
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 12,269-282 (199 1)

Pipelined Communications in Optically Interconnected Arrays *

ZICHENG Guo, RAMI G. MELHEM, RICHARD W. HALL, DONALD M. CHIARULLI, AND STEVEN P. LEVITAN

Departments of Electrical Engineering and Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Two synchronous multiprocessor architectures based on
pipelined optical bus interconnections are presented. The first
is a linear pipeline with enhanced control strategies which make
optimal use of the available communication bandwidth of the
optical bus. The second is a two-dimensional architecture in
which processors are placed in a square grid and interconnected
to one another through horizontal and vertical pipelined optical
buses. These architectures allow any two processors to com-
municate with each other using one (for the linear case) or two
(for the two-dimensional case) pipelined bus cycles. Further,
they permit all processors to have simultaneous access to the
buses using slots within a pipelined cycle. We show that the
architectures have simple control structures and that well-known
processor interconnections, e.g., the complete binary trees and
the hypercuhe networks, can be efficiently embedded in them.
These architectures have an effectively higher bandwidth than
conventional bus configurations and appear to be good candi-
dates for a new generation of hybrid optical-electronic parallel
computers. 0 199 1 Academic Press, Inc.

1. INTRODUCTION

Two-dimensional meshes of processors have been exten-
sively studied in various forms and augmentations [23,26,
371. Large-scale implementations of two-dimensional
meshes have been built [2, 10, 17 1. However, since the com-
munication diameter of an iz X 71 mesh is O(n), different
approaches have been considered to augment the commu-
nication capabilities of the mesh to reduce this diameter.
Meshes have been augmented with global buses [3, 10, 11,
35 1, reducing the communication diameter but giving only
very small bandwidth improvements. Row and column bus
augmentations [29, 301 have yielded both a low commu-
nication diameter and adequate bandwidth for certain classes
of algorithms. Interconnection networks have been consid-
ered for augmenting rows and columns in a mesh including
trees [27, 28, 391 and compounded graphs [18, 191. The
binary hypercube can also be viewed in this context as a two-
dimensional mesh with horizontal and vertical hypercube
interconnections [18, 19 1.

* This work was, in part, supported by Air Force Grant AFOSR-89-0469
and by NSF Grant MIP-8901053.

One of the simplest mesh augmentation schemes is the
row and column bus augmentation. However, exclusive write
access to buses is a major contributor to the low bandwidth
of bus interconnections. A unique property of optics provides
an alternative to this exclusive access, namely, the ability in
optics to pipeline the transmission of signals through a chan-
nel. In electronic buses, signals propagate in both directions
from the source, while optical channels are inherently di-
rectional and have precise predictable path delays per unit
distance. Hence, a pipeline of optical signals may be created
by the synchronized directional coupling of each signal at
specified locations along the channel. This property has been
used to parallelize access to shared memory [5 1, to enhance
the bandwidth in bus-connected multiprocessor systems
[221, and to minimize the control overhead in networking
environments [381.

In this paper, we present two multiprocessor architectures,
called Array Processors with Pipelined Buses (APPB) , which
employ optical bus interconnections in processor arrays. In
Section 2 we review the basic principle of pipelining messages
on optical buses. In Section 3 we introduce our linear APPB,
where processors are connected with a single optical bus. We
present efficient approaches to message routing and network
embedding,for the linear APPB as well as techniques for
enhancing the bus utilization through enhanced control
functions. In Section 4 we introduce our two-dimensional
APPB, where processors are interconnected with horizontal
and vertical optical buses. We discuss routing and embedding
issues for this new architecture. We show how binary tree
and hypercube interconnections can be effectively embedded
and identify key design issues for effective embeddings of
arbitrary interconnections. In Section 5 we compare the ef-
ficiency of the pipelined bus communication model with
that of nonpipelined buses and of store and forward com-
munications in nearest-neighbor structures. Finally, Section
6 contains concluding remarks.

2. MESSAGE PIPELINING ON OPTICAL BUSES

Consider the system of Fig. la, where n processors, each
having a constant number of registers, are connected through
a single optical waveguide (bus). Each processor is coupled
to the optical waveguide with two passive couplers, one for
injecting (writing) signals on the waveguide and the other

269 0743-73 I5/9 I $3.00
Copyright 0 199 1 by Academic Press, Inc.

All rights of reproduction in any form reserved.

270 GUO ET AL.

(a)

D
I a

M . . . G . . . @

@)
FIG. 1. (a) A system of n processors connected with a single optical

waveguide (bus). (b) A linear array of n processors with nearest-neighbor
connections.

for receiving (reading) signals from the waveguide [20,401.
Each receiving coupler passively taps a percentage (typically
5-lo%, depending on the coupling ratio) of the optical signal
power available on the bus. Thus the couplers do not intro-
duce any delay to the propagation of optical signals along
the bus. However, the degradation of signal power does place
an upper limit on the number of processors that can be con-
nected on the bus [81. As in the case of electronic buses,
each processor j communicates with any other processor i
by sending a message to i through the common bus. However,
because optical signals propagate in one direction, a processor
j may send signals to another processor i only if i > j.

Assume that a message on an optical bus consists of a
sequence of optical pulses, each having a width w in seconds.
The existence of an optical signal of width w represents a
binary bit 1, and the absence of such a signal represents a 0.
Note that w includes a time for electro-optical conversions,
rise and fall times, and propagation delay in the latch of the
receiver circuits [6]. For analytical convenience, we let Do
be the optical distance between each pair of adjacent nodes
(it will become clear that the distance between two adjacent
nodes need not be equal) and 7 be the time taken for an
optical pulse to traverse the optical distance D,. To transfer
a message from a node j to node i, i > j, the sender j writes
its message on the bus. After a time (i - j)7 the message
will arrive at the receiver i, which then reads the message
from the bus.

The properties of unidirectional propagation and pre-
dictable path delays of optical signals may be used advan-
tageously. Specifically, unlike the electronic case, where the
writing access to the bus by each node must be mutually
exclusive, all nodes in the system of Fig. la can write on the
bus simultaneously, provided that the following collision-
free condition [221 is satisfied,

Do > bwc,, (1)

where b is the number of binary bits in each message, and
cg is the velocity of light in the waveguide. Clearly if this
condition is satisfied and the system is synchronized such
that every node starts writing a message on the bus at the

same instant, then no two messages injected on the bus by
any two distinct nodes will collide. Here by colliding we
mean that two optical signals injected on the bus by any two
distinct nodes arrive at some point on the bus simultaneously.
This kind of synchronized pulse generation is restrictive but
it can be met in several ways [2 I]. An optically distributed
clock can be broadcast without skew to each node, or electro-
optical switches can be used in place of sources to “switch
in” pulses generated from a single source. With this condition
satisfied, every node can, in parallel, send a message to some
other node, and the messages will all travel from left to right
on the bus in a pipelined fashion, as shown in Fig. 2. Thus
we use the term pipelined bus. In the rest of this paper we
always assume that the collision-free condition (1) is satisfied.

To facilitate our discussion in subsequent sections we de-
fine some terms. Let T be defined as before and IZ be the
number of nodes on the pipelined optical bus. We define IZ T
as a bus cycle and correspondingly r as a petit cycle. Note
that a bus cycle is the time taken for an optical signal to
traverse the entire length of the optical bus. For the discussion
in this section, we do not include in a bus cycle the time
taken to prepare and process a message before it can be in-
jected on the bus. This time is explicitly introduced in our
performance analysis in Section 5. If every node is writing
a message simultaneously on the bus, then each node has to
wait for at least a bus cycle to inject its next message. Note
that each cycle on the pipelined bus may be emulated by n
cycles in a linear array with nearest-neighbor communica-
tions shown Fig. 1 b. Comparison of the two interconnection
schemes is made in Section 5.

Let us look at a simple routing task where each node
transmits a message and each node is programmed to receive
a message from the kth node (if it exists) to its left. All nodes
start injecting messages at the beginning of a bus cycle, and
all the messages travel on the optical bus in pipelined fashion
without collision. By waiting for a specific interval of time,
a node can selectively read the message intended for it as
that message passes by the node. In our example, each node
i is to receive a message from node i - k and thus must read
its message from the bus after k7 time from the beginning
of the bus cycle. In this way, a message routing pattern in
which each node sends a message to the kth node to its right
has been realized. In fact, as will be seen, we can realize
various message routing patterns in a simple, straightforward
way.

3. LINEAR ARRAY PROCESSORS
WITH PIPELINED BUSES

In the system of Fig. 1 a, messages can be transmitted only
from left to right. To allow message passing from right to

(- - . . . - . . .

FIG. 2. Message pipelining on the optical bus. A blank rectangle indicates
“no signal,” implying that some processor is not sending a message.

OPTICALLY INTERCONNECTED ARRAYS 271

left, another optical bus is used, as shown in Fig. 3a. In this
figure, we have two optical buses; the upper one is used for
sending messages from left to right, and the lower one is used
for sending messages from right to left. Each node can write
and read messages on either bus as desired. Obviously signals
in different buses do not disturb one another; that is, the
two buses can support two separate pipelines. The system
in Fig. 3a is our architecture of linear APPB. For convenience
the linear APPB in Fig. 3a is schematically drawn as in
Fig. 3b.

To specify the time at which a node should receive a mes-
sage, we introduce a control function twait(i), which is de-
fined as the time that node i should wait, relative to the
beginning of the bus cycle, before reading the message sent
to it from some other node j. Thus

twuit(i) = (i -j)7.

If 7 is considered as a time unit, then twait can be interpreted
in terms of the number of such time units and thus be written
twuit(i) = i - j. Clearly if twait(i) > 0, then the message is
to be received from the left; if twuit(i) < 0, then the message
is to be received from the right. If twuit(i) = 0, then no
message should be received by node i. The value of twait(i)
can be stored in a wait register, and more than one such
register may be used if a node is to receive more than one
message in one bus cycle.

This twuit control function, however, has the disadvan-
tages that it depends crucially on timing accuracy and is
sensitive to the optical distance D, between two adjacent
nodes. An equivalent control function, mwuit , that does not
have these disadvantages may be defined if we require that
each node inject a message, real or dummy, every bus cycle.
In this case we define mwait(i) as the number of messages
that node i should skip before reading its message. For ex-
ample, if mwait(i) = y, then node i should receive the 1 y 1 th
message that passes i on the bus. That is, it has to wait until
I y 1 - 1 messages have passed and then it reads its own
message. The sign of y determines on which bus the message
should be received. Clearly mwait is equivalent to twait and

l

(a)

FIG. 3. (a) Linear array processors with pipelined buses (APPB) (b)
A schematic drawing of (a).

either control function may be used. For convenience we
simply write the control function as wait, and we assume
that the optical distance between each pair of adjacent nodes
i and i + 1 is constant.

The control function wait can only be used when the
communication pattern is known to the receiver in the sense
that the receiver knows from which node the message is to
be received. In cases where the communication pattern is
unknown to the receiver, the coincident pulse techniques
[5, 2 I] may be used such that an addressing pulse and a
reference pulse coincide at the detector of the receiver,
thereby addressing it. In this paper we use wait for addressing
since the communication patterns which we discuss are
known to the receiver.

In the following we present techniques for message routing
and network embedding in the linear APPB. For the purpose
of evaluating the communication efficiency, we note that a
lower bound on the number of bus cycles needed to transfer
H messages in the linear APPB is [H/n1 , where n is the
number of nodes on the optical bus. This lower bound is
obtained by assuming a perfectly even distribution of mes-
sages along the bus at each bus cycle, that is, every node has
one message to send at each bus cycle.

3. I. Message Routing in Linear APPB

Various message routing patterns can be realized in a sim-
ple, straightforward way. Since a routing pattern is deter-
mined by the wait functions, we need only determine these
wait functions for each routing pattern. The most common
patterns are:

One-to-One. The system executes a SEND(j, i) instruc-
tion, which means that a message is to be transferred from
node j to node i. Thus, wait(i) = i - j, where i is a single
specific node.

Broadcast. The system executes BROADCAST(j),
which means that nodej broadcasts a message, and all other
nodes i will receive that message. In this case, wait(i) = i
- jfor all i P j.

Semigroup Communication [41. The system executes a
SEMIGROUP(i) instruction, which says that some global
information, e.g., extrema and sum, is to be computed and
stored at node i. This task can be accomplished by having
the linear APPB logically function as a tree with the root
being node i. Later in this section we present embeddings
of binary trees which facilitate such a tree emulation task.

Permutations. For each node j to send a message to a
node i = PERM(j), where PERM() is an arbitrary per-
mutation, we set wait(i) = i - j for all i.

We see that the computation of wuit(i) is very simple and
uniform. The only difference among the wait functions for
different message routing patterns is that the nodes involved

272 GUO ET AL.

are different. It is clear that all these communication tasks Thus, to realize children-to-parent message routing each
can be performed using a single bus cycle, except the semi- parent should wait for wait&i) and wait,,, (i) time to read
group communication, which takes log(n) bus cycles. Note the messages from its left and right child, respectively. Clearly
that, in the linear APPB, message passing between two non- this routing task can be performed using one bus cycle.
neighboring nodes is nearly as efficient as that between two For parent-to-children message transfer in E,, , each parent
neighbors. Specifically, a message takes T more time to pass has two messages to send to its two children, respectively.
one more node on the optical bus. This is not the case in In this case, two bus cycles are needed to carry out such a
the linear array with nearest-neighbor connections shown in routing task, one to send messages to left children and one
Fig. lb, where to pass a node, en route to another node, a to send messages to right children. Let wai&(j) and
message has to go through a router. In this sense we may waitp,, (j) be the wait functions for a left child and right child,
say that the APPB is communication efficient, and in par- respectively, to receive a message from its parent. Then, dur-
ticular global-communication efficient. ing the first cycle we have

3.2. Embedding Binary Tree and Hypercube Networks
into Linear APPB

In this subsection we show how to embed other intercon-
nection networks into the linear APPB. Our first example is
the embedding of complete binary tree networks. To show
that a binary tree network can be embedded in the linear
APPB it is sufficient to find the wait function for each pro-
cessor in the linear APPB such that the desired routing pat-
tern is accomplished.

Let L be the number of levels of a complete binary tree
and let the root of the tree be node 1. Each node i, i 2 1,
which is not a leaf node has two children, 2i + 6, where 6
= 0, 1, corresponding to i’s left and right child, respectively
(see Fig. 4a for an example). Consider an embedding in
which node i in the tree is mapped to node i - 1 in the linear
APPB. For convenience, we call this embedding E,, (see Fig.
4b). In E,, , the wait functions for node i to receive a message
from its children are:

wait,,* (i) =
i-(2i+6)=-(i+6), i<2L-‘,

0, otherwise.

level 0

FIG. 4. Embeddings of complete binary trees in the linear APPB. (a)
A binary tree. (b) The first embedding, E,, . (c) The second embedding, Ea.

1

jj. j - 2 = 5 , J = even,
wait,J j) =

0, otherwise,

and during the second cycle we have

I

j- 1 j+ 1
j--=- 2 2 ’

j= odd,andjf 1,
wait,,,(j) =

0, otherwise.

Mapping each node i in the binary tree network onto node
i (or i - 1 as was just done above) in the linear APPB is a
straightforward approach. Using this straightforward ap-
proach we can embed any type of network in the linear
APPB. This approach, however, may not give a good
embedding in the sense that it may take more time than
needed, in number of bus cycles, to accomplish a given com-
munication task. As is seen next, another tree embedding,
Et2, has a better communication efficiency than E,, .

Embedding Et2 may be viewed as pressing the binary tree
from the root down until all the nodes fall in the level of the
leaf nodes (see Fig. 4~). In this embedding the two children
of a node i are on opposing sides of i. Thus the parent-to-
children routing pattern, as well as the children-to-parent
routing pattern, may be accomplished in one bus cycle. Spe-
cifically, if i is a node at level I, where I is the integer satisfying
2’ - 1 < i < 2’+‘, then the wait functions for i to receive
the messages from its two children are

wait&i) =
i

(-1)62L-l-2, i < zL-l,

0, otherwise.

The parent-to-children message routing pattern in Et2 is
different from that in E,, in that the two messages from a
parent will travel on two different buses. Then the two mes-
sages from each parent node can be simultaneously injected
on the two buses, respectively, in the same bus cycle. Hence,
the parent-to-children routing pattern can be accomplished
in one bus cycle. waitp,& can be determined by noting that

OPTICALLY INTERCONNECTED ARRAYS 273

~ait~,~(j) = -waitC,6(i), where i is the parent ofj. That is, of its k neighbors if each node sends one message to one
the wait functions for parent-to-children message transfer neighbor in each bus cycle. For example, at the hth bus cycle
are a message is sent from each node to its neighbor at distance

2 ‘-I. To accomplish this, the time that a node i has to wait
(-1)6+‘2L-‘-l, j > 1,

wuit,,(j) =
i

during the hth bus cycle before receiving a message from its

0, j= 1. neighbor along the hth dimension is

Next, we consider a k-dimensional binary hypercube in
wuith(i) = f2h-‘.

which the nodes are numbered such that if nodes i and j are In our discussions so far, we have allowed each node to
neighbors across dimension h, 1~ h G k, then 1 i - j 1 = 2 h-’ send only one message on each bus during each bus cycle.
(see Fig. 5a). Let EC, be the embedding of this k-cube into In other words after placing a message on the bus in the
a linear APPB such that each node i in the hypercube is current cycle, all nodes must wait until the next cycle to
mapped into node i in the linear APPB. With this embedding, initiate the next message. In the following subsection, we
a node in the hypercube may send a distinct message to each show that such a wait is not always necessary.

2

/J-===
4 1

3

(4

FIG. 5. (a) A binary hypercube and its dimension assignment. (b) Message routing patterns in the hypercube. (c) Message distribution in the
hypercube.

274 GUO ET AL.

3.3. Interleaved and Overlapped Pipelining The corresponding wait functions are

Up until now, we have required that each node send only
one message on each bus in one bus cycle and that the trans-
mission of messages be initiated at the beginning of a bus
cycle. Given these two restrictions, no specific control func-
tion was needed for the initiation of messages. However, if
some node does not have a message to send during a bus
cycle, a slot of one petit cycle in duration will be created.
Interleaved pipelining is a technique which tries to fully uti-
lize the communication capacity of the pipelined bus by in-
serting a message into any available slot. This may be ac-
complished if a node is allowed to place more than one mes-
sage on the same bus within a bus cycle, but at different petit
cycles. To allow for this flexibility, a control function send,(j)
must be used to specify the time, relative to the beginning
of a bus cycle, at which node j should write its gth message
on the bus.

wait,(i) = i -j, jE S2s-1,

i-j, j E S,, and 22sp2

wait=(i) =
< (j mod 22s) < 22sp’,

i-j+22”-2, jESZsand

0 < (j mod 2=‘) < 2=‘-=.

To show how interleaved pipelining works, let us now
examine the routing patterns in EC,. Since message transfers
in opposite directions on the two buses of the linear APPB
form two separate and symmetric pipelines, we need to look
at only one direction. Consider the left-to-right message
transfer in EC,, anddefineksets,&= {j 1 O<j<n,O
<(jmod2h)<2h-‘}, 1 < h & k, of nodes for the k-cube.
That is, S,, is obtained by partitioning the n nodes of the
hypercube into 2 h-node groups and including in Sh the first
2h-’ nodes in each group. For example, for the 4-cube in
Fig. 5a, we have S, = (0, 2, 4, 6, 8, 10, 12, 14}, & = (0,
1,4,5,8,9,12,13},S3={0,1,2,3,8,9,10,11},and&
= { 0, 1, 2, 3, 4, 5, 6, 7 } . Note that all the k sets, Sh, have
the same cardinality 2 ‘-I, and each contains node 0. Hence,
in the realization of the binary k-cube using a linear APPB,
there are k routing patterns. In the hth pattern, 1 < h < k,
the nodes in set Sh send messages to their neighbors along
the hth dimension in the hypercube, as indicated with the
arrowed curves in Fig. 5b. Correspondingly, the messages
can be divided into k sets, Mh, 1 < h < k, which are sent by
the k sets of nodes Sh , respectively. For the routing patterns
in Fig. 5b, these message sets are shown in Fig. 5c.

A node for which the send or wait function is not defined
above should not send or receive any message. Note that the
times determined by these send and wait functions are with
respect to the beginning of each bus cycle s. Also note that
since the receiving node i knows the id of the sending node
j (since they are neighbors in the k-cube), it knows which
of the two values of wait2(i) should be used. As an example,
the interleaved pipelining for the messages in Fig. 5c is
achieved by interleaving message sets M1 and M2 in the first
bus cycle and M3 and M4 in the second bus cycle. The ar-
rowed lines in Fig. 5c show how the messages are being in-
terleaved, and the resulting message pipelines are shown in
Fig. 6a.

It can be seen that using interleaved message pipelining,
the total communication time taken for each node to send
a message to each of its neighbors is k/2 + 1 bus cycles,
where the last bus cycle is due to the time needed to clear
out the first n / 4 messages (sent by nodes 0 through n / 4 - 1)
in Mk that were inserted in front of Mk-, . Comparing with
k bus cycles, the time needed if each node sends one message
per bus cycle, our savings in the communication time is (k
- 2)/2 bus cycles. Although this savings is significant there
are still unused slots from the rightmost nodes on the bus,
as can be seen from the message pipeline at time t = 16 in
Fig. 6a. We next show how to utilize these empty slots using
overlapped pipelining.

Using interleaved pipelining, the messages in the two sets
MZs-, and M2s, 1 < s c k/2, are interleaved and sent in the
same bus cycle. Let send1 (j) and send,(j) be the times at
which node j writes its messages in M+, and Mzs, respec-
tively, on the bus during bus cycle s. Correspondingly, let
wait,(i) and waitz(i) be the wait functions for a node i to
receive the messages in Mzsel and Mzs, respectively, during
bus cycle s. Then, for interleaved pipelining we have the
following send functions for a node j at bus cycle s, 1 < s
<k/2:

send,(j) = 0, j E &-, ,

sen4j)

In overlapped pipelining, we pipeline the message pipelines
obtained from interleaved pipelining by allowing the mes-
sages for bus cycle s to be initiated before bus cycle s - 1
terminates, as long as message collision does not occur. For
this purpose we define a new control function, steps, which
specifies the time, with respect to the beginning of the first
bus cycle, at which the messages for bus cycle s are initiated.
Clearly, savings in communication time is possible if step,
- step,-, < n7. In this case, we avoid confusion by calling
the bus cycles message transfer steps.

In EC,, the control function step,, 1 < s < k/2, specifies
when S2$- i and S2, should start sending their messages. Spe-
cifically let step, = 0 and let step,, 1 < s =% k/2, be the time
interval in number of petit cycles between the initiations of
steps 1 and s. Then, messages from step s and step s - 1
will not collide if

0, j E S,, and 2 ‘se2 < (j mod 2=‘) < 2=‘-‘,
r

22s-2 > j E S2, and 0 6 (j mod 22s) < 22s-2.
3

step, = step,-, + n - 4 2 2s-2, 1 <s+

275

The send and wait functions defined in the previous subsec-
tion are still applicable here, but they are now defined with
respect to the time determined by step,, the beginning of
transfer step s, rather than the beginning of each bus cycle
s. Figure 6b shows the result of overlapped pipelining of the
message pipelines in Fig. 6a. Note that in interleaved pipe-
lining there was also some overlapping between the two mes-
sage pipelines generated in two consecutive bus cycles, as
can be seen from the message pipeline at time t = 16 in Fig.
6a. But, as has been mentioned previously, interleaved pipe-
lining does not fully utilize the pipelined bus.

These control functions step, send, and wait together result
in a minimized total communication time. To show this we
first note that since the cardinality of Mh, 1 < h < k, is n/
2, the total number of messages is kn/2. Thus, if we assume
that the message distribution over processors is perfectly even
in each bus cycle (every processor has a message to send in
each bus cycle), then the time needed for transferring these
messages is at least r kn/2nl= k/2 bus cycles, or equivalently
kn/2 petit cycles. In our case, however, such an assumption
of even message distribution does not hold. For example,
no message can be inserted on the bus at processor n - 1 in
the first bus cycle, as can be seen from the message pipeline
at time t = 0 in Fig. 6b. Now we compute the total time, in
number of petit cycles, using the control functions deter-
mined above. It can be shown that

The time due to send2 at step k/2 is 2 k-2 = n/4. Finally it
takes n petit cycles for the bus to clear out. Therefore the
total time in number of petit cycles is

k
n+l+:+n=jn+l.

Finally, we note that interleaved message pipelining may
also be applied to binary tree routing patterns. From our
previous discussion we know that the parent-to-children
message routing in E,, has to be done in two bus cycles and
that the same message routing task can be performed using
a single bus cycle in Et2. Communication efficiency in Et2
can be further improved by using interleaved message pipe-
lining because during parent-to-children message transfer
only every other node is sending a message. Thus each parent
can send two messages to each child in one bus cycle.

4. TWO-DIMENSIONAL ARRAY PROCESSORS
WITH PIPELINED BUSES

Linear optical buses have the disadvantage that message
transfer may incur O(N) time dela

P
in an N-processor sys-

tem. To reduce this delay to 0(N), we consider two-di-
mensional APPBs. In a two-dimensional APPB, each node
is coupled to four buses as shown in Fig. 7a, where the two
horizontal buses are used for passing messages horizontally
in the same way as before, and the two vertical buses are
used for passing messages vertically in a similar way. For
convenience we diagram our two-dimensional APPB as in
Fig. 7b. Each node in a two-dimensional APPB of size N
= m X n will be given two identifications, one being a pair
of numbers (x, y), 0 < x < m, 0 < y < n, indicating the
row-column position of the node in the two-dimensional
APPB, and the other being the row-major index, i = xn + y,
0 G i < N, of the node. Corresponding to the bus cycle
defined for the linear case, in the two-dimensional APPB we
define nr and mr as a row bus cycle and a column bus cycle,
respectively, where 7 is a petit cycle as defined previously.
When there is no confusion, e.g., while talking about message
transmissions in a row, we simply say a bus cycle instead of
a row bus cycle.

216 GUO ET AL.

4.1. Message Routing in Two-Dimensional APPB

A unique issue that arises in the two-dimensional APPB
is the relay of messages. Specifically, suppose a message is
to be transferred from node (xi, yI) to node (x2, y2), with
XI Z x2 and yl Z ~2. Then the message may first be sent from
(x1, yl) to (xi, y2), which is the node at the intersection of
row x1 and column ~2, in the first bus (a row bus cycle) and
then from (xi, y2) to (x2, y2) in the second bus cycle (a
column bus cycle). That is, the message has to be buffered
at node (xi, y2) at the end of the first bus cycle and then
relayed to its destination in the second bus cycle. For the
purpose of relaying the message, we define a control function
relay for node (xi, y2) as

reb4(xl, ~211 = ~2 - yl,

which indicates that node (xi, y2) will read a message from
a row bus at time] y2 - y1 I (relative to the start of the row
bus cycle) and then write that message on the proper column
bus at the beginning of the following column bus cycle. If
relay[(xi, y2)] = 0, then no message is to be relayed by node
(xi, y2). Clearly, in the worst case up to n messages have to
be relayed and, therefore, n relay buffers are needed at the
relaying node. Now we are ready to show how the four most
commonly used message routing patterns discussed in the
previous section can be realized in the two-dimensional
APPB.

One-to-One. The system executes a SEND[(x1, y,), (x2,
y2)] instruction, which requires that node (xi, yI) send a
message to node (x2, y2). We have relay[(xl, y2)] = y2
- y, (in row bus cycle), and wait[(x2, y2)] = x2 - x1 (in col-
umn bus cycle). This communication takes two bus cycles.

Broadcast. The system executes a BROADCAST[(x, y)]
instruction, which states that node (x, y) broadcasts the same

FIG. 7. Two-dimensional APPB. (a) A processor coupled to four wave-
guides in the two-dimensional APPB. (b) A schematic drawing of the tww
dimensional APPB.

message to all other nodes (Xi, yj). In a row bus cycle, (x,
Y) broadcasts the message to nodes (x, Yj), Yj # y. Then in
the following column bus cycle all (x, Yj) , including (x, y),
broadcast the message in their corresponding columns. Thus
relay[(x, Yj)] = Y, - Y, and wait[(xj, Yj)] = X, - X. This
communication also takes two bus cycles.

Semigroup Communication. This corresponds to the
execution of SEMZGROUP[(x, y)], which says that some
global information is to be computed and stored at node (x,
y) . This task can be accomplished using two linear semigroup
operations, one in rows and the other in a column. That is,
first we view each row as a linear APPB and do SEMZ-
GROUP(y) in all rows. Then in column y, we perform
SEMIGROUP(Thus 2 log(n) bus cycles are needed for
this task.

Permutations. Let PERM[(x, y)] be an arbitrary per-
mutation. To avoid using n relays at each node, we can use
a three-phase routing approach [24, 321 or equivalently a
three-bus-cycle approach in the two-dimensional APPB. In
this approach the first bus cycle is a “preprocessing” step
which distributes messages in each row such that the messages
going to the same row will occupy different columns. Then
the second and third bus cycles will route the messages to
their destination row and destination node, respectively. We
note that for arbitrary permutations this approach implies
the use of a centralized controller which would compute the
message destinations for the preprocessing step. This cal-
culation requires the construction of a bipartite graph and
its partitioning into complete matchings, which would dom-
inate the time complexity for the total task of computing
and implementing an arbitrary permutation. In applications
where a permutation can be precomputed, this time cost can
be amortized over many subsequent applications of the per-
mutation.

4.2. Embedding Binary Trees in Two-Dimensional APPB

As mentioned previously, arbitrary message routing and
permutations in two-dimensional APPB may require n re-
laying buffers in each node in the worst case. In this subsec-
tion we present an embedding for a binary tree network in
which only one relay buffer is needed to route messages. An
embedding of an L-level complete binary tree into a two-
dimensional APPB with n = 2k columns may be obtained
by (i) mapping levels 0, . . . , k - 1 of the tree to row 0 of
the two-dimensional APPB and (ii) mapping level 1, k < I
< L, of the tree to the 21pk rows, 21ek, 21ek + 1, . . . , 2’-k+’
- 1, of the APPB such that the two children of the same
parent are mapped into two adjacent rows in the same col-
umn as the parent. Specifically we define our embedding of
a binary tree network into the two-dimensional APPB by a
mapping F(i) = (F,(i), F,(i)), which maps each node i, 1
< i < 2=, in the tree to a node (FX(i), F,(i)) in the two-
dimensional APPB. Let i be a node at level 1,O < I< L, in
the binary tree. The mapping is defined by

OPTICALLY INTERCONNECTED ARRAYS 277

lo. 1 < i < 2k.
-’ F,(i) =
21ek + i mod 21-k L , 2k=Gic2,

and

F,(i) =
> 2 k < i c 2L.

As an example the embedding for the 4-level binary tree
in Fig. 8a is shown in Fig. 8b. Let us call this embedding
Et3. Et3 has the following properties: (i) Parent nodes i, 1
< i < 2 k-‘, and their children are in row 0; (ii) parent nodes
i, 2kP’ < i < 2k, which are in row 0, have their children in
row 1; and (iii) parent nodes i, 2k < i < 2L-‘, and their
children are in the same column. Properties (i) and (ii) are
obvious. Here we prove only (iii). Since in the binary tree
each parent node i has two children 2i + 6,6 = 0, 1, to prove
(iii) we need only show that FJ i) = FJ 2i + 6) for 2 k < i
< 2L-‘. For that, let i be a parent node at level 1, where k
=S I < L - 1 and i = ~2’ + q for some integers p and q such
that 0 < q < 2’. Then

F,(2i + 6) =
I

(2(p2’+ q) + G)mod 2’+’
21+1-k

J

= (p2

I

‘+’ + 2q + G)mod 2’+’
21+1-k

1

It is now clear that the relay function is not needed for
message transfer between parent nodes i and their children
if 1 < i -c 2k-’ or 2k =S i < 2 L-1. However, such a relay is
needed if 2 k-’ G i < 2 k. The wait and relay functions for
E,, are obtained in the following.

FIG. 8. (a) A 4-level binary tree. (b) Its embedding, E,,, in the two-
dimensional APPB.

Let waitJ(x, y)], where (x, y) = I;(i), be the wait func-
tions for a parent node i to receive a message from its left
and right child for 6 = 0 and 1, respectively. For the case 1
<i<2 k-‘, the results for the linear APPB directly give
wait,,,[(x, y)] = -(y + 6). For the case 2k G i < 2L-‘, let
i be at level 1, k < I < L - 1, and i = ~2’~~ + q. Then

F,(i) = 21-k + i mod 21pk = 21pk + q;

F,(2i + 6) = 21+‘-k + (2i + G)mod 2’+lek

= 2’+lek + (p2’+lek + 2q + G)mod 2’+lpk

= 21+1-k + 2q + 6; wait,+J(x, y)] = F,(i) - F,(2i + 6)

= (2/-k + q) - (2/+1-k + 2q + 6) = -(x + 6).

wuitP,6(j) can be obtained by recalling that waitP,6(j)
= -wui&(i), where i is the parent ofj.

For the case where 2k-’ G i -K 2k, a wait and a relay
function are needed. Let reluy,,,[(0, y)] , 0 G y < 2 k, be the
relay function of node (0, y) for relaying the message from
a child node (again, 6 = 0 for the left child and 6 = 1 for the
right child) to its parent. Then we can show that

reluy,,,[(O, y)] = -1, 0 G y < 2k,

wuit,,[(O, y)] = 2k - y - 6, 2k-’ G y < 2k.

Note that each node (0, y) needs to relay only one child-to-
parent message with the message from left (right) child being
relayed by (0, y) with y even (odd), and that even though
node 0 is not a node in the tree, it helps relay messages. Also
note that rel~y,,~ is applicable to column bus cycles. Now let
reluyJ (0, y)] , y even (odd), be the relay function for node
(0, y) to relay the message from a parent (0, Y) to its left
(right) child for 6 = 0 (1). Then reZuyP,d is easily obtained
from relay,,,[(0, y)] = -wuit,,J (0, Y)] . And wait,, is de-
termined as in the linear case.

4.3. Network Embeddings Requiring No Reluys

Embedding Et3 still requires one message relay for com-
munication between two neighboring nodes in binary trees.
To further improve the communication efficiency, in this
subsection we show how to obtain embeddings of binary
trees as well as hypercubes such that no such message relay
is needed. Two approaches may be used to eliminate message
relays by intermediate nodes: a hardware approach and a
“software” approach. In the hardware approach, optical
switches are used at the intersections of row and column
buses to switch an optical signal, say, from a row bus to a
column bus, without requiring relay by an intermediate pro-
cessor [15 1. In this paper we consider the “software” ap-

278 CUO ET AL.

preach, which relies on designing embeddings such that all
neighboring processors in a network are mapped into the
same row or column in the two-dimensional APPB. Thus,
no message relay is needed and no relay function is required.
This improves the communication efficiency significantly.
However, it has the disadvantage that nodes in the APPB
may not be fully utilized.

A basic measure that is usually used to evaluate the quality
of an embedding of a source graph G, = { V, , U, } with a set
of nodes V, and a set of edges U, into a mesh architecture
with a set of nodes V, is the expansion cost, which is defined
as the ratio of the number of nodes in the target mesh to the
number of nodes in the embedded graph. Another measure
useful for such evaluation is the dilation cost. Specifically,
the dilation of an edge u E U, , which is mapped to a path
Q in the target mesh, is 1 Q 1 - 1, where) QI is the number
of nodes on Q. However, the mesh model corresponding to
that of APPBs is different from those studied previously [1,
13,341 because the efficiency of the communication between
any two nodes in the same row or column in an APPB does
not depend on the distance between these two nodes. There-
fore the criterion that is to be satisfied by an embedding is
different from previously studied criteria. Specifically, it is
desirable to obtain an embedding in which any two neigh-
boring nodes in the source graph are mapped into either the
same row or the same column in the two-dimensional APPB,
thus allowing them to communicate with each other using
a single bus cycle. An embedding which satisfies this require-
ment will be said to satisfy the alignment condition. Note
that Et3 obtained in the previous subsection does not satisfy
the alignment condition and thus requires message relays.
That embedding, however, does have an optimal expansion
cost of 2 ‘/(2L - 1) . In contrast, the binary tree embedding
presented in the following satisfies the alignment condition,
but its expansion cost is not optimal. This demonstrates a
trade-off between the expansion cost and the dilation cost
for network embeddings in the two-dimensional APPB.

Consider Fig. 9a and assume that we already have an
embedding of an s-level binary tree with N, = 2” - 1 nodes
into a two-dimensional APPB of size a, X b, . The embedding
is assumed to satisfy the alignment condition. That is, all
the neighboring nodes in the s-level tree are mapped into
the same row or column in the two-dimensional APPB. Us-
ing this level s embedding (starting level) as building blocks,
the embedding for an (s + 2) -level tree is obtained as shown
in Fig. 9b. Clearly in this embedding the neighboring nodes
are again on the same row or column. A still larger tree is
obtained by repeating this modular building procedure until
the desired size is achieved. Let us call this embedding Et4.
Assuming that in Et4 the embedding of an L-level tree, L
=s+2a,a=o, l)...) occupies an area, in number of
nodes, equal to AL in the two-dimensional APPB, we may
inductively prove that

AL = 29A, + (1 - 2-‘L-““2)b,].

@)
FIG. 9. Modular embedding of binary trees, I$,, in the two-dimensional

APPB. (a) A building block in which an s-level binary tree is embedded.
(b) Embedding of an (S + 2)-level binary tree.

With this result, the expansion cost for the embedding of an
L-level tree is

c = & = 2L-S[A, + (1 - 2-‘L-““2)b,]

L NL 2L-- 1

2L-S[A, + (1 - 2-‘L-““2)bs] =
2L-“(Ns + 1) - 1 ’

It can be checked that CL is monotonically increasing with
L. However, for large L, the value of CL asymptotically
equals

c L,max
_ 4 + bs

N,+l’

Note that, if N, 9 1 and A, B a,, the value of CL simplifies
to CL = As/N, = C, > 1. That is, the expansion cost for the
entire embedding is determined by the expansion cost of the
building block. Thus low expansion costs may be obtained
if the starting building block satisfies N, 9 1, A, 9 b,, and
C’, + 1. Some examples of building blocks are shown in Fig.
10 with their corresponding expansion cost CL,,, . Note that
in this modular embedding scheme, as the embedding goes
one level higher, the number of levels of the tree increases
by 2. Thus ifs is even (odd) then L is even (odd). Therefore
according to whether the desired level L of the tree is even
or odd, the starting level s must be chosen properly.

To determine the control functions for Et4, let r/ be the
root at an embedding level 1, 1 = s + 2, s + 4, . . . , L, and
(x1, yl) be the coordinate, i.e., the row-column position, of
r, in the two-dimensional APPB. Then from Fig. 9b, the
coordinate of ri is

(XL vd = (al-*, bj-2 - 11,

where aI and bl can be found to be equal to 2(‘p”)/2(a, + 1)
- 1 and 2(1-S)‘2bs, respectively. Thus,

(xl, yr) = (2(‘-s-2)/2(as + 1) - 1, 2(r-s-2)‘2bs - 1).

OPTICALLY INTERCONNECTED ARRAYS 279

(a) A 2.level tree. (b) A 3-level tree. (c) A 4-level tree.
hcw4d

(d) A 5-level tree.

(e) A 6.level bee.

(f) A 7-level tree.

FIG. 10. Example building blocks for the modular embedding of binary
trees, &, and their corresponding expansion costs CL,max: (a) 1.5, (b) 1.5,
(c) 1.25, (d) 1.31, (e) 1.22, (f) 1.12.

Now the control functions can be determined as follows.
First, within the building block determine the wait functions
according to the specific building block in use. Let (x,, ys)
be the coordinate of r,, the root in the building block. We
then need only determine the wait functions for the new
nodes which appear as we go to a higher-level embedding.
For example, in Fig. 9b when we go from level s to s
+ 2, the new nodes are Y,+~, u,+~, and v,+~. By letting
wuit,,,(r,) be the wait function for node rl to receive a mes-
sage from child node uI, we have

w&,,,(o) = Y/ - YI-2,

w~&,,(~J = -(YI - YI-2 + l),

waiLm,(u~) = w&,r,_,(v~) = +(x/ - x1-2),

where the coordinate (x1, yr) is as determined previously.
These are the wait functions for the new parents to receive
messages from their children. The wait functions for the
children to receive messages from these new parents are ob-
tained by recalling that wait, = -wait,.

Next we show that the binary hypercube of 22k nodes can
also be embedded in a two-dimensional APPB of size 2k
X 2 k such that the alignment condition is satisfied. As in the
case of binary trees, the embedding is again modular with
the basic module being the binary 2-cube shown in Fig. 11 a.
A 3-cube embedding is obtained by putting together two
such 2-cubes side-by-side as shown in Fig. 11 b, and a 4-cube
embedding is obtained by putting together two 3-cubes one
above the other as shown in Fig. 1 lc and so on. Note that
the nodes in Fig. 1 lc correspond to the cube nodes of Fig.
5a. In this way the embedding, denoted EC2, of the binary
hypercube of the desired size is obtained modularly.

It is observed that in embedding EC2, each row and column
is itself a binary k-cube. For example, if we take the column
number y as the node id for the nodes in any row x, then
row x is a binary k-cube consisting of nodes y, 0 < y < 2 k.

Let us call each row or column a subcube. Then we have
2 k+l such subcubes. For each subcube, if we use the column
id y (or the row id x) to identify its nodes, all the control
functions step, send, and wait are exactly the same as those
derived for EC, in the linear APPB. Thus the total commu-
nication time for emulating the hypercube can be minimized
through overlapped pipelining as presented in the previous
section. It can be seen that all the neighboring nodes in the
hypercube are mapped to either the same row or the same
column in the two-dimensional APPB. Therefore EC2 satisfies
the alignment condition and thus requires no message relay
for communications between neighboring nodes in the hy-
percube. Finally, since the number of nodes used in the two-
dimensional APPB is equal to that of the hypercube, we
achieve a minimal expansion cost of unity.

5. BANDWIDTH ANALYSIS

In this section, we evaluate the merit of the pipelined
communication structure by comparing it with linear arrays
which utilize nearest-neighbor and exclusive access bus in-
terconnections. We evaluate the different models irrespective
of the technology used to implement them. In other words,
we assume that the transmission rate and the propagation
delay are the same for both optical and electronic commu-
nication links.

Consider the linear array of n processors with nearest-
neighbor connections as shown in Fig. lb and assume that
the physical separation between each pair of neighboring
processors is D. Such an array may emulate one cycle of a
pipelined bus in a time n(Tp + T,), where To is the prop-
agation time required for a signal to travel the distance D
and Tp is the time required to process a message at the sending
and the receiving ends of a communication link. T, includes
synchronization, message generation, buffering, and routing.
We note that for the cases of interleaved and overlapped
pipelining discussed in Section 3.3, at most two messages
might be processed in this time. The bandwidth of the near-
est-neighbor connected array, B,, defined as the maximum
number of messages that may be transmitted per second, is
thus given by

1 B,= ’ =_I_-
n(T, + 7’0) T,p+l’

where p = Tp/To.

(b) w
FIG. 11. Modular embedding of binary hypercubes, EC,, in the two-

dimensional APPB. (a) 2-cube. (b) 3cuk. (c) 4-tube with the node labeling
corresponding to that in Fig. 5a.

280 GUO ET AL.

For the pipelined linear APPB, the optical distance, Do,
between two consecutive processors should be larger than
the message length bwc, (see Eq. (1) in Section 2). In other
words, if D 2 bwc,, we set D,, = D; otherwise Do should be
made equal to bwc, (for example, by coiling an optical fiber)
so that each processor can inject a message into the bus
without collision. Thus, the signal propagation time, TD,,
between two consecutive processors is max (T,, CUT, } ,
where (Y = (bwcg)/ D. The pipelined bus cycle time is then
Tp + nTDmax { 1, a}. Given that n messages may be trans-
mitted during a pipelined bus cycle, the bandwidth of the
pipelined bus is

BP = n
Tp + nTDmax{ 1, (Y} ’ (2)

and thus,

B P= NP + 1)
43 p + n max{ 1, (Y} . (3)

In Fig. 12a a parametric plot showing the relation between
BP/B, and p is given in terms of n for a < 1 and (Y > 1. The

1 n-2 an-2 P
ia)

FIG. 12. The ratio, BP/B,, of the bandwidth of a pipelined bus to that
of a linear array with nearest-neighbor connections as a function of p. a,
and n. (a) A parametric curve. (b) For a fixed-size system with n = 64.

curve for ac < 1 corresponds to the case where the message
length is less than or equal to the physical separation between
processors, while the curve for (Y > 1 reflects the case where
message length is longer than the physical separation between
processors, and thus the optical path has been extended to
accommodate the entire message. By taking the limit of Eq.
(3) as p + co, it is clear that, for fixed (Y and large p, the
ratio BP/B, approaches IZ. Also, when p = 1 and (Y < 1, we
obtain BP/B, x 2. In Fig. 12b we plot BP/B, versus p for a
fixed-size array with n = 64 and for several values of (Y. These
plots show that the pipelined bus is more effective for larger
values of p and smaller values of a.

For multiprocessor interconnections, D is determined by
placement and routing within VLSI chips, by PC board con-
nections, or by back-plane interconnections. In all cases, D,
and therefore T,, is relatively small. Given that Tp is, at
least, on the order of microseconds, the ratio, p, of processing
to communication times should be much larger than 1 (on
the order of lo- 1000). Also, with current technology it is
reasonable to assume that cy is relatively small (between 1
and 10). For example, for board-to-board communications
(D = 10 cm), it is possible to drive an optical communi-
cation line at the speed of 10 GHz. Assuming that the speed
of light in optical fibers is c, = 2 X 10 * m/s, and that each
message contains b = 16 bits, we obtain (Y x 3. The same
value of cy is obtained if optical communications are imple-
mented on GaAs wafers at 100 GHz and a physical processor
separation of 1 cm. Note that the value of (Y may be reduced
if parallel buses are used to reduce b.

Next we compare the bandwidth of a pipelined bus with
that of an exclusive access bus. Given that the bandwidth of
an exclusive access bus is B, = 1 /(Tp + nTD), we have

B A?= nb + n)
Be p+nmax{l,a} ’

This shows that as (Y approaches 1, the pipelined bus can
accommodate n messages in the same cycle time as the ex-
clusive access bus. For larger (Y, the pipelined bus cycle will
be stretched to accommodate the length of the messages, and
thus, the performance gain due to pipelining will be less
than it.

The above analysis is independent of the media used for
communication. If optical pipelined buses are to be com-
pared with electronic buses, then the physical constraints on
the electronic propagation speed should be taken into ac-
count. Specifically, the effect of capacitive loading and mu-
tual inductance on the signal propagation speed (the trans-
mission line effect) should be considered. Thus, message
pipelining using electro-optical technology offers a potential
for substantially enhancing bandwidth utilization. Further,
pipelining techniques will be of increasing effectiveness be-
cause this technology offers the capability of generating very
short pulses [12, 331, thus reducing w and decreasing cr.

OPTICALLY INTERCONNECTED ARRAYS 281

6. CONCLUDING REMARKS

We have presented efficient communication architectures
which exploit the optical signal’s properties of unidirectional
propagation and predictable path delays in order to pipeline
messages on optical buses. As shown in Section 5, the pipe-
lined model has its merits irrespective of the technology in
which it is implemented. