ)

− 2

m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
x′
j

( ∂

∂λ
β̂
)
+ 2

m∑
j=1

(Â+Dj)
−kx′

j(β̂ − β)x′
j

( ∂

∂λ
β̂
)
, (27)

where the case of k = 1 corresponds to ÂFH , and the case of k = 2 corresponds to ÂML and ÂREML.
Note that ∂β̂/∂λ is expressed as (20), which contains ∂Â/∂λ. Then solving (26) on ∂Â/∂λ, we have

∂Â(λ)

∂λ
=

I1(y)

I2(y)
, (28)

where

I1(y) = 2
m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ)− 2

m∑
j=1

(Â+Dj)
−kx′

j(β̂ − β)hλ(yj ,λ)

− 2

m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
x′
j · J1(y) + 2

m∑
j=1

(Â+Dj)
−kx′

j(β̂ − β)x′
j · J1(y),
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and

I2(y) = −GA(λ, Â) + 2
m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
xj · J2(y)

− 2

m∑
j=1

(Â+Dj)
−kx′

j(β̂ − β)x′
j · J2(y),

for J1(y) and J2(y) defined as

∂β̂(Â(λ),λ)/∂λ = J2(y)
(∂Â(λ)

∂λ

)
+ J1(y),

which is obtained from (20). Using the expression of (28), we show that ∂Â(λ)/∂λ = Op(1), which is
sufficient to verify that I1(y)/m = Op(1) and I2(y)/m = Op(1). For this purpose, the following facts
are useful:

1

m

m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ) = Op(1), (29)

1

m

m∑
j=1

(Â+Dj)
−kx′

j(β̂ − β)hλ(yj ,λ) = Op(m
−1/2), (30)

1

m

m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
x′
j = Op(m

−1/2), (31)

1

m

m∑
j=1

(Â+Dj)
−kx′

j(β̂ − β)x′
j = Op(m

−1/2), (32)

where k = 0, 1, 2. These facts can be verified by noting that Â−A = Op(m
−1/2), β̂−β = Op(m

−1/2)
and using the law of large numbers and the central limit theorem. Now we consider the order of
I1(y)/m and I2(y)/m. From the proof of Lemma 1, we have J1(y) = Op(1) and J2(y) = Op(m

−1/2).

If we assume that m−1GA(λ, Â) = Op(1) (this is actually proved for each estimators in the end of the
proof), it is immediate from (31) and (32) that

I2(y)/m = Op(1).

Similarly from (29)∼(32), we have

I1(y)/m = Op(1),

and we obtain ∂Â(λ)/∂λ = Op(1). Hence, it has been shown that the condition (A.5) is satisfied by

ÂFH , ÂML and ÂREML.

We next show that the condition (A.6) is satisfied by ÂFH , ÂML and ÂREML. Since (A.4) and
(A.5) are satisfied, we can use Lemma 1. Then,

∂β̂(Â(λ),λ)/∂λ− E
[
∂β̂(Â(λ),λ)/∂λ

]
= Op(m

−1/2).

To show ∂Â(λ)/∂λ − E{∂Â(λ)/∂λ} = Op(m
−1/2), we use the expression (27) (we can also use the

expression (28), but using the expression (27) is more simple since we can use Lemma 1 such that we
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know the order of ∂β̂/∂λ). From (29)∼(32) and Lemma 1, we can evaluate (27) as

1

m
Gλ(λ, Â) =

2

m

m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ) +Op(m

−1/2)

=
2

m

m∑
j=1

(A+Dj)
−k

{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ) +Op(m

−1/2)

since Â−A = Op(m
−1/2). Here we assume that

−m−1GA(λ, Â) = c(A) +Op(m
−1/2), (33)

where c(A) is a constant depending on A. This will be proved for each estimator in the end of this
proof. Then we have

E
[∂Â(λ)

∂λ

]
= E

[
−m−1Gλ(λ, Â)

m−1GA(λ, Â)

]
(34)

= c(A)−1 · 2

m

m∑
j=1

(A+Dj)
−kE

[{
h(yj ,λ)− x′

jβ
}
hλ(yj ,λ)

]
+O(m−1/2).

Therefore we have

√
m
{∂Â(λ)

∂λ
− E

[∂Â(λ)
∂λ

]}
=

Gλ(λ, Â)/
√
m

GA(λ, Â)/m
− E

[Gλ(λ, Â)/
√
m

GA(λ, Â)/m

]
= c(A)−1 2√

m

m∑
j=1

(A+Dj)
−kZj +Op(1),

where Zj is defined in (25), and by the central limit theorem, we have
√
m
[
∂Â(λ)/∂λ− E

{
∂Â(λ)/∂λ

}]
= Op(1).

