
Conflict Graph Based Hardware Transactional Memory

Kun Zeng, National University of Defense Technology
National Laboratory for Parallel and Distributed Processing, School of Computer

National University of Defense Technology
ChangSha, Hunan, China

Email: kunzeng.nudt@gmail.com

Abstract—This paper proposes a novel transactional memory
design: conflict graph based hardware transactional memory.
It allows two conflicting transactions both to commit if they do
not violate the condition of serializability. Simulation results
show that conflict graph based hardware transactional
memory outperforms the state-of-art transactional memory
system.

Keywords-transactional memory; conflict detection;
serializability; conflict graph

I. INTRODUCTION
As the development of chip-multiprocessing, parallel

programming is becoming more and more important.
Transactional memory [1][2] is a promising technique to
ease parallel programming by simplifying the concurrency
control of accesses to shared memory locations.

Transactional memory encapsulates a number of memory
accesses into a transaction which ensures atomicity, isolation
and serializability. Serializability ensures the result of
concurrent execution of transactions is the same with a
sequential execution of the transactions in a certain order.
During the execution of a transaction, the read/write set is
recorded. If two transactions access the same memory
location and at least one of them is a write access, a conflict
will be detected and one of the conflicting transactions are
aborted. This conflict handling strategy can ensure the
serializability of the concurrent execution of transactions, but
it limits the concurrency too much. As is shown in Fig. 1 a),
two transactions, T0 and T1 access the variable A and T1 is a
write. When T1 commits, T0 should be aborted. But even if
T0 commits successfully,the serializability of the concurrent
execution of T0 and T1 is still maintained. Fig. 1 b) shows a
possiable serial execution order.

Figure 1. A Serializable Execution of Two Transactions with Conflict

This paper proposes CGHTM (conflict graph based
hardware transactional memory), which allows two
conflicting transactions both to commit. We test CGHTM
against EasyTM [7], which extends the directory cache
protocol to support eager conflict detection and lazy version
management. Simulation results show that CGHTM reduces
transaction aborts significantly, which leads to better
performance.

II. SERIALIZABILITY AND CONFLICT GRAPH
A transaction can be denoted as a number of operations

in a certain order. The operations allowed are read, write and
commit. The read operation operates directly to the shared
data while the write operation does not. When a write
operation is performed to a memory location, the new value
is not directly written to it. The new value is buffered in a
private buffer until the commit of the transaction.

A schedule of a set of transactions is a sequence of the
actions performed by the transactions in a certain order. A
conflict or dependence exists between two actions from two
different transactions if they access the same address and at
least one of them is a write. A conflict can only happens
between a read operation and a commit operation or two
commit operations since all the write operation does not take
effect untile transaction commit. A schedule is a serial
schedule if the actions from different transactions do not
interleave. Two schedules are conflict equivalent if they
contain the same actions and the order of the conflicting
actions is the same. If a schedule is conflict equivalent to a
serial schedule, then we say it is a conflict serializable
schedule [4].

The serializability of a schedule can be judged through
the conflict graph [3][4]. The conflict graph of a schedule is
a directed graph, of which the nodes represent the
transactions. Conflicting transactions are connected with an
edge, which come out of the transaction that performs the
conflicting operation earlier and go into the transaction that
performs the conflicting operation later in time. A schedule
is serializable if its conflict graph is acyclic [3][4].

As is shown in Fig. 2 a), The transaction T0 and T3 both
access variable C and the operation from T3 is a write. In
most proposed hardware transactional memory designs, the
commit of T3 will abort T0. The commit of T1 and T2 will
also cause the abort of T0. However, even if the commits of
T1, T2 and

496

978-1-4244-5539-3/10/$26.00 ©2010 IEEE

Figure 2. An Example of Concurrent Execution of Transactions

T3 happen before the commit of T0, the conflict graph of
the schedule is still acyclic (2 c)). The corresponding serial
schedule is shown in Fig. 2 b).

Most of the state-of-art hardware transactional memory
systems do not allow conflicting transactions both to commit
even if the conflict graph is acyclic. This limits the
concurrency of the execution of transactional programs and
degrades performance. Therefore, we propose the CGHTM
(conflict graph based hardware transactional memory),
which directly use conflict graph as the key mechanism for
concurrency control.CGHTM receives all the schedules of
which the conflict graph is acyclic.

III. DESIGN AND IMPLEMENTATION

A. Maintainance of the Conflict Graph
Each processor should maintain three sets to maintain the

conflict graph dynamically: the predecessor set (PS),
successor set(SS) and write-write conflict set(WS). If
processor Pi runs transaction Ti, then the PS contains all the
processor that runs the transactions which are predecessors
of Ti in the conflict graph. If transaction Tj, which is running
on processor Pj, issues a read operation to the shared variable
written by Ti, then Pj should be added to the PS of Pi. The
SS of Pi contains all the processor that runs the transactions
which are successors of Ti in the conflict graph. If
transaction Tj, which is running on processor Pj, issues a
write operation to the shared variable read by Ti, then Pj
should be added to the SS of Pi. The WS of Pi contans all the
processors that runs the transactions which have issued a
write operation to the shared variables written by Ti. When a
write-wirte conflcit is deteced between transaction Ti and Tj,
the direction of the edge between Ti and Tj can not be
determined until one of them commits. So we should keep
the processors which runs transactions with write-write
conflict in the WS until one of them commits.

The three set are implemented as three bitvectors, of
which each bit represnets one processor in the system. The
three bit vectors are dynamically updated according to the
conflict detection results. When a transaction is ready to
commit, it just detects whether there is a circle in the conflcit
graph to determine if it should abort.

B. Conflict Detection
We extends the directory based cache coherence protocol

to detect the conflcits. The directory should responds to two
extra messages: tx_read and tx_write. Moreover, the
directory should records the readers and wrters for all the
cache blocks.

When a transaction issues a read/write operation to a
certain cache block, it should send a tx_read/tx_write
message to the directory. Then the directory should respond
with a tx_ ack message. tx_ack message tells the processor
which processor have written/read the cache block. The
processor that receives inform message updates its PS, SS
and WS, and responds with inform _ack message.

Fig. 3 shows an example of conflict detection. Two
transactions are running on two processors, P0 and P1
correspondingly. When P1 read cache block A, it sends a tx_
read(A) message to the directory. The directory add P1 to the
reader set of the cache block A and responds with tx_ack
message. P1 won’t send any messages to other processors
since T1 is the only reader of A currently. Then P0 is about
to read

Figure 3. The Conflict Detection Between Processors

497

Figure 4. The Circle Detection Process

cache block A. It sends tx_read(A) message to the
directory. The directory responds with a tx _ack message and
adds P0 to the reader set of A. Until now, both P0 and P1
completes a read operation and no conflict happens. There is
no need to communicate with the directory for the successor
read operation from P0 and P1 to cache block A.

Then P0 is about to write cache block A. It sends a tx_
write(A) message to the directory. The directory adds P0 the
writer list of A and responds with a tx_ ack message, which
tells P0 that P1 have read cache block A. This means the
commit operation of P1 in the future will cause a conflict
with the read operation of P0. P0 adds P1 to its PS and send
P1 a inform message to tell P1 about the conflcit detected.
When P1 receives the inform message, it adds P0 to its SS
and responds with a inform_ ack message. After P0 receives
the inform_ ack message, the write operation to A is
completed. The successor operation from P0 to A incures no
communication to the directory until the commit of operation
of P0.

C. Conflict Circle Detection
When a transaction is ready to commit, it should detects

whether a circle exists in the conflict graph. The most direct
way to detect a circle is to send circle detection messages to
its predecessors. Its predecessors then forward the message
to their predecessors ... and so on. If the circle detection
message returns to the source processor, a circle is detected.
The problem with this method is that it can detect the
existence of a circle easily but it cannot ensure the non-
existence of circles. Moreover the conflict detection
messages may consume a lot of network bandwidth. This
paper proposes a conflict detection method which incure no
explicit circle detection messages between processors.

Fig. 4 shows an example which illustrates the process of
circle detection. At the initial state, there is a conflict circle
among processor P0, P1 and P2. When P1 is ready to commit,
it detects whether a self-circle exists. A self-circle means a
transaction ”conflicts” with itself. If no self-circle exists, P1
begin its commit operation. During the commit, P1 sends
messages to its predecessors to add new edges to the conflict
graph. These edges come out of the successors of P1 and go
into the predecessors of P1. After the commit of P1, P2
becomes ready to commit. Also, it detects no self-circle and
commit succefully. A new edge is added so that the conflict
relationship is forwarded correctly. After the commit of P2,
P0 is the only node in the conflict graph and a self-circle
exists. P0 detects the self-circle and aborts

Figure 5. Handling Transaction Commit

D. The Commit/Abort of Transaction
When a transaction is ready to commit, the PS, SS and

WS of the corresponding processor contains the information
about the conflict relationship between the transaction and
other transactions. The commit and abort operation is
performed according to the three sets.

The commit process can be divided into two sub-
processes: commit validation and commit execution. The
commit validation consists of two steps: self-circle detection
and conflict relationship forwarding. self-circle detection can
be done by checking whether the PS contains itself. conflict
relationship forwarding is done by sending the conflict
message to its predecessors and successors. Its predecessors
will update its SS according to the conflict message and its
successors will update its PS according to the depend
message. As is shown in Fig. 5 a), processor P3 setup a
conflict edge between its predecessor P2 and successor P4. If
a processor receives a conflict message, it should respond
with a conflict ack message.

The commit execution consists of three steps: data write
back, commit acknowledgment and conflict edge deletion.
The data write back is similar to a non-transactional write.
The processor sends a write request to the directory to get
exlusive access to the cache block and then write back dirty
data. The data write back will invalidate all other copies of
the cache block in other processors. The commit
acknowledgment is done by sending delme messages. As is
shown in Fig. 5 b), processors that receives delme message
delete the message sender from its PS, SS, and WS. After the
previous two steps, the processor clear its PS, SS, WS and
finishes the commit operation. There are three situations
under which a transaction should abort. The first one is
commit validation failure. The existence of self-circle and
conflict nack message are the main causes for a commit
validation failure. The second one is that a system exception
comes up during the commit operation. The last one is some
other processor non-transactionally modifies a cache block
which is accessed by the commiting processor.

The abort of a transaction takes three actions. Firstly, the

498

Figure 6. Speedup Achieved for The Kernels

aboring processor should send delme message to the

predecessors and successors to delete it self from the conflict

graph. Secondly, it discards all the modifications to the cache

blocks during the execution of the transaction. Lastly, it clear

its PS, SS and WS. After the three actions above, the

processor restarts the execution of the transaction.

E. Hardware Cost Estimation

The hardware cost to support conflict grapgh based

transactional memory consists of two aspects. The first

aspects is the exetention to the processor core. Each

processor core should maintain three bit vectors to records

the three sets (PS, SS and WS). Also a three-bit transaction

status register should be added. The status register contains

two fields: an one-bit T (transactional) field used to tag

whether the processor is running transactional code, an two-

bit S (State) field tags the current state of the executing

transaction, including normal execution, commit validation,

commit execution and abort.

The second aspects is the extension to the directory and

cache system. Two bits should be added to each cache block:

the transactional read bit and transactional write bit. The

transactional read bit tags whether the cache block is

transactionally read by a processor, and the trasactional write

bit tags whether the cache block is transactioanl written. The

directory should maintain two extra bit vector for each cache

block: the transactional reader bit vector and transactional

writer bit vector. The transactional reader bit vector records

all the processors that have performed a read operation on

the cache block. The transactional writer bit vector records

all the processors that have performed a write operation on

the cache block.

TABLE I. SIMULATOR CONFIGRATION

Number of Cores 1 32, Sparcv9 instruction set
L1 cache 32KB, four set-associative
L2 cache 4MB
Network 2-D Mesh, 8 cycles each hop

IV. EVALUATION

A. Simulation Enviroment

We modifies the GEMS [5] simulator, a full-system

simulator based on simics [6], to model a multi-core system

which supports conflict graph based transactional memory.

The multi-core system connects up to thirty-two processor

cores through a two-dimensional mesh network. Each

processor core owns its private L1 cache and part of the L2

499

cache. Detailed configuration of the simulator is shown in

Tab. I.

We also setup two other configurations to evaluate the

efficiency of CGHTM. The first one is the ideal hardware

transactional memory, which is CGHTM with a network

latency of zero. The second one is configured to be as close

as possible to EasyHTM [7], which is also based on directory

protocol.

The benchmarks used in this paper are six kernels from

STAMP [8], which is a test suit developed specially for

transactional memory. The six kernels are bayes, kmeans,

intruder, labyrinth, ssca2 and yada. These kernels issues

transactions with different length and dataset. They can

reflect the performance of transactional memory system

under different situation.

B. Results

Fig. 6 shows the speedup achieved by the three different

transactional memory systems. In most cases CGHTM

performs closer to the ideal transactional memory system.

CGHTM does not show its advantage much for two

special cases. The first case is that there are a lot of circle

conflicts in the benchmark, the performance of parallel

processing cannot be developed. Labyrinth is an example of

this case. There is a global shared array in labyrinth. Almost

all the transactions read the whole array and update a few of

its elements. In this case, almost arbitrary two transactions

circularly conflict with each other, which introduces massive

aborts. The second case is that there are few conflict among

the transactions executed. In this case, all the three systems

achieve near-linear speedups. Bayes and vacation are

examples of this case.

V. RELATED WORK

The concept of transactional memory is introduced by

herlihy [1] in 1993. After that lots of researchers propose

different implementations of transactional memory,

Including software implementations and hardware aided

implementations. Hardware aided transactional memory

supports TM semantics with special hardware resources,

which serves better performance tan software transactional

memory. Most of currently proposed hardware transactional

memory systems, such as TCC [9], ScalableTCC [10],

LogTM/LogTM-SE [11], [12], TokenTM [13], do not allow

conflicting transactions both to commit, even if the

serializability condition is not vaolated. This limits the

performance of hardware transactional systems. Aydonat [14]

proposes a hardware transactional memory implementation

which supports conflict serializability through serializability

order number. But it needs a huge global table to maintain

metadata for all the memory blocks. This paper proposes

conflict graph based hardware transactional memory, which

supports conflict serializability through maintaining the

conflict graph dynamically. CGHTM can achieve better

concurrency with reasonable hardware cost.

VI. CONCLUSION

Conflict graph based hardware transactional memory

allows two conflict transactions both to commit if

serializability is not violated. This adds to the concurrency of

the execution of transactions, which leads to better

performance. Simulation shows CGHTM outperforms the

state-of-art hardware transactional memory system for most

benmarks and its performance is close to the ideal

transactional memory system.

ACKNOWLEDGMENT

The author would like to thank Xuejun Yang and the

anonymous reviewers, for helpful comments on this work.

This work was funded by NSF grant 60921062 and

60873014.

REFERENCES

500

[1] M. Herlihy and J. E. B. Moss, ”Transactional memory: architectural
support for lock-free data structures,” in ISCA ’93, New York, NY,
USA, 1993, pp. 289–300.

[2] A. McDonald, B. D. Carlstrom, J. Chung, C. C. Minh, H. Chafi, C.
Kozyrakis, and K. Olukotun, ”Transactional Memory: The Hardware-
Software Interface,” IEEE Micro, vol. 27, pp. 67-76, 2007.

[3] J. Gray and A. C. C. H. Reuter, Transaction Processing: Concepts and
Techniques (The Morgan Kaufmann Series in Data Management
Systems), 1st ed.: Morgan Kaufmann, 1992.

[4] U. Aydonat and T. Abdelrahman, ”Serializability of Transactions in
Software Transactional Memory,” 3rd Workshop on Transactional
Computing, 2008.

[5] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood, ”Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset,” SIGARCH Comput. Archit. News, vol.
33, pp. 92–99, 2005.

[6] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H Aa
Llberg, J. H O Gberg, F. Larsson, A. Moestedt, and B.
Werner, ”Simics: A Full System Simulation Platform,” Computer, vol.
35, pp. 50–58, 2002.

[7] S. V. S. A. Tomi C, C. Perfumo, C. Kulkarni, A. A. Armejach, A. A.
N. Cristal, O. Unsal, T. Harris, and M. Valero, ”EazyHTM: eager-
lazy hardware transactional memory,” in MICRO 42, New York, NY,
USA, 2009, pp. 145–155.

[8] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, ”STAMP:
Stanford Transactional Applications for Multi-Processing,” , 2008.

[9] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B.
Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K.
Olukotun, ”Transactional Memory Coherence and Consistency,” ,
Washington, DC, USA, 2004, p. 102.

[10] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W.
Baek, C. Kozyrakis, and K. Olukotun, ”A Scalable, Non-blocking
Approach to Transactional Memory,” , Washington, DC, USA, 2007,
pp. 97–108.

[11] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood, ”LogTM: Log-based Transactional Memory,” in Proceedings
of the 12th International Symposium on High-Performance Computer
Architecture, 2006, pp. 254–265.

[12] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M.
M. Swift, and D. A. Wood, ”LogTM-SE: Decoupling Hardware
Transactional Memory from Caches,” , Washington, DC, USA, 2007,
pp. 261–272.

[13] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A.
Wood, ”TokenTM: Efficient Execution of Large Transactions with
Hardware Transactional Memory,” , Washington, DC, USA, 2008, pp.
127–138.

[14] U. Aydonat and T. Abdelrahman, ”Hardware Support For Serializable
Transactions:A Study of Feasibility and Performance,” 4th Workshop
on Transactional Computing, 2009.

501

