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Abstract 

 
Reverse Nearest Neighbor(RNN) query now is one 

of the important queries in spatial database and data 
mining. Reverse k Nearest Neighbor(RkNN) is the 
extendibility of RNN. Given a set V of objects and a 
query object q, an RkNN query returns a subset of V 
such that each element of the subset has q as its kNN 
member according to a certain similarity metric. Early 
methods pre-compute NN of each data objects and find 
RNN. Recent methods introduce index based on the 
mutual distance between two objects. Chen brought 
forward a method[1] which can find RkNN for any k 
straightforwardly with constant running cost. The 
method builds an index block for each object pi of V 
which stores the pre-computed distances from pi to 
each other object of V in ascending order. It can be 
applied to any RkNN searches whenever the mutual 
distance between objects can be figured out, and does 
not require the triangle inequality. But the distance 
values in index block is storage-consuming and 
redundancy. In this paper, we propose an efficient 
method to compress the index block. Our method uses 
just the necessary bits to store the mutual distance 
between objects hence reduces the redundancy to the 
lowermost level. We evaluate the efficiency and 
effectiveness of the proposed method.  
 
1. Introduction 

Finding the k-nearest neighbor(kNN) of a query 
object and has been studied extensively in the past few 
years for Euclidean distance, and metric data[3]. RNN 
query is the novel from of NN query. But RNN queries 
are much more complex than NN queries.   Given a set 
V of objects and a query object q, a reverse neighbor 
query returns objects in a data set that have the query 
object q as their nearest neighbor respectively, 
according to some similarity metric. While the RkNN 

query returns a subset of V such that each element of 
the subset has q as its kNN member. RNN is the 
special case of RkNN. If the k in RkNN equals to 1, 
then the R1NN is RNN. Seeing the example in Figure 
1, because q is the NN of both p3 and p4, the RNN of q 
is {p3,p4}. While the R2NN of q is {p2,p3,p4}, for p2  is 
the 2NN of q. The relationship between NN and RNN 
is not symmetric. This means that the NN of q may not 
be the RNN of q. For example, in figure 1, though p2 
is the NN of q, q is not the NN of p2. Therefore p2 is 
not the RNN of q. 

Figure1. An example of RkNN. 
RNN queries have been studied recently for finite, 

stored data sets[4], and provide a natural way of 
identifying the “influence” of a query point on the 
database. RkNN query has been considered as a useful 
and practical way to make database systems more 
flexible in supporting user requirements. The RkNN 
queries have get widely applications in geographic 
information system(GIS), traffic networks[5], data 
mining, etc. [2] gives an example of the application in 
films rating database. [3] shows many application 
examples, one of them is to plan the business location 
of a new store. The strategy is to select the location 
that maximizes the number of customers when more 
than one possible location available. Reverse NN 
query helps the purpose of maximizing the customers 
of a location, by returning those customers who are 
potentially interested in the new store. Early 
methods[4,7] pre-compute NN of each data objects and 
find RNN. Because of the storage cost and un-
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efficiency in dealing database updates such as insertion 
and deletion, those methods are considered to be 
infeasible. Recent methods[3,8,9] utilize the data-
partitioning index such as M-tree to partition and filter 
the dataset. Almost of the existing methods of RkNN 
queries require O(N2) time. If we use them in outlier 
detection[1], the cost will be O(N3). Considering the 
cheap and large secondary storage and powerful 
computer doing update in spare time, Chen and etc 
argued that the pre-computing still finds its application 
when online costs, that is, CPU times and I/O times are 
the dominating factors being considered. Based on pre-
computed information they proposed an algorithm that 
finds reverse k nearest neighbor (RkNN) search by 
building straightforward index. We call the algorithm 
by SI. SI can find RkNN for any k straightforwardly 
with constant running cost.  

In this paper we re-organize the index block of the 
RkNN algorithm and propose a more efficient method 
to find RkNN by compressed straightforward index 
(shortly CSI). The remainder of this paper is organized 
as follows. Section 2 gives a brief survey of related 
work. Section 3 describes our strategies for RkNN 
queries and gives out the algorithms. Section 4 
experimentally evaluates the effectiveness of our 
algorithms, and Section 5 concludes the paper. 

  
Figure 2. The example of finding Reverse 2-NN of q. 
 
2. Related Works and Motivation 

Let V={p1,p2,p3,p4,p5,p6} be the data set, and let q 
be the query object. Figure 2 shows an example of 
finding Reverse 2-NN of q from V. Each circle ci with 
the pi∈V(i=1..6) as its centre is the 2NN circle of pi. 
The arrow radius centered at pi shows the maximum 
distance between pi and any number of its 2NN points. 
This means that only the k-NN(k>2) of  pi will be 
outside the circle ci. Now we take p1 and p4 as example 
to explain how to estimate whether pi is the R2NN of q. 
We can see in the figure, q is in the circle c4 while 
outside c1. This is to say that the distance between q 
and p4 is less than the maximum distance between p4 
and any number of its 2NN points, and the distance 

between q and p1 is greater than the maximum distance 
between p4 and any number of its 2NN points. Thus 
we can say p4 is in the R2NN of q, while p1 is not. 
Utilizing this principle we conclude that the R2NN of 
q in the figure 2 is {p4,p5,p6}. 

Based on the above principle and under the 
assumption that any distances between each two 
objects of dataset have been pre-computed, we can 
find the RkNN of q easily. Suppose that the pre-
computed distance as in table1. Based on the distance, 
SI builds an index block for each object pi see table 2. 
The order of the i’th line in table corresponds to the 
distance of pi. For instance the third line of table 
corresponds to p3. Distances in each line of index 
block are sorted in ascending order. Concentrated on 
the third line, we can see that the j’th element value 
represents the maximum distance of p3’s j-NNs.  
Table 1. The mutual distances between objects.  

dist p1 p2 p3 p4 P5 P6 
p1 - 5.3 2.6 4.7 8.5 3.4
p2 5.3 - 3.8 6.4 7.3 4.2
p3 2.6 3.8 - 3.5 6.5 4.5
p4 4.7 6.4 3.5 - 2.5 4.8
p5 8.5 7.3 6.5 2.5 - 3 
p6 3.4 4.2 4.5 4.8 3 - 
q 4.7 8 3.3 2.8 5.3 6 

Table 2.The index block of the distances in table 1.  
p1 2.6 3.4 4.7 5.3 8.5
P2 3.8 4.2 5.3 6.4 7.3
P3 2.6 3.5 3.8 5.5 6.5
P4 2.5 3.5 4.7 5 6.4
P5 2.5 3 6.5 7.3 8.5
P6 3.4 3 4.2 4.5 4.8

Now we can see how to find the reverse k-NN of q 
by the index block. For example we want to search the 
reverse 2-NN of q. Scanning the index block, for each 
line numbered i we compare the second value with the 
distance between pi and q. If the former is larger, then 
pi is in the answer set. Seeing the second line, the 
second value is 4.2 which is less than the distance 
between p2 and q, this is to say q is not in the 2NN 
circle of p2. We conclude p2 is not the R2NN of q. 
Seeing another point p3(the third line), the second 
value is 3.5 which is larger than the distance between 
p3 and q. Thus p3 is in the R2NN of q. Based on this 
principle we know the R2NN of q is {p3,p4}. Because 
in real application the data set is large, if we store the 
distances all in one single index block, then the index 
block will be huge. SI indexes maxK neighbors of 
each object, and divides the index block into blocks 
having length M. In table 3, the length of M is two 
double values (usually, 8 Bytes). We just read one 
necessary block into the main memory to do the RkNN 
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query, on that we can save many I/O cost. In the above 
example we want to find the R2NN of p, we need only 
the block1. We show SI algorithms in figure 3 and 
figure 4. 
Table 3.The index blocks after block partition. 

 block1 Block2 Block3
p1  2.6 3.4 4.7 5.3 8.5 
P2  3.8 4.2 5.3 6.4 7.3 
P3  2.6 3.5 3.8 5.5 6.5 
P4  2.5 3.5 4.7 5 6.4 
P5  2.5 3 6.5 7.3 8.5 
P6  3.4 3 4.2 4.5 4.8 

Figure 3. The Build_Index algorithm of SI. 

Figure 4. The RkNN algorithm of SI. 
Now we know the method can find RkNN for any k 

straightforwardly with constant running cost. The time 
is mostly consuming in I/O, and also the pre-compute 
need many time. If we can compress the size of the 
index block, we can make the algorithm more efficient. 
This is the motivation of approach.  

3. Approach 
In this section we describe our CSI method. Table 4 

lists the symbols and their definitions in our discussion. 
From table 4, we know the values of each line should 
be as different as possible. For repeat values make it 
difficult to find the RkNN. We can use double or long 
double to store the distances in order to guarantee the 
precision, and distinguish the value in largest degree. 
Take double into consider, this is to say that one value 
in the block occupies 8 bytes. Our strategy is to use 
integer value or even a binary less than 16 bits to store 
the distance. On that we can compress the block at 
least by 1/2. To do this we have to solve several 
problems. 
Table 4.Symbols and definitions in this paper.  

V The whole data set of objects 
N The number of objects in V 
Q The query point 

kNN(p,k) The kNNs of p 

maxNN(p,k) The farthest data of kNN(p,k) from 
p 

dist(p,q) The distance between p and q 
Lmax global distance maximum 
Lmaxi local distance maximum 
Max The function to get the maximum

maxK The maximum k being considered

B Number of bits for compressing a 
distance 

Ib The b’th index block 
M Index block length 

Table 5.The integer parts of distances in blocks.  
 block1 Block2 Block3

p1 2 3 4 5 8 
P2 3 4 5 6 7 
P3 2 3 3 5 6 
P4 2 3 4 5 6 
P5 2 3 6 7 8 
P6 3 3 4 4 4 

Table 6.The index blocks after enlarging distances. 
 block1 Block2 Block3

p1 26 34 47 53 85 
P2 38 42 53 64 73 
P3 26 35 38 55 65 
P4 25 35 47 5 64 
P5 25 3 65 73 85 
P6 34 3 42 45 48 

Firstly consider the simplest case which discards the 
decimal part of each distance directly. This will result 
in many data repeated. As table 5, there are three ‘4’ in 
line p6. If the distance from q to p6 is 4 too, it is 
impossible to judge whether p6 is the R3NN, R4NN or 
R5NN of q. Thus when we convert to integer we have 

Algorithm Build_Index 
Input: data set V and  parameter M and K 
Begin 
1    for b=1 to ⎡ ⎤MK /max   do 
2      for i=1 to N do 
3          initialize Ib[1:N][1:M]=∞; 
4           j0←(b-1)×M+1; 
5           jM←min{j0+M,maxM} 
6           sort pi’s j’th NN for j=j0,….,jM in  
             ascending order, store to Ib[i][1..M] 
            endfor 
7          WRITE Ib; 
      endfor 
end 

Algorithm RkNN 
Input: query object q, k, dataset V and  M 
Output: Answer set Vr 
Begin 
1    Vr←NULL 
2    b← ⎡ ⎤MK /  
3    READ Ib    
4    k0← k-b× ⎡ ⎤MK /   
5     for i=1 to N do       
6         if dist(q,pi)<=Ib[k0] then 
                Vr←Vr∪{pi} 
           endif 
        endfor 
        return Vr 
end 
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to guarantee the precision. Therefore we should 
convert the decimal fraction too. To do this, we 
enlarge the distance value and move the radix point to 
right. For example we enlarge the distances in table 3 
by 10 times, and get the new block as table 6 which 
eliminate the repeat problem in table 5.  
3.1. Compress the distance by quantification 