Consequently, we have proved for ÂFH , ÂML and ÂREML.

It remains to show that −m−1GA(λ, Â) = c(A) +Op(m
−1/2) for ÂFH , ÂML and ÂREML.

For ÂFH , from (6), we have　　　

GA(λ, Â) = −
m∑
j=1

(Â+Dj)
−k−1

{
h(yj ,λ)− x′

jβ̂
}2

− 2

m∑
j=1

(Â+Dj)
−k

{
h(yj ,λ)− x′

jβ̂
}
xj

( ∂

∂A
β̂(A)

)
,

where
∂

∂A
β̂(A) =

( m∑
j=1

xjx
′
j

Â(λ) +Dj

)−1
m∑
j=1

xjx
′
j

(Â(λ) +Dj)2

(
β̂ − β̂

∗)
,

where β̂
∗
is defined in (21). Note that β̂ − β̂

∗
= Op(m

−1/2) and from the low of large numbers, we
have

∂

∂A
β̂(A) =

( 1

m

m∑
j=1

xjx
′
j

Â(λ) +Dj

)−1[ 1

m

m∑
j=1

xjx
′
j

(Â(λ) +Dj)2

](
β̂ − β̂

∗)
= Op(m

−1/2).
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Thus we have

1

m
GA(λ, Â) = − 1

m

m∑
j=1

(A+Dj)
−2

{
h(yj ,λ)− x′

jβ
}2

− 2
[ 1

m

m∑
j=1

(A+Dj)
−1

{
h(yj ,λ)− x′

jβ
}
xj

]( ∂

∂A
β̂(A)

)
+Op(m

−1/2)

= − 1

m

m∑
j=1

(A+Dj)
−2

{
h(yj ,λ)− x′

jβ
}2

+Op(m
−1/2).

Since E
[{

h(yj ,λ)− x′
jβ

}2]
= A+Dj , by the low of large numbers, we have

1

m
GA(λ, Â) = − 1

m

m∑
j=1

(A+Dj)
−1 +Op(m

−1/2), (35)

where the order of the leading term is O(1), corresponding with c(A).

Similarly, for ÂML and ÂREML defined in (7) and (8), straight calculation (almost the same as
the case of ÂFH) shows that

1

m
GA(λ, Â) = − 1

m

m∑
j=1

(A+Dj)
−2 +Op(m

−1/2), (36)

where the order of the leading term is O(1), corresponding with c(A).

A.3 Proof of Lemma 3. We begin by showing that λ̂−λ = Op(m
−1/2). By Taylor series expansion

of equation (10), we have

λ̂− λ = −F (λ, Â, β̂)
(
∂F (λ, Â, β̂)/∂λ′|λ=λ∗

)−1
,

where

∂F (λ, Â(λ), β̂(λ))/∂λ′

=

m∑
j=1

hyλλ(yj ,λ)

hy(yj ,λ)
−

m∑
j=1

hyλ(yj ,λ)
′hyλ(yj ,λ)

(hy(yj ,λ))2
−

m∑
j=1

h(yj ,λ)− x′
jβ̂(Â(λ),λ)

Â(λ) +Dj

hλλ(yj ,λ)

−
m∑
j=1

hλ(yj ,λ)− x′
j(∂β̂(Â(λ),λ)/∂λ

′)

Â(λ) +Dj

hλ(yj ,λ)
′ +

m∑
j=1

h(yj ,λ)− x′
jβ̂(Â(λ),λ)

(Â(λ) +Dj)2

∂Â(λ)

∂λ
hλ(yj ,λ)

′

= K1 +K2 +K3 +K4, (say)

where λ∗ is a vector satisfying λ < λ∗ < λ̂. It is here noted that for a = (a1, . . . , ap) and b =
(b1, . . . , bp), a < b denotes aj < bj for j = 1, . . . , p. For K1, from Assumption 1, we have

E
[hyλλ(yj ,λ)

hy(yj ,λ)
−

hyλ(yj ,λ)
′hyλ(yj ,λ)

(hy(yj ,λ))2

]
= E

[ ∂

∂λ

(hyλ(yj , λ)
hy(yj , λ)

)]
= O(1)

for j = 1, . . . ,m. Since y1, . . . , ym are independent, by the law of large numbers, we have

1

m
K1 =

1

m

{ m∑
j=1

hyλλ(yj ,λ)

hy(yj ,λ)
−

m∑
j=1

hyλ(yj ,λ)
′hyλ(yj ,λ)

