
Finding RkNN by Compressed Straightforward Index

Yanmin Luo
Dept. Computer Science

HuaQiao University, Fujian,China
lym@hqu.edu.cn
Canhong Lian

Dept. Computer Science
HuaQiao University, Fujian,China

zuolian@hqu.edu.cn

Jianquan Liu
Dept. Computer Science

University of Tsukuba, Japan
ljq@dblab.is.tsukuba.ac.jp

Hanxiong Chen
Dept. Computer Science

University of Tsukuba, Japan
chx@cc.tsukuba.ac.jp

Abstract

Reverse Nearest Neighbor(RNN) query now is one

of the important queries in spatial database and data
mining. Reverse k Nearest Neighbor(RkNN) is the
extendibility of RNN. Given a set V of objects and a
query object q, an RkNN query returns a subset of V
such that each element of the subset has q as its kNN
member according to a certain similarity metric. Early
methods pre-compute NN of each data objects and find
RNN. Recent methods introduce index based on the
mutual distance between two objects. Chen brought
forward a method[1] which can find RkNN for any k
straightforwardly with constant running cost. The
method builds an index block for each object pi of V
which stores the pre-computed distances from pi to
each other object of V in ascending order. It can be
applied to any RkNN searches whenever the mutual
distance between objects can be figured out, and does
not require the triangle inequality. But the distance
values in index block is storage-consuming and
redundancy. In this paper, we propose an efficient
method to compress the index block. Our method uses
just the necessary bits to store the mutual distance
between objects hence reduces the redundancy to the
lowermost level. We evaluate the efficiency and
effectiveness of the proposed method.

1. Introduction

Finding the k-nearest neighbor(kNN) of a query
object and has been studied extensively in the past few
years for Euclidean distance, and metric data[3]. RNN
query is the novel from of NN query. But RNN queries
are much more complex than NN queries. Given a set
V of objects and a query object q, a reverse neighbor
query returns objects in a data set that have the query
object q as their nearest neighbor respectively,
according to some similarity metric. While the RkNN

query returns a subset of V such that each element of
the subset has q as its kNN member. RNN is the
special case of RkNN. If the k in RkNN equals to 1,
then the R1NN is RNN. Seeing the example in Figure
1, because q is the NN of both p3 and p4, the RNN of q
is {p3,p4}. While the R2NN of q is {p2,p3,p4}, for p2 is
the 2NN of q. The relationship between NN and RNN
is not symmetric. This means that the NN of q may not
be the RNN of q. For example, in figure 1, though p2
is the NN of q, q is not the NN of p2. Therefore p2 is
not the RNN of q.

Figure1. An example of RkNN.
RNN queries have been studied recently for finite,

stored data sets[4], and provide a natural way of
identifying the “influence” of a query point on the
database. RkNN query has been considered as a useful
and practical way to make database systems more
flexible in supporting user requirements. The RkNN
queries have get widely applications in geographic
information system(GIS), traffic networks[5], data
mining, etc. [2] gives an example of the application in
films rating database. [3] shows many application
examples, one of them is to plan the business location
of a new store. The strategy is to select the location
that maximizes the number of customers when more
than one possible location available. Reverse NN
query helps the purpose of maximizing the customers
of a location, by returning those customers who are
potentially interested in the new store. Early
methods[4,7] pre-compute NN of each data objects and
find RNN. Because of the storage cost and un-

p1

p2
p3

p4

q

p5

279

978-1-4244-2197-8/08/$25.00 ©2008 IEEE

Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering

efficiency in dealing database updates such as insertion
and deletion, those methods are considered to be
infeasible. Recent methods[3,8,9] utilize the data-
partitioning index such as M-tree to partition and filter
the dataset. Almost of the existing methods of RkNN
queries require O(N2) time. If we use them in outlier
detection[1], the cost will be O(N3). Considering the
cheap and large secondary storage and powerful
computer doing update in spare time, Chen and etc
argued that the pre-computing still finds its application
when online costs, that is, CPU times and I/O times are
the dominating factors being considered. Based on pre-
computed information they proposed an algorithm that
finds reverse k nearest neighbor (RkNN) search by
building straightforward index. We call the algorithm
by SI. SI can find RkNN for any k straightforwardly
with constant running cost.

