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1 Abstract

We provide a brief overview of some Monte Carlo methods which have been used to simulate
systems with a turbulent fluid component. We discuss two main classes of simulation approaches:
an “Eulerian” class which is based on a random velocity field model defined on a fixed coordinate
system, and a “Lagrangian” class in which the motion of fluid particles and immersed particles are
instead stochastically modeled. The main aim of this article is to expose these novel simulation
approaches to turbulent and complex fluid systems to a broader readership familiar with stochastic
processes and to provide some pointers to the literature.

2 Introduction

A continuing challenge is the numerical simulation of turbulent systems, in which the fluid is forced
sufficiently vigorously so as to generate a disordered and unpredictable structure over a wide range
of scales [47, 74]. The key difficulty is the inability for even large computers to resolve all of
the active scales in systems with strong turbulence in a direct numerical simulation based on the
fundamental Navier-Stokes equations [43, 54]. A numerical representation of turbulence, however,
is crucial in computer simulation studies in many applied fields, ranging from atmosphere-ocean
dynamics (including weather and climate prediction) [11, 43, 47], combustion [7, 33, 45, 62, 80,
85], turbulent diffusion [48], mixing processes and numerous other engineering situations [36, 54].
These applications do not require a turbulence simulation with full fidelity – only certain key
features of the turbulence need to be represented. On the other hand, models which account for
turbulence only through an enhanced diffusivity coefficient are often insufficient [43, 54, 77]. This
is particularly the case in reaction and mixing processes where the fine-scale fluctuations in the
immersed chemical species play an important role, and these are completely ignored in a crude
eddy diffusion model and not well represented in large eddy simulations [33, 45].

Monte Carlo approaches are an attractive option for turbulence simulations due both to their
capacity for investigating systems with many degrees of freedom and to their natural generation
of a disordered velocity field structure and irregular particle trajectories. Indeed, it is difficult to
conceive of a deterministic mechanism for generating a velocity field with disordered fluctuations
over a wide range of scales, other than by an expensive direct numerical simulation which resolves
all those scales! Most recent methods which have been used to simulate turbulent systems can be
classified into two categories. In the first, which we call the “Eulerian” fluid simulation approach, a
velocity field is generated over a prescribed spatial domain, but by a direct stochastic construction
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rather than the much more expensive simulation of the nonlinear Navier-Stokes PDE’s. That is, the
turbulent velocity field u(x, t) is replaced by a stochastic model velocity field umod(x, t), which is
intended to mimic the important features of turbulence desired for the application. The trajectory
X(t) of any immersed particle representing, for example, a tracer, pollutant, or chemical reactant,
is then computed using the local value of the stochastically constructed velocity field umod(X(t), t).
For example, a passive, light tracer particle’s motion is often modelled by the stochastic differential
equation [48]:

dX(t) = u(X(t), t) dt +
√

2κdW(t), (1)

where a Brownian motion component
√

2κ dW(t) has been added to simulate the effects of molec-
ular diffusivity κ [48]. Multiple immersed particles are simulated by similar stochastic equations,
evaluated using the same realization of the turbulent velocity field u but independent Brownian
motions. The influence of particle buoyancy, inertia, drag, and memory effects resulting from
interaction with the dynamical fluid can be incorporated in more complete and complex equa-
tions [53, 69, 70, 76]; see also Subsection 4.2.

The main challenge with the Eulerian fluid simulation approach is the efficient generation of the
model synthetic velocity field umod(x, t), particularly when one wishes to mimic well the scaling
properties of turbulent flows. Once the synthetic velocity field is simulated, the integration of the
particle trajectories, particularly for passive tracer particles (1), can be handled by a standard
techniques [15, 17, 23, 28, 88]. For some special velocity field models, such as rapidly decorrelating
flows [37, 39, 48] and shear flows [3, 4, 32], it is possible to simulate directly (and rigorously)
the statistics of the velocity u(X(t), t) observed by an immersed particle or collection of particles
without having to simulate the random velocity field u(x, t) over a full spatial domain [23, 24, 26,
81]. The possibility of such a shortcut is, however, limited to special models. We discuss some
suitable Monte Carlo methods for generating synthetic turbulent velocity field models in Section 3.

An alternative “purely Lagrangian” simulation approach bases itself not on the construction
of a stochastic velocity field model but on a stochastic model for the evolution of particles in the
system. In many applications of the purely Lagrangian approach, there is never any reference to a
fluid velocity field; the effects of turbulence are already modeled by the equations of evolution of
the immersed particles. The purely Lagrangian approach has however also been used to simulate
the motion of the turbulent fluid itself [60, 84] by representing the fluid as a collection of particles
which evolve according to some stochastic equations. The fluid properties at a given position and
time are then defined in terms of the averaged properties of fluid particles in the vicinity.

The evolution equations for the position X(t) of a particle in a purely Lagrangian Monte
Carlo simulation is typically based on a continuous Markov evolution for the particle velocity and
position:

dX(t) = V(t) dt

dV(t) = A(X(t), V(t)) dt + B(X(t), V(t)) dW(t).
(2)

The (deterministic) coefficients A(x, v) and B(x, v) are defined by the particular stochastic model,
and there is much ongoing research as to both theoretically desirable [41, 71, 72, 78] and practically
desirable [86] forms for these coefficients. In chemically reacting or combusting systems, the equa-
tions (2) are augmented by another stochastic equation describing the local chemical composition
at the particle’s location [33, 62, 67]. The simulated particles in such applications should not be
viewed as physical particles but rather as markers keeping track of the effects of fluid convection.

The literature on developments and application of the purely Lagrangian simulation approach
is proliferating, and in the introductory spirit of this paper, we confine ourselves to describing
some foundational ideas in Section 4. We remark here that the Probability Density Function
(PDF) and related Filtered Mass Density Function (FMDF) methodology developed by Pope and
coworkers [64, 67, 68, 80, 86] and applied by several groups to problems in combustion [33, 62] is a
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notable case of a purely Lagrangian simulation approach. We also would like to draw the reader’s
attention to the burgeoning field of Dissipative Particle Dynamics (DPD) [1, 19, 20, 21, 27, 30, 63],
in which the small-scale dynamics of complex fluids, such as polymeric liquids, are simulated by a
purely Lagrangian approach similar of similar character to those used in turbulence studies. While
these fluids are not typically turbulent, the simulation models entail a stochastic component due
to thermal fluctuations which play an important role on the resolved microscales of motion.

Some novel Monte Carlo approaches have been proposed and developed which do not fall cleanly
into one of the two categories described above. For example, Kurbanmuradov and Sabelfeld [41, 72]
have formulated a hybrid Eulerian-Lagrangian fluid simulation algorithm for particle dispersion
which endeavors to draw from the strengths of each approach. Kerstein [35] has over the last
decade developed a stochastic model of turbulent mixing which can be simulated on a fixed line
segment representing a linear cut of the turbulent flow. The one-dimensionality of the model
permits all scales to be resolved, so that fine-scale features of immersed particle and chemical
mixing can be simulated. This one-dimensional turbulence model has been coupled to models for
stratus cloud-top entrainment instability [40] and chemical reaction [34, 56], where the outcome is
sensitive to small-scale fluctuations in the density of entrained air and reactants, respectively. In
another direction, Biechele, Breuer, and Petruccione [6, 8] have developed a Monte Carlo method
for simulating the deterministic evolution of decaying turbulence.

We close this brief introductory review in Section 5 with some general remarks about the
comparative utility of the Eulerian fluid and purely Lagrangian simulation approaches for turbulent
systems.

3 Eulerian Fluid Simulation Methods

As mentioned in the introduction, the primary challenge in most Eulerian fluid Monte Carlo
simulations is the generation of a synthetic random velocity field umod(x, t) which has certain
statistics and features mimicing those of a turbulent fluid in the regime of interest. For exam-
ple, a fully developed turbulent flow at sufficiently high Reynolds number should possess a wide
inertial range of scales over which the statistics of the velocity field assume a self-similar fractal
structure [10, 25, 43, 75]. A quantitative way to partially express this criterion is

〈|u(x + r, t) − u(x, t)|2〉 = SI
v |r|2H for LK � |r| � L0 (3)

where 〈·〉 denotes a statistical average, 0 < H < 1 is the Hurst exponent [49] which takes the
Kolmogorov value H = 1/3 for fully developed turbulence, LK is the dissipation length scale and
L0 is the integral length scale which define the extent of the inertial scaling range, and SI

v is a
(dimensional) scaling prefactor. Other desiderata in turbulence simulations are incompressibility
of the fluid and appropriate geometric symmetries such as isotropy.

To focus on main ideas and minimize notational complexity in this brief review, we will describe
four techniques for constructing one-dimensional, homogenous, steady, mean zero Gaussian random
fields u(x) with spatial structure prescribed equivalently through its correlation function R(x) or
energy spectrum E(k) [77, 87]:

R(x) = 〈u(x′)u(x′ + x)〉 =
∫ ∞

−∞
e2πikxE(|k|) dk.

After formulating the main ideas behind four simulation techniques, we briefly discuss some findings
from applications of these techniques on some test problems [15, 18, 32] and offer some guidelines
for their use. Our presentation must be brief here; more comprehensive reviews may be found
in [31] and [48, Sec. 6].
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All four methods which we will describe can be carried over to multi-dimensional and incom-
pressible flows through straightforward extension [73] or random plane wave construction [16, 46].
Evolving Gaussian Markov flows u(x, t) built from Ornstein-Uhlenbeck processes can also be gen-
erated by adaptation of the techniques presented [9, 72]. Much more challenging, however, is the
simulation of non-Gaussian random velocity fields with prescribed statistics, as would be needed
for a faithful representation of the effects of small-scale turbulent intermittency [74, 75]. We
emphasize, however, that much has been and can still be learned from exploration of turbulent
diffusion and combustion in simplified Gaussian models with various spatio-temporal structures,
particularly those with self-similar scaling regimes [48].

3.1 Fourier Method

The Fourier method, utilized in [82, 83], is based on the spectral representation formula for a
homogenous Gaussian random field [87, Sec. 8], which can be expressed in terms of real-valued
functions as

u(x) =
∫ ∞

0

cos(2πkx)E1/2(k) dW1(k) +
∫ ∞

0

sin(2πkx)E1/2(k) dW2(k). (4)

Here dW1(k) and dW2(k) are independent real-valued Gaussian white noise measures [87, Sec. 8]
with the formal properties

〈dW1(k)〉 = 〈dW2(k)〉 = 0,

〈dW1(k)dW1(k′)〉 = 〈dW2(k)dW2(k′)〉 = = δ(k − k′) dk dk′.
(5)

In the standard implementation of the Fourier method, the stochastic Fourier integral (4) is
truncated and discretized by an equispaced Riemann sum approximation:

uFour(x) =
M∑

j=0

E1/2(|j|∆k)
√

∆k [ξj cos 2πj∆kx + ηj sin 2πj∆kx] ,

where ∆k is the wavenumber spacing and M denotes the highest Fourier mode retained. The
{ξj}M

j=0 and {ηj}M
j=0 are independent standard (real-valued) Gaussian random variables, meaning

that each has mean zero and unit variance.
We note that the Fourier method generates a velocity field uFour(x) with an inherent spatial

period (∆k)−1. This feature can create often undesirable artifacts in turbulent diffusion simula-
tions, particularly over long times [14]. One way to reduce the effect of the periodicity is to use
a nonequally spaced discretization of the stochastic Fourier integral, but the choice of how to do
this would be ad hoc.

3.2 Randomization Method

A more attractive simulation technique based on the stochastic Fourier integral has been developed
and continues to be used by Sabelfeld and coworkers [36, 42, 57, 72, 73]. They discretize the
stochastic Fourier integral by a random choice of wavenumbers. This method is known as the
Randomization Method or Double Randomization Method. The positive real axis in Fourier space
is partitioned into M successive, non-overlapping intervals {Ij}M

j=1, usually chosen for purposes of
Monte Carlo variance reduction [48, Sec. 6] so that the energies in each interval

Ej =
∫

Ij

E(k) dk
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are equal.
Within each interval Ij, M̃ wavenumbers {k(m)

j }M̃
m=1 are chosen independently with a proba-

bility distribution weighted by the energy spectrum:

Prob {k(m)
j ∈ A} =

∫
A

pj(k) dk,

pj(k) =

{
E(k)
Ej

for k ∈ Ij ,
0 for k 6∈ Ij .