(hy(yj ,λ))2

}
= Op(1).
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Under Assumptions 1 and 2, we have

1

m
K2 =

1

m

m∑
j=1

h(yj ,λ)− x′
jβ̂(Â(λ),λ)

Â(λ) +Dj

hλλ(yj ,λ)

=
1

m

m∑
j=1

h(yj ,λ)− x′
jβ

A+Dj
hλλ(yj ,λ)−

1

m
(Â−A)

m∑
j=1

h(yj ,λ)− x′
jβ

(A∗ +Dj)2
hλλ(yj ,λ)

− 1

m
(β̂ − β)′

m∑
j=1

xj

A+Dj
hλλ(yj ,λ) +

1

m
(Â−A)(β̂ − β)′

m∑
j=1

xj

(A∗ +Dj)2
hλλ(yj ,λ)

=
1

m

m∑
j=1

h(yj ,λ)− x′
jβ

A+Dj
hλλ(yj ,λ) +Op(m

−1/2) = Op(1).

Similarly, we can evaluate K3 as

1

m
K3 =

1

m

m∑
j=1

hλ(yj ,λ)− x′
j(∂β̂(Â(λ),λ)/∂λ′)

Â(λ) +Dj

hλ(yj ,λ)
′

=
1

m

m∑
j=1

hλ(yj ,λ)− x′
j(∂β̂(Â(λ),λ)/∂λ′)

A+Dj
hλ(yj ,λ)

′

− (Â−A) · 1

m

m∑
j=1

hλ(yj ,λ)− x′
j(∂β̂(Â(λ),λ)/∂λ

′)

(A∗ +Dj)2
hλ(yj ,λ)

′

= Op(1)

under Assumptions 1 and 2. Moreover,

1

m
K4 =

1

m

m∑
j=1

h(yj ,λ)− x′
jβ̂(Â(λ),λ)

(Â(λ) +Dj)2

∂Â(λ)

∂λ
hλ(yj ,λ)

′

=
1

m

(∂Â(λ)
∂λ

) m∑
j=1

h(yj ,λ)− x′
jβ

(A+Dj)2
hλ(yj ,λ)

′

− (Â−A)
(∂Â(λ)

∂λ

) 1

m

m∑
j=1

h(yj ,λ)− x′
jβ

2(A∗ +Dj)3
hλ(yj ,λ)

′

−
(∂Â(λ)

∂λ

)
(β̂ − β)′

1

m

m∑
j=1

xj

(A+Dj)2
hλ(yj ,λ)

′

+ (Â−A)
(∂Â(λ)

∂λ

)
(β̂ − β)′

1

m

m∑
j=1

xj

2(A∗ +Dj)3
hλ(yj ,λ)

′,

which is of order Op(1). As a result, we have

1

m

{∂F (λ, Â(λ), β̂(λ))

∂λ′

∣∣∣∣
λ=λ∗

}
= Op(1).
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Furthermore, by Assumption 1, we have

F (λ, Â(λ), β̂(λ))

=
m∑
j=1

hyλ(yj ,λ)

hy(yj ,λ)
−

m∑
j=1

h(yj ,λ)− x′
jβ̂(Â(λ),λ)

Â(λ) +Dj

hλ(yj ,λ)

=
m∑
j=1

hyλ(yj ,λ)

hy(yj ,λ)
−

m∑
j=1

h(yj ,λ)− x′
jβ

A+Dj
hλ(yj ,λ)− (Â−A)

m∑
j=1

h(yj ,λ)− x′
jβ

(A∗ +Dj)2
hλ(yj ,λ)

− (β̂ − β)′
m∑
j=1

xj

A+Dj
hλ(yj ,λ) + (Â−A)(β̂ − β)′

m∑
j=1

xj

(A∗ +Dj)2
hλ(yj ,λ),

which is evaluated as
m∑
j=1

{hyλ(yj ,λ)

hy(yj ,λ)
−

h(yj ,λ)− x′
jβ

A+Dj
hλ(yj ,λ)

}
+Op(m

1/2).

For all j = 1, . . . ,m, we have

E
[hyλ(yj ,λ)
hy(yj ,λ)

− (A+Dj)
−1

{
h(yj ,λ)− xjβ

}
hλ(yj ,λ)

]
= E

[∂λ log f(Yj ;λ,β, A)

∂λ

]
= 0,

where f(yj ;λ,β, A) is the density function of observation yj defined in (1). To show λ̂ − λ =
Op(m

−1/2), by the central limit theorem, we have

1√
m
F (λ, Â(λ), β̂(λ)) = Op(1).