To avoid that the distance value after enlarging is 
very large, we standardize the objects of dataset into 
[0,1) space. Then the distance should be in [0, D ). 
To compress block efficiently, we store the enlarged 
distance value in minimum binary bits. Suppose that 
the necessary binary bits are Minb. An improper value 
of Minb will affect our efficiency. If Minb is not large 
enough, the repeat value in block would be severe. For 
instance if we just use 2 binary bits to store 10 
distances, there will be 6 overlap values, because 2 bits 
can distinguish only 4 values.  On the other hand, a too 
big Minb would reduce the compress efficiency. It is 
not necessary to assign 64 bits to store an integer 
which its value is less than 100. Now we discuss how 
to calculate the value Minb. We take the decimal 
number as the example. In practice, we process all by 
binary.  
Table 7.The sample index block line. 

0.58 0.15 0.5 0.35 0.7 0.55 0.6 
0 0 0 0 0 0 0 
5 1 5 3 7 5 6 

58 15 50 35 70 55 60 
We set a threshold T, which means the allowed 

largest repeat times for a distance value in each 
distance line of pi, see the line in table 2. Let T=2,N=7. 
And assuming table 7, line 1 is a line of the index 
block. If we take the integer part to replace the 
distance, then all the distances are 0 (table 7, line 2). 
The 0 in the line should repeat 7 times. Because 7>T, 
this is not allowed. Therefore we enlarge the distance 
value by 10 times, and take the integer part too. We get 
the new block line (table 7, line 3). We can see the 
distance value 5 repeat three times.  Because 3>T, it is 
also not a correct one so the value is enlarged further 
by 10 times, and get the block line like in table 7,line 4. 
Now there are no repeated values in this block line.  
3.2. Calculate the necessary binary bits 

In section 3.1 we know line 4 of table 7 is the 
finally block line to store. The number of binary bits 
we assign to store each value just satisfies the 
condition that the maximum value can be stored. See 
the block line, we know the maximum is 70 which is 
large than 26(64) and less than 27(128). It is enough to 
assign 7 binary bits to store each value. Utilizing the 
binary bit operations, we can easily implement this.  

Line 4 in Table 7 shows one of lines in an index 
block, the maximum distance of each line is called 
local maximum. There are N local maximums, Lmaxi 
(i=1..N). For saving I/O cost and keeping the 
efficiency, all the data in the index block should be 
assigned the same bits that we call global maximum 
and symbolize it as Lmax. We get the following two 
equations. 

Lmaxi(i=1..N)=max(dist(pi,pj)) (j=1..N,i≠j) (1) 
Lmax=max(Lmaxi)      (i=1..N) (2) 
The number of binary bits we need to store the 

integer can be calculated by the following equation 3. 
N_bits= ⎡ ⎤1max)log( +L  (3) 
Because during the RkNN search, we also have to 

convert the distances between q and pi(i=1..N) to 
integer in exactly the same method we discuss in this 
section. Let B store the enlarge factor. If the distance 
value is enlarged 10 times, then B equals to 1. If 100 
times, B equals to 2, and so on.  
3.3. The algorithm to build the index block 

The naive idea in section 3.2 for building the index 
block requires scanning the original distances at least 
twice. One to get the Lmax, the other to build the 
index block. Considering the case that objects in 
dataset distribute uniformly in data space, we can say 
the range of the distances of each line in index block is 
similar. Therefore the necessary binary bits we 
calculate from one line of index block will be suitable 
for the others. Taking an object v from V randomly, it 
saves N times of calculating Lmax if we use the local 
maximum of the v’th line as Lmax. During the 
processing of v, if we count the maximum repeat times 
among the distances between v and px(x=1..N), we will 
consume O(N2) time cost. For the reason we just take 
out several distance values to statistic their repeat times 
instead of the maximum repeat. To improve the 
precision we can take several such v, then determine B 
as the best one among them. On that we can calculate 
the enlarge factor B just in O(N), even if we take 
multi-v from V. The algorithm of calculating the 
enlarge factor is shown in figure 5. The algorithm of 
building the index block is shown in figure 6. Unlike 
the algorithm shown in figure 3, our algorithm 
performs a pre-processing named quantification_bits to 
determine the enlarge factor.  
3.4. The algorithm of RkNN with index block  

Comparing to SI, our method re-arranges the 
distances of the index block, and the structure of the 
block is similar.  Thus the RkNN algorithm is similar 
too. The difference is that after calculated the dist(q, 
pi) , we should  convert it into the correspondence 
integer. The RkNN algorithm is shown in figure 7. 
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4. Experiments 
In this section we analyze and compare CSI with SI. 

We give some experimental results on both synthetic 
data and real data, and the number of objects in dataset 
N∈ (10000,20000). The experiments are run on an 
Intel(R) Pentium(R) M processor CPU 1.40 GHz PC 
machine of 512MB main memory, with Microsoft 
Windows XP SP2. We use workloads of 100 queries, 
and get the average. 

Figure 5. The algorithm of Quantification_bits. 
Before showing our result, we firstly analyze our 

algorithm. In section 3.3, the cost of quantification 
_bits can be O(N) and the cost of building the index 
block is O(N2 × log N)[1], the total cost of our 
build_index_block algorithm is also O(N2×log N ), 
which is the same as SI algorithm. 

Now we focus on the total length of the index block. 
Our method is flexible for it stores the distance by the 
necessary binary bits according to N. According to 
equation 3, the necessary bits is ⎡ ⎤1max)log( +L . 
Assuming N equals to 10000. The best result of our 
method needs only ⎡ ⎤1)10000log( + =14 bits to 
store each distance, which is about 22% of double. 
This means that our CSI can compress the index to 
22% of the original size of SI. Comparing the RkNN 

algorithms in figure 4 and figure 7, in the searching  
our RkNN method needs one additional step which 
enlarges dist(q,pi) by the factor B. Actually the 
enlarging operation simply multiplies dist(q,pi) by 2B, 
which costs O(1).With the index block, the RkNN 
algorithm also runs in constant cost for any k. The time 
is mainly consumed in reading the Ib index block from 
secondary storage in RkNN search. For CSI reduces 
the block size, it would be more efficient.   

Figure 6. The algorithm of Build_index_block. 

Figure 7. The algorithm of  RkNN. 
Figure 8 shows the comparison on CPU&I/O time 

and total execution time of SI and CSI methods 
according to different k. The experiments are on the 2-
dimension real data USpppoint.fnl which has 15206 
points. Figure 9 shows the comparison on CPU&I/O 

Algorithm Build_Index 
Input: data set V and  parameter M and K 
Begin 
1    call quantification_bits 
2    for b=1 to ⎡ ⎤MK /max   do 
3      for i=1 to N do 
4          initialize Ib[1:N][1:M]=∞; 
5           j0←(b-1)×M+1; 
6           jM←min{j0+M,maxM} 
7           find pi’s j’th NN, pj,  

sort dist(pi, pj) for j=j0,….,jM in  
              ascending order,  

store dist(pi, pj) × 2B to Ib[i][1..M] 
            endfor 
8          WRITE Ib; 
      endfor 
end

Algorithm RkNN 
Input: query object q and k 
enlarge factor B, dataset V and  M  
Output: Answer set Vr 
Begin 
1    Vr←NULL 
2    b← ⎡ ⎤MK /   
3    READ Ib    
4    k0← k-b× ⎡ ⎤MK /   
5     for i=1 to N do  
6         dq ← ⎡ ⎤B2pi)dist(q, ×  
7         if  dq <= Ib[k0]  then 
                Vr←Vr∪{pi} 
           endif 
        endfor 
        return Vr 
end 

