
Memory Protection: Kernel and
User Address Spaces
Sarah Diesburg
Operating Systems
CS 3430

Up to This Point

• Threads provide the illusion of an infinite
number of CPUs
▫ On a single processor machine

• Memory management provides a different set of
illusions
▫ Protected memory
▫ Infinite amount of memory
▫ Transparent sharing

Physical vs. Virtual Memory

Physical memory Virtual memory

No protection Each process isolated
from all others and from
the OS

Limited size Illusion of infinite
memory

Sharing visible to
processes

Each process cannot tell
if memory is shared

Memory Organizations

• Simplest: uniprogramming without
memory protection
▫ Each application runs within a hardwired range of

physical memory addresses
• One application runs at a time
▫ Application can use the same physical addresses

every time, across reboots

Uniprogramming Without Memory
Protection
• Applications typically use the lower memory

addresses
• An OS uses the higher memory addresses
• An application can address any physical memory

location

000000 ffffff

Physical memory

Application Operating system

Multiprogramming Without Memory
Protection
• When a program is copied into memory, a

linker-loader alters the code of the program
(e.g., loads, stores, and jumps)
▫ To use the address of where the program lands in

memory

Multiprogramming Without Memory
Protection
• Bugs in any program can cause other programs

to crash, even the OS

000000 ffffff

Physical memory

Application 1 Operating system Application 2

Multiprogrammed OS With Memory
Protection
• Memory protection keeps user programs

from crashing one another and the OS
• Two hardware-supported mechanisms
▫ Address translation
▫ Dual-mode operation

Address Translation
• Recall that each process is associated with an

address space, or all the physical addresses a
process can touch

• However, each process believes that it owns the
entire memory, starting with the virtual address
0

• The missing piece is a translation table to
translate every memory reference from virtual to
physical addresses

Address Translation Visualized

Virtual
addresses

Physical
addresses

Translation table

More on Address Translations

• Translation provides protection
▫ Processes cannot talk about other processes’

addresses, nor about the OS addresses
▫ OS uses physical addresses directly
 No translations

Dual-Mode Operation Revisited

• Translation tables offer protection if they cannot
be altered by applications

• An application can only touch its address space
under the user mode

• Hardware requires the CPU to be in the kernel
mode to modify the address translation tables

Details of Dual-Mode Operations

• How the CPU is shared between the kernel and
user processes

• How processes interact among themselves

Switching from the Kernel to User
Mode
• To run a user program, the kernel
▫ Creates a process and initialize the address space
▫ Loads the program into the memory
▫ Initializes translation tables
▫ Sets the hardware pointer to the translation table
▫ Sets the CPU to user mode
▫ Jumps to the entry point of the program

To Run a Program

User level

Kernel level

Translation table
Hardware pointer

user mode

PC

Switching from User Mode to Kernel
Mode
• Voluntary
▫ System calls: a user process asks the OS to do

something on the process’s behalf
• Involuntary
▫ Hardware interrupts (e.g., I/O)
▫ Program exceptions (e.g., segmentation fault)

Switching from User Mode to Kernel
Mode
• For all cases, hardware atomically performs the

following steps
▫ Sets the CPU to kernel mode
▫ Saves the current program counter
▫ Jumps to the handler in the kernel
 The handler saves old register values

Switching from User Mode to Kernel
Mode
• Unlike context switching among threads, to

switch among processes
▫ Need to save and restore pointers to translation

tables
• To resume process execution
▫ Kernel reloads old register values
▫ Sets CPU to user mode
▫ Jumps to the old program counter

User  Kernel

User level

Kernel level

set kernel mode
PC

PC

handler trusted code

register values translation tables
(for processes)

Kernel  User

User level

Kernel level

set kernel mode
PC

PC

handler trusted code

register values translation tables
(for processes)

Kernel  User

User level

Kernel level

PC

PC

handler trusted code

register values translation tables
(for processes)

user mode

Communication Between Address
Spaces
• Processes communicate among address spaces

via interprocess communication (IPC)
▫ Byte stream (e.g., pipe)
▫ Message passing (send/receive)
▫ File system (e.g., read and write files)
▫ Shared memory

• Bugs can propagate from one process to another

Interprocess Communication
• Direct
▫ send(P1, message);
▫ receive(P2, message);
▫ One-to-one communication

• Indirect
▫ Mailboxes or ports
▫ send(mailbox_A, message);
▫ receive(mailbox_A, message);
▫ Many-to-many communication

Protection Without Hardware Support

• Hardware-supported protection can be slow
▫ Requires applications be separated into address

spaces to achieve fault isolation
• What if your applications are built by multiple

vendors? (e.g., Firefox plug-ins)
▫ Can we run two programs in the same address

space, with safety guarantees?

Protection via Strong Typing

• Programming languages may disallow the
misuse of data structures (casting)
▫ e.g., LISP and Java

• Java has its own virtual machines
▫ A Java program can run on different hardware

and OSes
- Need to learn a new language

Protection via Software Fault Isolation

• Compilers generate code that is provably safe
▫ e.g., a pointer cannot reference illegal addresses

• With aggressive optimizations, the overhead can
be as low as 5%

 A malicious user cannot jump to the last

line and do damage, since safe is a legal
address

Protection via Software Fault Isolation

Original instruction Compiler-modified version
st r2, (r1) safe = a legal address

safe = r1

Check safe is still legal
st r2, (safe)

	Memory Protection: Kernel and User Address Spaces
	Up to This Point
	Physical vs. Virtual Memory
	Memory Organizations
	Uniprogramming Without Memory Protection
	Multiprogramming Without Memory Protection
	Multiprogramming Without Memory Protection
	Multiprogrammed OS With Memory Protection
	Address Translation
	Address Translation Visualized
	More on Address Translations
	Dual-Mode Operation Revisited
	Details of Dual-Mode Operations
	Switching from the Kernel to User Mode
	To Run a Program
	Switching from User Mode to Kernel Mode
	Switching from User Mode to Kernel Mode
	Switching from User Mode to Kernel Mode
	User  Kernel
	Kernel  User
	Kernel  User
	Communication Between Address Spaces
	Interprocess Communication
	Protection Without Hardware Support
	Protection via Strong Typing
	Protection via Software Fault Isolation
	Protection via Software Fault Isolation