In this paper we re-organize the index block of the
RkNN algorithm and propose a more efficient method
to find RkNN by compressed straightforward index
(shortly CSI). The remainder of this paper is organized
as follows. Section 2 gives a brief survey of related
work. Section 3 describes our strategies for RkNN
queries and gives out the algorithms. Section 4
experimentally evaluates the effectiveness of our
algorithms, and Section 5 concludes the paper.

Figure 2. The example of finding Reverse 2-NN of q.

2. Related Works and Motivation

Let V={p1,p2,p3,p4,p5,p6} be the data set, and let q
be the query object. Figure 2 shows an example of
finding Reverse 2-NN of q from V. Each circle ci with
the pi∈V(i=1..6) as its centre is the 2NN circle of pi.
The arrow radius centered at pi shows the maximum
distance between pi and any number of its 2NN points.
This means that only the k-NN(k>2) of pi will be
outside the circle ci. Now we take p1 and p4 as example
to explain how to estimate whether pi is the R2NN of q.
We can see in the figure, q is in the circle c4 while
outside c1. This is to say that the distance between q
and p4 is less than the maximum distance between p4
and any number of its 2NN points, and the distance

between q and p1 is greater than the maximum distance
between p4 and any number of its 2NN points. Thus
we can say p4 is in the R2NN of q, while p1 is not.
Utilizing this principle we conclude that the R2NN of
q in the figure 2 is {p4,p5,p6}.

Based on the above principle and under the
assumption that any distances between each two
objects of dataset have been pre-computed, we can
find the RkNN of q easily. Suppose that the pre-
computed distance as in table1. Based on the distance,
SI builds an index block for each object pi see table 2.
The order of the i’th line in table corresponds to the
distance of pi. For instance the third line of table
corresponds to p3. Distances in each line of index
block are sorted in ascending order. Concentrated on
the third line, we can see that the j’th element value
represents the maximum distance of p3’s j-NNs.
Table 1. The mutual distances between objects.

dist p1 p2 p3 p4 P5 P6
p1 - 5.3 2.6 4.7 8.5 3.4
p2 5.3 - 3.8 6.4 7.3 4.2
p3 2.6 3.8 - 3.5 6.5 4.5
p4 4.7 6.4 3.5 - 2.5 4.8
p5 8.5 7.3 6.5 2.5 - 3
p6 3.4 4.2 4.5 4.8 3 -
q 4.7 8 3.3 2.8 5.3 6

Table 2.The index block of the distances in table 1.
p1 2.6 3.4 4.7 5.3 8.5
P2 3.8 4.2 5.3 6.4 7.3
P3 2.6 3.5 3.8 5.5 6.5
P4 2.5 3.5 4.7 5 6.4
P5 2.5 3 6.5 7.3 8.5
P6 3.4 3 4.2 4.5 4.8

Now we can see how to find the reverse k-NN of q
by the index block. For example we want to search the
reverse 2-NN of q. Scanning the index block, for each
line numbered i we compare the second value with the
distance between pi and q. If the former is larger, then
pi is in the answer set. Seeing the second line, the
second value is 4.2 which is less than the distance
between p2 and q, this is to say q is not in the 2NN
circle of p2. We conclude p2 is not the R2NN of q.
Seeing another point p3(the third line), the second
value is 3.5 which is larger than the distance between
p3 and q. Thus p3 is in the R2NN of q. Based on this
principle we know the R2NN of q is {p3,p4}. Because
in real application the data set is large, if we store the
distances all in one single index block, then the index
block will be huge. SI indexes maxK neighbors of
each object, and divides the index block into blocks
having length M. In table 3, the length of M is two
double values (usually, 8 Bytes). We just read one
necessary block into the main memory to do the RkNN

280

Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering

query, on that we can save many I/O cost. In the above
example we want to find the R2NN of p, we need only
the block1. We show SI algorithms in figure 3 and
figure 4.
Table 3.The index blocks after block partition.

 block1 Block2 Block3
p1 2.6 3.4 4.7 5.3 8.5
P2 3.8 4.2 5.3 6.4 7.3
P3 2.6 3.5 3.8 5.5 6.5
P4 2.5 3.5 4.7 5 6.4
P5 2.5 3 6.5 7.3 8.5
P6 3.4 3 4.2 4.5 4.8

Figure 3. The Build_Index algorithm of SI.