Algorithm Quantification_bits 
Input: data set V, threshold T  
Output: B 
Begin 
1    B=8, finish=false, v = any element of V 
2    for i=1 to N  do 

 calculate dist(v, pi); 
3    while (!finish) 
5         too_many_confict=false 
6         for j=1 to N do /*enlarge*/ 
7            dist(v,pj) ← dist(v,pj) ×28 
          endfor 

8         if (!too_many_conflict) then 
9          count the max repeat times among the 

   distances between v and px(x=1..N) 
to max_rept 

10           if (max_rept>T) then 
11                B←B+8 
12                 too_many_conflict=true 
                endif 
           endif 
           endfor 
13   if (!too_many_conflict) then finish=true 
       endwhile 
       return B 
end 
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time and total execution time according to different 
dimension. The experiments are on synthetic data and 
N=10000, k=50. From left half of figure 8 or figure 9, 
we know both SI and CSI are running in constant cost 
for any k. The CPU time cost of SI is lower than CSI. 
This is because during the RkNN search, CSI has to 
convert the distances of q to any objects in V. While 
the I/O cost of SI is higher than CSI. The reason is 
trivial because in CSI IO happened for compressed 
index block. In both methods, the I/O cost is a 
dominating factor so lower I/O cost leads to lower total 
cost. In the right part of figure 8 or figure 9, it can be 
seen that CSI outperforms SI.  

Figure 8. Comparison on CPU&I/O time and total 
execution time vs k, on real data. 

Figure 9. Comparison on CPU&I/O time and total 
execution time vs dimension, on synthetic data. 
Table 8. The average number of objects of  the 
answer set (100 queries). 

k Average(SI) Average(CSI) Precision
1 0.26 0.26 1 
2 0.54 0.55 0.9818 
4 1.03 1.03 1 
8 2.07 2.07 1 

16 4.17 4.18 0.9976 
32 9.31 9.31 0.9989 
64 18.85 18.86 0.9995 

128 39.52 39.54 0.9995 
We define the symbol Average(SI) as the average 

number of objects of the RkNN under the workloads in 
the SI method. The Precision can be calculated by 
(Average(SI)/Average(CSI)). From Table 8 we can see 
shows in our experiments for any k, the value of 
Precision is larger than 0.99. This means we always 
can find the correct answer. This is because N∈
(10000, 20000) and B is 16. The dataset distributes 
uniformly so B bits can distinguish 216 or 65536, 

which is larger than the size of the dataset and thus few 
objects conflict. Table 8 also shows that Average(CSI) 
is always larger than Average(SI). This is because the 
Recall of CSI against SI is 100%, which means the 
candidate answer set of CSI contains the answer set of 
SI. The reason is when we enlarge the distances we 
control and solve the repeat problem.  
5. Conclusion 

In this paper we propose an improvement of finding 
RkNN straightforwardly. Our method, CSI, also search 
RkNN in constant running cost for any k. Our method 
develops from SI algorithm in [1], and is also based on 
pre-computed distance information. Both The two 
methods can be applied to any RkNN searches 
whenever the mutual distance between objects can be 
figured out. The difference is that CSI method 
reorganizes and compresses the index block, converts 
the mutual distance between objects to integer instead 
of double, stores the integer just in necessary binary 
bits and reduces the redundancy to the lowermost level. 
Although our method consumes more pre-computing 
time, it can reduce the size of the block in high degree. 
Therefore we can decrease the I/O cost during RkNN 
searching and improve the efficiency of RkNN 
searching. In the future work, we should take into 
consider the length of one index block M. A proper M 
would make the search more efficient. We will also 
develop efficient update algorithms for datasets such 
as insertion and deletion. 
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