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Abstract—This paper proposes a novel transactional memory 
design: conflict graph based hardware transactional memory. 
It allows two conflicting transactions both to commit if they do 
not violate the condition of serializability. Simulation results 
show that conflict graph based hardware transactional 
memory outperforms the state-of-art transactional memory 
system. 

Keywords-transactional memory; conflict detection; 
serializability; conflict graph 

I. INTRODUCTION  
As the development of chip-multiprocessing, parallel 

programming is becoming more and more important. 
Transactional memory [1][2] is a promising technique to 
ease parallel programming by simplifying the concurrency 
control of accesses to shared memory locations. 

Transactional memory encapsulates a number of memory 
accesses into a transaction which ensures atomicity, isolation 
and serializability. Serializability ensures the result of 
concurrent execution of transactions is the same with a 
sequential execution of the transactions in a certain order. 
During the execution of a transaction, the read/write set is 
recorded. If two transactions access the same memory 
location and at least one of them is a write access, a conflict 
will be detected and one of the conflicting transactions are 
aborted. This conflict handling strategy can ensure the 
serializability of the concurrent execution of transactions, but 
it limits the concurrency too much. As is shown in Fig. 1 a), 
two transactions, T0 and T1 access the variable A and T1 is a 
write. When T1 commits, T0 should be aborted. But even if 
T0 commits successfully,the serializability of the concurrent 
execution of T0 and T1 is still maintained. Fig. 1 b) shows a 
possiable serial execution order. 

 

 
Figure 1.  A Serializable Execution of Two Transactions with Conflict 

This paper proposes CGHTM (conflict graph based 
hardware transactional memory), which allows two 
conflicting transactions both to commit. We test CGHTM 
against EasyTM [7], which extends the directory cache 
protocol to support eager conflict detection and lazy version 
management. Simulation results show that CGHTM reduces 
transaction aborts significantly, which leads to better 
performance. 

II. SERIALIZABILITY AND CONFLICT GRAPH 
A transaction can be denoted as a number of operations 

in a certain order. The operations allowed are read, write and 
commit. The read operation operates directly to the shared 
data while the write operation does not. When a write 
operation is performed to a memory location, the new value 
is not directly written to it. The new value is buffered in a 
private buffer until the commit of the transaction. 

A schedule of a set of transactions is a sequence of the 
actions performed by the transactions in a certain order. A 
conflict or dependence exists between two actions from two 
different transactions if they access the same address and at 
least one of them is a write. A conflict can only happens 
between a read operation and a commit operation or two 
commit operations since all the write operation does not take 
effect untile transaction commit. A schedule is a serial 
schedule if the actions from different transactions do not 
interleave. Two schedules are conflict equivalent if they 
contain the same actions and the order of the conflicting 
actions is the same. If a schedule is conflict equivalent to a 
serial schedule, then we say it is a conflict serializable 
schedule [4]. 

The serializability of a schedule can be judged through 
the conflict graph [3][4]. The conflict graph of a schedule is 
a directed graph, of which the nodes represent the 
transactions. Conflicting transactions are connected with an 
edge, which come out of the transaction that performs the 
conflicting operation earlier and go into the transaction that 
performs the conflicting operation later in time. A schedule 
is serializable if its conflict graph is acyclic [3][4]. 

As is shown in Fig. 2 a), The transaction T0 and T3 both 
access variable C and the operation from T3 is a write. In 
most proposed hardware transactional memory designs, the 
commit of T3 will abort T0. The commit of T1 and T2 will 
also cause the abort of T0. However, even if the commits of 
T1, T2 and 
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Figure 2.  An Example of Concurrent Execution of Transactions 

T3 happen before the commit of T0, the conflict graph of 
the schedule is still acyclic (2 c)). The corresponding serial 
schedule is shown in Fig. 2 b). 

Most of the state-of-art hardware transactional memory 
systems do not allow conflicting transactions both to commit 
even if the conflict graph is acyclic. This limits the 
concurrency of the execution of transactional programs and 
degrades performance. Therefore, we propose the CGHTM 
(conflict graph based hardware transactional memory), 
which directly use conflict graph as the key mechanism for 
concurrency control.CGHTM receives all the schedules of 
which the conflict graph is acyclic. 

III. DESIGN AND IMPLEMENTATION 

A. Maintainance of the Conflict Graph 
Each processor should maintain three sets to maintain the 

conflict graph dynamically: the predecessor set (PS), 
successor set(SS) and write-write conflict set(WS). If 
processor Pi runs transaction Ti, then the PS contains all the 
processor that runs the transactions which are predecessors 
of Ti in the conflict graph. If transaction Tj, which is running 
on processor Pj, issues a read operation to the shared variable 
written by Ti, then Pj should be added to the PS of Pi. The 
SS of Pi contains all the processor that runs the transactions 
which are successors of Ti in the conflict graph. If 
transaction Tj, which is running on processor Pj, issues a 
write operation to the shared variable read by Ti, then Pj 
should be added to the SS of Pi. The WS of Pi contans all the 
processors that runs the transactions which have issued a 
write operation to the shared variables written by Ti. When a 
write-wirte conflcit is deteced between transaction Ti and Tj, 
the direction of the edge between Ti and Tj can not be 
determined until one of them commits. So we should keep 
the processors which runs transactions with write-write 
conflict in the WS until one of them commits. 

The three set are implemented as three bitvectors, of 
which each bit represnets one processor in the system. The 
three bit vectors are dynamically updated according to the 
conflict detection results. When a transaction is ready to 
commit, it just detects whether there is a circle in the conflcit 
graph to determine if it should abort. 

B. Conflict Detection 
We extends the directory based cache coherence protocol 

to detect the conflcits. The directory should responds to two 
extra messages: tx_read and tx_write. Moreover, the 
directory should records the readers and wrters for all the 
cache blocks. 

When a transaction issues a read/write operation to a 
certain cache block, it should send a tx_read/tx_write 
message to the directory. Then the directory should respond 
with a tx_ ack message. tx_ack message tells the processor 
which processor have written/read the cache block. The 
processor that receives inform message updates its PS, SS 
and WS, and responds with inform _ack message. 

Fig. 3 shows an example of conflict detection. Two 
transactions are running on two processors, P0 and P1 
correspondingly. When P1 read cache block A, it sends a tx_ 
read(A) message to the directory. The directory add P1 to the 
reader set of the cache block A and responds with tx_ack 
message. P1 won’t send any messages to other processors 
since T1 is the only reader of A currently. Then P0 is about 
to read 

 
Figure 3.  The Conflict Detection Between Processors 
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Figure 4.  The Circle Detection Process 

cache block A. It sends tx_read(A) message to the 
directory. The directory responds with a tx _ack message and 
adds P0 to the reader set of A. Until now, both P0 and P1 
completes a read operation and no conflict happens. There is 
no need to communicate with the directory for the successor 
read operation from P0 and P1 to cache block A. 

Then P0 is about to write cache block A. It sends a tx_ 
write(A) message to the directory. The directory adds P0 the 
writer list of A and responds with a tx_ ack message, which 
tells P0 that P1 have read cache block A. This means the 
commit operation of P1 in the future will cause a conflict 
with the read operation of P0. P0 adds P1 to its PS and send 
P1 a inform message to tell P1 about the conflcit detected. 
When P1 receives the inform message, it adds P0 to its SS 
and responds with a inform_ ack message. After P0 receives 
the inform_ ack message, the write operation to A is 
completed. The successor operation from P0 to A incures no 
communication to the directory until the commit of operation 
of P0. 

C. Conflict Circle Detection 
When a transaction is ready to commit, it should detects 

whether a circle exists in the conflict graph. The most direct 
way to detect a circle is to send circle detection messages to 
its predecessors. Its predecessors then forward the message 
to their predecessors ... and so on. If the circle detection 
message returns to the source processor, a circle is detected. 
The problem with this method is that it can detect the 
existence of a circle easily but it cannot ensure the non-
existence of circles. Moreover the conflict detection 
messages may consume a lot of network bandwidth. This 
paper proposes a conflict detection method which incure no 
explicit circle detection messages between processors. 

Fig. 4 shows an example which illustrates the process of 
circle detection. At the initial state, there is a conflict circle 
among processor P0, P1 and P2. When P1 is ready to commit, 
it detects whether a self-circle exists. A self-circle means a 
transaction ”conflicts” with itself. If no self-circle exists, P1 
begin its commit operation. During the commit, P1 sends 
messages to its predecessors to add new edges to the conflict 
graph. These edges come out of the successors of P1 and go 
into the predecessors of P1. After the commit of P1, P2 
becomes ready to commit. Also, it detects no self-circle and 
commit succefully. A new edge is added so that the conflict 
relationship is forwarded correctly. After the commit of P2, 
P0 is the only node in the conflict graph and a self-circle 
exists. P0 detects the self-circle and aborts 

 
Figure 5.  Handling Transaction Commit 

D. The Commit/Abort of Transaction 
When a transaction is ready to commit, the PS, SS and 

WS of the corresponding processor contains the information 
about the conflict relationship between the transaction and 
other transactions. The commit and abort operation is 
performed according to the three sets. 

The commit process can be divided into two sub-
processes: commit validation and commit execution. The 
commit validation consists of two steps: self-circle detection 
and conflict relationship forwarding. self-circle detection can 
be done by checking whether the PS contains itself. conflict 
relationship forwarding is done by sending the conflict 
message to its predecessors and successors. Its predecessors 
will update its SS according to the conflict message and its 
successors will update its PS according to the depend 
message. As is shown in Fig. 5 a), processor P3 setup a 
conflict edge between its predecessor P2 and successor P4. If 
a processor receives a conflict message, it should respond 
with a conflict ack message. 

The commit execution consists of three steps: data write 
back, commit acknowledgment and conflict edge deletion. 
The data write back is similar to a non-transactional write. 
The processor sends a write request to the directory to get 
exlusive access to the cache block and then write back dirty 
data. The data write back will invalidate all other copies of 
the cache block in other processors. The commit 
acknowledgment is done by sending delme messages. As is 
shown in Fig. 5 b), processors that receives delme message 
delete the message sender from its PS, SS, and WS. After the 
previous two steps, the processor clear its PS, SS, WS and 
finishes the commit operation. There are three situations 
under which a transaction should abort. The first one is 
commit validation failure. The existence of self-circle and 
conflict nack message are the main causes for a commit 
validation failure. The second one is that a system exception 
comes up during the commit operation. The last one is some 
other processor non-transactionally modifies a cache block 
which is accessed by the commiting processor. 

The abort of a transaction takes three actions. Firstly, the 
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Figure 6.  Speedup Achieved for The Kernels 

aboring processor should send delme message to the 

predecessors and successors to delete it self from the conflict 

graph. Secondly, it discards all the modifications to the cache 

blocks during the execution of the transaction. Lastly, it clear 

its PS, SS and WS. After the three actions above, the 

processor restarts the execution of the transaction. 

E. Hardware Cost Estimation 

The hardware cost to support conflict grapgh based 

transactional memory consists of two aspects. The first 

aspects is the exetention to the processor core. Each 

processor core should maintain three bit vectors to records 

the three sets (PS, SS and WS). Also a three-bit transaction 

status register should be added. The status register contains 

two fields: an one-bit T (transactional) field used to tag 

whether the processor is running transactional code, an two-

bit S (State) field tags the current state of the executing 

transaction, including normal execution, commit validation, 

commit execution and abort. 

The second aspects is the extension to the directory and 

cache system. Two bits should be added to each cache block: 

the transactional read bit and transactional write bit. The 

transactional read bit tags whether the cache block is 

transactionally read by a processor, and the trasactional write 

bit tags whether the cache block is transactioanl written. The 

directory should maintain two extra bit vector for each cache 

block: the transactional reader bit vector and transactional 

writer bit vector. The transactional reader bit vector records 

all the processors that have performed a read operation on 

the cache block. The transactional writer bit vector records 

all the processors that have performed a write operation on 

the cache block. 

TABLE I.  SIMULATOR CONFIGRATION 

Number of Cores 1 32, Sparcv9 instruction set
L1 cache 32KB, four set-associative
L2 cache 4MB 
Network 2-D Mesh, 8 cycles each hop

IV. EVALUATION 

A. Simulation Enviroment 

We modifies the GEMS [5] simulator, a full-system 

simulator based on simics [6], to model a multi-core system 

which supports conflict graph based transactional memory. 

The multi-core system connects up to thirty-two processor 

cores through a two-dimensional mesh network. Each 

processor core owns its private L1 cache and part of the L2 
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cache. Detailed configuration of the simulator is shown in 

Tab. I. 

We also setup two other configurations to evaluate the 

efficiency of CGHTM. The first one is the ideal hardware 

transactional memory, which is CGHTM with a network 

latency of zero. The second one is configured to be as close 

as possible to EasyHTM [7], which is also based on directory 

protocol. 

The benchmarks used in this paper are six kernels from 

STAMP [8], which is a test suit developed specially for 

transactional memory. The six kernels are bayes, kmeans, 

intruder, labyrinth, ssca2 and yada. These kernels issues 

transactions with different length and dataset. They can 

reflect the performance of transactional memory system 

under different situation. 

B. Results 

Fig. 6 shows the speedup achieved by the three different 

transactional memory systems. In most cases CGHTM 

performs closer to the ideal transactional memory system. 

CGHTM does not show its advantage much for two 

special cases. The first case is that there are a lot of circle 

conflicts in the benchmark, the performance of parallel 

processing cannot be developed. Labyrinth is an example of 

this case. There is a global shared array in labyrinth. Almost 

all the transactions read the whole array and update a few of 

its elements. In this case, almost arbitrary two transactions 

circularly conflict with each other, which introduces massive 

aborts. The second case is that there are few conflict among 

the transactions executed. In this case, all the three systems 

achieve near-linear speedups. Bayes and vacation are 

examples of this case. 

V. RELATED WORK 

The concept of transactional memory is introduced by 

herlihy [1] in 1993. After that lots of researchers propose 

different implementations of transactional memory, 

Including software implementations and hardware aided 

implementations. Hardware aided transactional memory 

supports TM semantics with special hardware resources, 

which serves better performance tan software transactional 

memory. Most of currently proposed hardware transactional 

memory systems, such as TCC [9], ScalableTCC [10], 

LogTM/LogTM-SE [11], [12], TokenTM [13], do not allow 

conflicting transactions both to commit, even if the 

serializability condition is not vaolated. This limits the 

performance of hardware transactional systems. Aydonat [14] 

proposes a hardware transactional memory implementation 

which supports conflict serializability through serializability 

order number. But it needs a huge global table to maintain 

metadata for all the memory blocks. This paper proposes 

conflict graph based hardware transactional memory, which 

supports conflict serializability through maintaining the 

conflict graph dynamically. CGHTM can achieve better 

concurrency with reasonable hardware cost. 

VI. CONCLUSION 

Conflict graph based hardware transactional memory 

allows two conflict transactions both to commit if 

serializability is not violated. This adds to the concurrency of 

the execution of transactions, which leads to better 

performance. Simulation shows CGHTM outperforms the 

state-of-art hardware transactional memory system for most 

benmarks and its performance is close to the ideal 

transactional memory system. 
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