Figure 4. The RkNN algorithm of SI.
Now we know the method can find RkNN for any k

straightforwardly with constant running cost. The time
is mostly consuming in I/O, and also the pre-compute
need many time. If we can compress the size of the
index block, we can make the algorithm more efficient.
This is the motivation of approach.

3. Approach
In this section we describe our CSI method. Table 4

lists the symbols and their definitions in our discussion.
From table 4, we know the values of each line should
be as different as possible. For repeat values make it
difficult to find the RkNN. We can use double or long
double to store the distances in order to guarantee the
precision, and distinguish the value in largest degree.
Take double into consider, this is to say that one value
in the block occupies 8 bytes. Our strategy is to use
integer value or even a binary less than 16 bits to store
the distance. On that we can compress the block at
least by 1/2. To do this we have to solve several
problems.
Table 4.Symbols and definitions in this paper.

V The whole data set of objects
N The number of objects in V
Q The query point

kNN(p,k) The kNNs of p

maxNN(p,k) The farthest data of kNN(p,k) from
p

dist(p,q) The distance between p and q
Lmax global distance maximum
Lmaxi local distance maximum
Max The function to get the maximum

maxK The maximum k being considered

B Number of bits for compressing a
distance

Ib The b’th index block
M Index block length

Table 5.The integer parts of distances in blocks.
 block1 Block2 Block3

p1 2 3 4 5 8
P2 3 4 5 6 7
P3 2 3 3 5 6
P4 2 3 4 5 6
P5 2 3 6 7 8
P6 3 3 4 4 4

Table 6.The index blocks after enlarging distances.
 block1 Block2 Block3

p1 26 34 47 53 85
P2 38 42 53 64 73
P3 26 35 38 55 65
P4 25 35 47 5 64
P5 25 3 65 73 85
P6 34 3 42 45 48

Firstly consider the simplest case which discards the
decimal part of each distance directly. This will result
in many data repeated. As table 5, there are three ‘4’ in
line p6. If the distance from q to p6 is 4 too, it is
impossible to judge whether p6 is the R3NN, R4NN or
R5NN of q. Thus when we convert to integer we have

Algorithm Build_Index
Input: data set V and parameter M and K
Begin
1 for b=1 to ⎡ ⎤MK /max do
2 for i=1 to N do
3 initialize Ib[1:N][1:M]=∞;
4 j0←(b-1)×M+1;
5 jM←min{j0+M,maxM}
6 sort pi’s j’th NN for j=j0,….,jM in
 ascending order, store to Ib[i][1..M]
 endfor
7 WRITE Ib;
 endfor
end

Algorithm RkNN
Input: query object q, k, dataset V and M
Output: Answer set Vr
Begin
1 Vr←NULL
2 b← ⎡ ⎤MK /
3 READ Ib
4 k0← k-b× ⎡ ⎤MK /
5 for i=1 to N do
6 if dist(q,pi)<=Ib[k0] then
 Vr←Vr∪{pi}
 endif
 endfor
 return Vr
end

281

Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering

to guarantee the precision. Therefore we should
convert the decimal fraction too. To do this, we
enlarge the distance value and move the radix point to
right. For example we enlarge the distances in table 3
by 10 times, and get the new block as table 6 which
eliminate the repeat problem in table 5.
3.1. Compress the distance by quantification

To avoid that the distance value after enlarging is
very large, we standardize the objects of dataset into
[0,1) space. Then the distance should be in [0, D).
To compress block efficiently, we store the enlarged
distance value in minimum binary bits. Suppose that
the necessary binary bits are Minb. An improper value
of Minb will affect our efficiency. If Minb is not large
enough, the repeat value in block would be severe. For
instance if we just use 2 binary bits to store 10
distances, there will be 6 overlap values, because 2 bits
can distinguish only 4 values. On the other hand, a too
big Minb would reduce the compress efficiency. It is
not necessary to assign 64 bits to store an integer
which its value is less than 100. Now we discuss how
to calculate the value Minb. We take the decimal
number as the example. In practice, we process all by
binary.
Table 7.The sample index block line.