Therefore we have

√
m(λ̂− λ) = − 1√

m
F (λ, Â(λ), β̂(λ))

{ 1

m

(
∂F (λ, Â, β̂)/∂λ′|λ=λ∗

)}−1
= Op(1),

and we conclude that λ̂− λ = Op(m
−1/2).

We next show that E[λ̂ − λ] = O(m−1). From the first part of Lemma 3, we have λ̂ − λ =
Op(m

−1/2). Then expanding (10) shows that

λ̂− λ = −F (λ, Â, β̂)
(
∂F (λ, Â, β̂)/∂λ′)−1

+Op(m
−1).

We have to show that the expectation of the first term is O(1/m). We obtain

E
[ 1

m
F (λ, Â, β̂)

{ 1

m

(
∂F (λ, Â, β̂)/∂λ′

)}−1]
= E

[{ 1

m
F (λ, Â, β̂)

}{ 1

m
E
[
∂F (λ, Â, β̂)/∂λ′]+Op(m

−1/2)
}−1]

= E
{ 1

m
F (λ, Â, β̂)

}{ 1

m
E
[
∂F (λ, Â, β̂)/∂λ′]}−1

+O(m−1),

which is of order O(m−1), since

E
[ 1

m
F (λ, Â, β̂)

]
= −E(Â−A) · 1

m

m∑
j=1

E
[{

h(yj ,λ)− x′
jβ

}
hλ(yj ,λ)

]
(A∗ +Dj)2

− E(β̂ − β)′ · 1

m

m∑
j=1

xj

A+Dj
E
[
hλ(yj ,λ)

]
+O(m−1),
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which is of order O(m−1), where we used the fact that E[Â−A] = O(m−1) and E[β̂−β] = O(m−1),
and since

1

m
E
[
∂F (λ, Â, β̂)/∂λ′] = O(1).

Thus E[λ̂− λ] = O(m−1) follows.

A.4 Proof of Lemma 4. By the Taylor series expansion of η̂i
EB1, we have

η̂i
EB1 − η̂i

B =
Di

A+Di
x′
i(β̂ − β) +

Di

(A+Di)2
(Â−A)

{
h(yi,λ)− x′

iβ
}

− Di

(A∗ +Di)2
x′
i(Â−A)(β̂ − β)− Di

(A∗ +Di)3
{
h(yi,λ)− x′

iβ
∗}(Â−A)2,

where A∗ is an intermediate value of A and Â and β∗ is an intermediate vector of β and β̂. Differen-
tiating the both sides by λ, we have

∂

∂λ
η̂i

EB1 =
∂

∂λ
η̂i

B +
Di

A+Di
x′
i

( ∂

∂λ
β̂(λ)

)
+

Di

(A+Di)2

( ∂

∂λ
Â(λ)

){
h(yi,λ)− x′

iβ
}

− Di

2(A∗ +Di)2
x′
i

( ∂

∂λ
Â(λ)

)
(β̂ − β)− Di

2(A∗ +Di)2
x′
i(Â−A)

( ∂

∂λ
β̂(λ)

)
− 2Di

(A∗ +Di)3
hλ(yi,λ)(Â−A)

( ∂

∂λ
Â(λ)

)
=

∂

∂λ
η̂i

B +
Di

(A+Di)2
E
[ ∂

∂λ
Â(λ)

]{
h(yi,λ)− x′

iβ
}

+
Di

A+Di
x′
iE

[ ∂

∂λ
β̂(λ)

]
+Op(m

−1/2),

by using Lemmas 1 and 2. Also from Lemmas 1 and 2, we already know that

E
[ ∂

∂λ
β̂(λ)

]
=

( m∑
j=1

xjx
′
j

A+Dj

)−1
m∑
j=1

xj

A+Dj
E
[
hλ(yj ,λ)

]
+O(m−1/2), (37)

and

E
[ ∂

∂λ
Â(λ)

]
=

( m∑
j=1

(A+Dj)
−k

)−1( m∑
j=1

E[{h(yj ,λ)− x′
jβ}hλ(yj ,λ)]

(A+Dj)k

)
+O(m−1/2), (38)

where k = 1 corresponds to ÂFH and k = 2 corresponds to ÂML and ÂREML. The formula (37) comes
from (22), and the formula (38) is obtained by combining (33), (35) and (36). For ÂPR, from (24),

E
[∂ÂPR(λ)

∂λ

]
=

2

m− p

m∑
j=1

E
[{

h(yj ,λ)− x′
jβ

}
hλ(yj ,λ)

]
+O(m−1/2),

which completes the proof.
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