The random wavenumbers so selected are then used as a basis for discretizing the Fourier stochastic
integral representation (4):

uRand(x) =
1√
M̃

M̃∑
m=1

M∑
j=1

√
2Ej

[
ξ
(m)
j cos(2πk

(m)
j x) + η

(m)
j sin(2πk

(m)
j x)

]
,

where {ξ(m)
j , η

(m)
j } j=1...M

m=1...M̃

are a collection of independent standard Gaussian random variables.

The velocity field simulated by the Randomization Method actually produces the correct cor-
relation function (in the limit of large sample size) [48, 73]:

〈uRand(x + r)uRand(x)〉 = 〈u(x + r)u(x)〉 = R(r),

which makes it a useful tool for simulating velocity fields with strong long range correlations. The
drawback, however, is that uRand(x) has non-Gaussian statistics not corresponding to any physical
or ideal mathematical turbulence model [13, 73]. (There is no real possibility of tuning the method
to produce desired non-Gaussian features.) The departure from Gaussianity can be decreased by
choosing larger values of M̃ by a central limit argument, because uRand(x) can be thought of as
an average of M̃ independently simulated velocity fields with one wavenumber chosen from each
interval Ij [38, 48].

3.3 Moving-Average Method

Other types of Eulerian fluid Monte Carlo simulation methods can be derived from an alternative
(and equivalent) physical-space representation of the Gaussian random field:

u(x) =
∫ ∞

−∞
G(x− r) dW (r) =

∫ ∞

−∞
G(r) dW (x− r), (6)

where dW (r) is a Gaussian white noise measure as defined in (5) which is convolved against the
kernel

G(x) =
∫ ∞

−∞
cos(2πkx)E1/2(|k|) dk.

By a direct truncation and equispaced discretization of this physical space representation for
the velocity field v(x), we obtain the basis for the Moving Average simulation method first used
by McCoy [55]:

uMA(x) =
bx/∆rc+b∑

j=bx/∆rc−b

G(x − rj)ξj

√
∆r.

Here ∆r denotes the width of the discretization, b denotes the bandwidth of truncation of the
stochastic convolution integral (6), bxc denotes the greatest integer not exceeding x, {rj = j∆r}∞j=−∞
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are the equispaced grid points, and {ξj}∞j=−∞ is a collection of independent standard, real-valued
Gaussian random variables. Note that one only needs to keep track of the finite set (which grows
with time) of random variables ξj associated to grid points which are within a bandwidth of the
region which the particle(s) has explored. An efficient means of managing this kind of random
number generation, which is important for practical success of the more elaborate Wavelet Method
to be presented below, is described in [15].

One-sided variations of the moving average method have been used to simulate fractional Brow-
nian motion [22, 50, 51, 52], though we do not recommend the use of the moving average method
for simulating such random fields with strong long-range correlations due to its poor showing on
test problems [14].

3.4 Wavelet Method

The physical space representation (6) of the random velocity field u(x) can also be used as the
basis for a hierarchical Monte Carlo which is particularly well suited, but not restricted, to sim-
ulating random fields with strong correlations extending over many length scales with or without
the inertial-range scaling property (3). One proceeds by an exact expansion of the stochastic
convolution integral (6) with respect to an orthonormal basis of wavelets {φmn}m,n=−∞...∞:

u(x) =
∞∑

m,n=−∞
G ? φmn(x)ξmn,

φmn(x) = 2m/2φ(2mx − n) m, n = 0,±1,±2, . . . ,

where {ξmn}∞m,n=−∞ is a collection of independent standard Gaussian random variables, and φ is
a suitable Meyer wavelet [12]. The hierarchical structure of this representation is made clearer by
writing

u(x) =
∞∑

m=−∞
um(2mx),

um(x) =
∞∑

n=−∞
fm(x − n)ξmn,

fm(x) = Gm ? φ(x),
Gm(x) = 2−m/2G(2−mx).

This exact expression must of course be truncated for a numerical implementation:

uFW(x) =
M−1∑
m=0

uFW,m(2mx),

uFW,m(x) =
bxc+b∑

n=bxc−b

fFW,m(x − n)ξmn.

The power of this wavelet method is that long-range correlations in the velocity field can be
efficiently represented with reasonable values of M and b due to the hierarchical representation [13,
15]. It is crucial, however, to choose the Meyer wavelet φ so that the functions fFW,m decay rapidly
so that an accurate truncation of the sum over translates n may be taken at moderate values of b.
This can be accomplished by constructing the Fourier transform φ̂ of the Meyer wavelet using a pth
order perfect B-spline so that φ̂ is compactly supported away from the origin and has p bounded
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derivatives. This will ensure that fFW,m(x) decays at least as fast as o(|x|−p). Further theoretical
and implementation details may be found in [13].

The wavelet Monte Carlo method described here is the one called the Fourier-Wavelet method
in the literature [13, 48]. This Fourier-Wavelet Method is more flexible than an earlier wavelet
method [15], which also performed extraordinarly well but could only simulate velocity fields with
an entirely self-similar scaling structure.

3.5 Comparison of Eulerian fluid simulation methods

The above Monte Carlo techniques have been tested by the examination of single particle diffusion
and pair dispersion in synthetic shear flows generated by these methods [14, 15]. The simulation
results can be compared against exact analytical formulas for the statistics of the particle motion
in ideal Gaussian random shear flows with specified correlation function [31]. Moreover, by taking
different choices of correlation functions, the simulation techniques can be tested for a rich variety
of statistical structures in the velocity field. Numerical studies of the capacity of the Randomization
and Wavelet methods to generate velocity fields with a range of clean self-similar scaling have also
been published [13, 15].

In these studies, the direct Fourier method is found seriously deficient due to its inherent
periodicity artifact. For flows without strong long-range correlations, the Moving Average method
gave good results but the Randomization method had difficulties for such flows with coherent
oscillatory components (reflected in a negative tail to the correlation function). The Randomization
method and Wavelet Methods appear to be the best candidates for simulations where the velocity
field does have strong long-range correlations. The Wavelet Methods are particularly well-suited
for simulating random fields with many decades of self-similar scaling, as amply demonstrated by
the studies in [13, 15] and the clean validation of Richardson’s law for pair dispersion in [17]. The
Wavelet Methods, however, do have a rather high overhead cost, so the Randomization Method is
actually more efficient when four or fewer decades of self-similar scaling behavior in the velocity
field are desired. One must be cautious, however, with the non-Gaussian nature of the synthetic
velocity field simulated by the Randomization Method [13]; the Wavelet Methods by contrast
always simulate a Gaussian random field.

We emphasize that the above discussion concerns the ability of the Eulerian fluid simulation
methods to simulate Gaussian random fields with prescribed correlation function or energy spec-
trum. The issue of the simulation of the non-Gaussian, intermittent features of turbulent flows is
another matter [42, 72].

4 Purely Lagrangian Simulation Methods

Due to limited space, we endeavor here only to present some basic ideas behind the purely La-
grangian Monte Carlo methodology for turbulent systems, referring the reader to the references
for details.

4.1 Simulation of Fluid Motion and Properties

We begin by considering a purely Lagrangian model for the dynamics of a turbulent fluid itself,
in which the fluid evolution is described in terms of the motion of representative “fluid particles”
rather than in terms of a nonlinear partial differential equation such as the Navier-Stokes equations.
Models for the motion of immersed particles (which are generally of more applied interest) will be
extended from the pure fluid Lagrangian model.
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The general idea is that the acceleration of fluid particles should rapidly decorrelate in time [61],
so that the velocity Vf (t) of a fluid particle should evolve according to a continuous Markov process
which may be expressed in general in terms of a stochastic differential equation (SDE) (2) [78].
By contrast, there can be long-range temporal correlations in the velocity field, particularly in
high-Reynolds number turbulence, so a single stochastic differential equation for the position of a
fluid particle Xf (t) would be a poor model.

One simple class of Lagrangian models for fluid particle motion has the velocity of a fluid
particle evolve according to a diagonalized Langevin equation:

dXf(t) = Vf(t) dt

dVf(t) =
[−A0 − (Vf (t) − V̄f)/τf

]
dt + σ dW(t),

(7)

where A0 is a mean acceleration, V̄f is the mean fluid velocity, σ reflects the amplitude of the
unresolved random component of the fluid acceleration, and τf is the Lagrangian decorrelation
time of a fluid particle [48, 77]. Such a model is too crude to capture the fine-scale features of
fully developed turbulence, such as inertial-range scaling properties and intermittency, and will
poorly describe the dynamics of particle pairs separated by distances within or below the inertial
range of scales. However, the simple Langevin model (7) can be used as the basis for studies of
turbulent systems in applications where one wishes to model some influence of turbulent mixing by
the unresolved scales but is willing to neglect some of the statistical details of the mixing process.

The turbulence in such systems is almost always inhomogenous and changing in time, so one
should naturally allow the parameters A0, τf , V̄f , and σ to depend on the local mean properties of
the fluid at the current position Xf (t) of the fluid particle. Moreover, for anisotropic turbulence,
the drag term is often written as a tensor multiplied by the velocity difference Vf (t)−V̄f [67]. For
applications in modeling transport of immersed particles where the one-point velocity statistics
are time-invariant and can be taken to known a priori (perhaps through field observations of an
atmospheric or oceanic region ), then one can define appropriate deterministic functions of position
A0(x), V̄f(x) τf(x), and σ(x) for the mean acceleration, mean velocity, Lagrangian correlation
time, and root mean square turbulent velocity fluctuation, and set the parameters appearing in
(7) to be the evaluation of these deterministic functions at the current position x = Xf (t) of the
fluid particle [79].

When such a priori information is not available, particularly if the modeling interest is on
determining the statistics of the turbulent fluid itself, one must instead compute the mean local
fluid properties as the simulation proceeds. The natural way to do this is to define the mean of
a fluid property at a given location in terms of an ensemble average over the properties of fluid
particles within a certain neighborhood of that location [60, 68, 84, 86]. The mean velocity V̄f(x, t)
can be computed directly in this fashion. The Lagrangian correlation time τf (x, t) is modeled
similarly by associating an instantaneous local turbulent frequency Ω(t) to each fluid particle,
evolving Ω(t) according to an additional SDE, and then taking a local ensemble average of the
particle values Ω−1(t) to obtain a local value for the Lagrangian correlation time τf(x, t) [60, 66].
The mean acceleration A0(x, t) is usually modeled in terms of a pressure gradient [59, 67] which
must be computed by more elaborate means (enforcing a form of incompressibility [60] or linking
it by an equation of state to the local mean density in a compressible flow [84]). The magnitude
of the turbulent accelerations σ(x, t) is often related to the local energy dissipation rate through
an appeal to Kolmogorov’s theory [67, 65]. We remark that the frictional damping time τf(x, t)
and the noise amplitude σ(x, t) need not obey the fluctuation-dissipation relations of statistical
mechanics when the turbulent system is not in a statistically stationary state [59, 65, 67]
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4.2 Simulation of Immersed Particles

The motion of immersed solid particles can be modelled in a similar fashion. One approach for
dense particles is to relate the dynamics of the position Xp(t) and velocity Vp(t) of an immersed
particle to the fluid velocity Vs(t) “seen” by the particle [70]:

dXp(t) = Vp(t) dt

dVp(t) = (Vs(t) − Vp(t))/τp dt + Ap(t) dt,

where τp is a particle momentum relaxation time scale related to its inertia and drag, and Ap(t)
represents acceleration due to external forces (such as gravity) acting on the immersed particle.
The momentum relaxation time τp can be taken as constant for homogenous, low Reynolds number
flows, but generally depends on the location and velocity of the particle [69, 70]. The fluid velocity
seen by the immersed particle, Vs(t), is modeled by an equation of the form (7), but with the
Lagrangian correlation time generally decreased from that of a pure fluid particle model because
the immersed particle “sees” different fluid particles as it moves around [70]. A more sophisticated
model for immersed particle motion in homogenous turbulent flows is offered in [69], but this
approach does not yet seem to have been extended to inhomogenous turbulent flows. A more
detailed exposition of the purely Lagrangian modeling of the motion of particles immersed in a
turbulent fluid can be found in the paper by Minier [58] in this volume.

4.3 Hybrid LES/Monte Carlo Schemes

One particularly interesting use to which the purely Lagrangian Monte Carlo simulation method-
ology has been put is as a subgrid scale model for turbulent combustion studies [33, 62]. In these
simulations, the mean hydrodynamic variables are updated according to a large eddy simulation
(LES) scheme (based on the Navier-Stokes PDE), while the combustion and mixing of the chemical
reactants is handled by a purely Lagrangian Monte Carlo model. That is, the chemical reactants
are represented as a collection of particles, which move about according to certain stochastic dif-
ferential equations and also change their chemical composition due to mixing and reaction as they
move. Note that the representative particles in such as a scheme should not be thought of as
an actual chemical entity; they are rather representative parcels containing some mixture of the
chemicals present in the fluid. The coefficients of the stochastic differential equations governing
motion and chemical mixing are obtained from local mean fluid properties produced by the LES,
and the LES equations contain terms involving local averages over the chemical state of nearby
Lagrangian particles [33]. The incorporation of the Monte Carlo element into the turbulent com-
bustion simulation has been shown to significantly improve the accuracy of the results as compared
to a pure LES simulation [33, 62]. The reason is that the Monte Carlo component incorporates
some effects and dynamics of small-scale fluctuations in the chemical reactant density which are
not otherwise incorporated in the LES.

4.4 Theoretical Modeling Issues

In formulating Lagrangian models, one must pay heed not only to making physically motivated
choices of the parameters and functions in the model, but also to ensuring that grossly unphysical
artifacts are not generated. A variety of Langevin models of the form (7) have been shown to violate
seriously the very natural well-mixed condition [78] when applied to inhomogenous turbulence [44].
The well-mixed condition is the physically natural property that if the immersed particle density
equals the fluid density at a given point in time, it will continue to do so forever. In other words,
the simulation scheme should not “unmix” a well-mixed suspension of immersed particles in a
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fluid. A Langevin model of the form (7) can be made to obey the well-mixed condition if the mean
acceleration A0 is properly computed in terms of an averaged local pressure gradient [65], as in the
model presented in [29, 67]. Other purely Lagrangian models of the more general form (2) which
do respect the well-mixed condition have been formulated [42, 72, 78], but they are considerably
more complex and not often used in practical applications.

Another way in which the simple model (7) can be improved is to introduce coupling between
different particles which better reflect some of the small-scale statistical features of turbulence [42,
72].

5 Conclusion

In this introductory review, we have briefly described a few Monte Carlo approaches to the sim-
ulation of turbulent systems. The Eulerian fluid simulation approaches are useful primarily for
theoretical studies of turbulent diffusion and combustion, because well-designed methods (such as
the Randomization or Wavelet-based Methods [13]) can generate very good approximations to a
certain class of well-defined random flow models. By defining these random flows to have certain
features (such as an inertial scaling range and certain geometric properties), one can study in a
well-controlled way how immersed particles and/or chemical reactants respond to these features in
the model [2, 5, 17, 41, 48].

The purely Lagrangian Monte Carlo approach is, on the other hand, much less expensive than
the Eulerian fluid simulation approach and can be adapted to inhomogenous turbulent systems
prevalent in applications. There is still much to understand, however, in the design of good purely
Lagrangian models. Both theoretical criteria [42, 44, 72, 65, 78] and practical implementation
issues [68, 86] should continue to inform the development of these promising simulation tools.
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