0.58 0.15 0.5 0.35 0.7 0.55 0.6
0 0 0 0 0 0 0
5 1 5 3 7 5 6

58 15 50 35 70 55 60
We set a threshold T, which means the allowed

largest repeat times for a distance value in each
distance line of pi, see the line in table 2. Let T=2,N=7.
And assuming table 7, line 1 is a line of the index
block. If we take the integer part to replace the
distance, then all the distances are 0 (table 7, line 2).
The 0 in the line should repeat 7 times. Because 7>T,
this is not allowed. Therefore we enlarge the distance
value by 10 times, and take the integer part too. We get
the new block line (table 7, line 3). We can see the
distance value 5 repeat three times. Because 3>T, it is
also not a correct one so the value is enlarged further
by 10 times, and get the block line like in table 7,line 4.
Now there are no repeated values in this block line.
3.2. Calculate the necessary binary bits

In section 3.1 we know line 4 of table 7 is the
finally block line to store. The number of binary bits
we assign to store each value just satisfies the
condition that the maximum value can be stored. See
the block line, we know the maximum is 70 which is
large than 26(64) and less than 27(128). It is enough to
assign 7 binary bits to store each value. Utilizing the
binary bit operations, we can easily implement this.

Line 4 in Table 7 shows one of lines in an index
block, the maximum distance of each line is called
local maximum. There are N local maximums, Lmaxi
(i=1..N). For saving I/O cost and keeping the
efficiency, all the data in the index block should be
assigned the same bits that we call global maximum
and symbolize it as Lmax. We get the following two
equations.

Lmaxi(i=1..N)=max(dist(pi,pj)) (j=1..N,i≠j) (1)
Lmax=max(Lmaxi) (i=1..N) (2)
The number of binary bits we need to store the

integer can be calculated by the following equation 3.
N_bits= ⎡ ⎤1max)log(+L (3)
Because during the RkNN search, we also have to

convert the distances between q and pi(i=1..N) to
integer in exactly the same method we discuss in this
section. Let B store the enlarge factor. If the distance
value is enlarged 10 times, then B equals to 1. If 100
times, B equals to 2, and so on.
3.3. The algorithm to build the index block

The naive idea in section 3.2 for building the index
block requires scanning the original distances at least
twice. One to get the Lmax, the other to build the
index block. Considering the case that objects in
dataset distribute uniformly in data space, we can say
the range of the distances of each line in index block is
similar. Therefore the necessary binary bits we
calculate from one line of index block will be suitable
for the others. Taking an object v from V randomly, it
saves N times of calculating Lmax if we use the local
maximum of the v’th line as Lmax. During the
processing of v, if we count the maximum repeat times
among the distances between v and px(x=1..N), we will
consume O(N2) time cost. For the reason we just take
out several distance values to statistic their repeat times
instead of the maximum repeat. To improve the
precision we can take several such v, then determine B
as the best one among them. On that we can calculate
the enlarge factor B just in O(N), even if we take
multi-v from V. The algorithm of calculating the
enlarge factor is shown in figure 5. The algorithm of
building the index block is shown in figure 6. Unlike
the algorithm shown in figure 3, our algorithm
performs a pre-processing named quantification_bits to
determine the enlarge factor.
3.4. The algorithm of RkNN with index block

Comparing to SI, our method re-arranges the
distances of the index block, and the structure of the
block is similar. Thus the RkNN algorithm is similar
too. The difference is that after calculated the dist(q,
pi) , we should convert it into the correspondence
integer. The RkNN algorithm is shown in figure 7.

282

Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering

4. Experiments
In this section we analyze and compare CSI with SI.

We give some experimental results on both synthetic
data and real data, and the number of objects in dataset
N∈ (10000,20000). The experiments are run on an
Intel(R) Pentium(R) M processor CPU 1.40 GHz PC
machine of 512MB main memory, with Microsoft
Windows XP SP2. We use workloads of 100 queries,
and get the average.

Figure 5. The algorithm of Quantification_bits.
Before showing our result, we firstly analyze our

algorithm. In section 3.3, the cost of quantification
_bits can be O(N) and the cost of building the index
block is O(N2 × log N)[1], the total cost of our
build_index_block algorithm is also O(N2×log N),
which is the same as SI algorithm.

Now we focus on the total length of the index block.
Our method is flexible for it stores the distance by the
necessary binary bits according to N. According to
equation 3, the necessary bits is ⎡ ⎤1max)log(+L .
Assuming N equals to 10000. The best result of our
method needs only ⎡ ⎤1)10000log(+ =14 bits to
store each distance, which is about 22% of double.
This means that our CSI can compress the index to
22% of the original size of SI. Comparing the RkNN

algorithms in figure 4 and figure 7, in the searching
our RkNN method needs one additional step which
enlarges dist(q,pi) by the factor B. Actually the
enlarging operation simply multiplies dist(q,pi) by 2B,
which costs O(1).With the index block, the RkNN
algorithm also runs in constant cost for any k. The time
is mainly consumed in reading the Ib index block from
secondary storage in RkNN search. For CSI reduces
the block size, it would be more efficient.

Figure 6. The algorithm of Build_index_block.

Figure 7. The algorithm of RkNN.
Figure 8 shows the comparison on CPU&I/O time

and total execution time of SI and CSI methods
according to different k. The experiments are on the 2-
dimension real data USpppoint.fnl which has 15206
points. Figure 9 shows the comparison on CPU&I/O

Algorithm Build_Index
Input: data set V and parameter M and K
Begin
1 call quantification_bits
2 for b=1 to ⎡ ⎤MK /max do
3 for i=1 to N do
4 initialize Ib[1:N][1:M]=∞;
5 j0←(b-1)×M+1;
6 jM←min{j0+M,maxM}
7 find pi’s j’th NN, pj,

sort dist(pi, pj) for j=j0,….,jM in
 ascending order,

store dist(pi, pj) × 2B to Ib[i][1..M]
 endfor
8 WRITE Ib;
 endfor
end

Algorithm RkNN
Input: query object q and k
enlarge factor B, dataset V and M
Output: Answer set Vr
Begin
1 Vr←NULL
2 b← ⎡ ⎤MK /
3 READ Ib
4 k0← k-b× ⎡ ⎤MK /
5 for i=1 to N do
6 dq ← ⎡ ⎤B2pi)dist(q, ×
7 if dq <= Ib[k0] then
 Vr←Vr∪{pi}
 endif
 endfor
 return Vr
end

Algorithm Quantification_bits
Input: data set V, threshold T
Output: B
Begin
1 B=8, finish=false, v = any element of V
2 for i=1 to N do

 calculate dist(v, pi);
3 while (!finish)
5 too_many_confict=false
6 for j=1 to N do /*enlarge*/
7 dist(v,pj) ← dist(v,pj) ×28
 endfor

8 if (!too_many_conflict) then
9 count the max repeat times among the

 distances between v and px(x=1..N)
to max_rept

10 if (max_rept>T) then
11 B←B+8
12 too_many_conflict=true
 endif
 endif
 endfor
13 if (!too_many_conflict) then finish=true
 endwhile
 return B
end

283

Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering

time and total execution time according to different
dimension. The experiments are on synthetic data and
N=10000, k=50. From left half of figure 8 or figure 9,
we know both SI and CSI are running in constant cost
for any k. The CPU time cost of SI is lower than CSI.
This is because during the RkNN search, CSI has to
convert the distances of q to any objects in V. While
the I/O cost of SI is higher than CSI. The reason is
trivial because in CSI IO happened for compressed
index block. In both methods, the I/O cost is a
dominating factor so lower I/O cost leads to lower total
cost. In the right part of figure 8 or figure 9, it can be
seen that CSI outperforms SI.

Figure 8. Comparison on CPU&I/O time and total
execution time vs k, on real data.

Figure 9. Comparison on CPU&I/O time and total
execution time vs dimension, on synthetic data.
Table 8. The average number of objects of the
answer set (100 queries).

k Average(SI) Average(CSI) Precision
1 0.26 0.26 1
2 0.54 0.55 0.9818
4 1.03 1.03 1
8 2.07 2.07 1

16 4.17 4.18 0.9976
32 9.31 9.31 0.9989
64 18.85 18.86 0.9995

128 39.52 39.54 0.9995
We define the symbol Average(SI) as the average

number of objects of the RkNN under the workloads in
the SI method. The Precision can be calculated by
(Average(SI)/Average(CSI)). From Table 8 we can see
shows in our experiments for any k, the value of
Precision is larger than 0.99. This means we always
can find the correct answer. This is because N∈
(10000, 20000) and B is 16. The dataset distributes
uniformly so B bits can distinguish 216 or 65536,

which is larger than the size of the dataset and thus few
objects conflict. Table 8 also shows that Average(CSI)
is always larger than Average(SI). This is because the
Recall of CSI against SI is 100%, which means the
candidate answer set of CSI contains the answer set of
SI. The reason is when we enlarge the distances we
control and solve the repeat problem.
5. Conclusion

In this paper we propose an improvement of finding
RkNN straightforwardly. Our method, CSI, also search
RkNN in constant running cost for any k. Our method
develops from SI algorithm in [1], and is also based on
pre-computed distance information. Both The two
methods can be applied to any RkNN searches
whenever the mutual distance between objects can be
figured out. The difference is that CSI method
reorganizes and compresses the index block, converts
the mutual distance between objects to integer instead
of double, stores the integer just in necessary binary
bits and reduces the redundancy to the lowermost level.
Although our method consumes more pre-computing
time, it can reduce the size of the block in high degree.
Therefore we can decrease the I/O cost during RkNN
searching and improve the efficiency of RkNN
searching. In the future work, we should take into
consider the length of one index block M. A proper M
would make the search more efficient. We will also
develop efficient update algorithms for datasets such
as insertion and deletion.
Reference
[1] Hanxiong Chen, Rongmao Shi, Kazutaka Furuse, and
Nobuo Ohbo, Finding RkNN Straightforwardly with Large
Secondary Storage, INGS 2008, IEEE press.
[2] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proc. SIGMOD, pages 71–79, 1995
[3] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse nearest
neighbor searcher in metric spaces. IEEE Trans in Knowl.
Data Eng., 18(9):1239–1252, 2005.
[4] F. Korn and S. Muthukrishnan. Influence sets based on
reverse nearest neighbors. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 201-
212, Dallas,TX,May 2000.
[5] F. korn,S Muthukrishnan, and D. Srivastava, Reverse
Nearest Neighbor Aggregates Over Data Streams,Proc. of
28th VLDB Conf, HongKong,China,2002
[6] M. L. Yiu, N. Mamoulis, Reverse Nearest Neighbors
Search in Ad-hoc Subspace, Proc. of ICDE’06,HongKong.
[7] C. Yang and K.-I. Lin. An index structure for efficient
reverse nearest neighbor queries. In Proc. ICDE, pages 485–
492, 2001.
[8] Y.Tao, D.papadias, X.Lian, X. Xiao. Multidimensional
reverse knn search. The VLDB Journal, 16:293–316, 2007.
[9] E. Achtert, C. Bohm, P. Kroger, P. Kunath, A. Pryakhin,
M. Renz. Efficient reverse k-nearest neighbor searcher in
arbitrary metric spaces.In SIGMOD Conf.,pages515–
526,2007.

284

Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering

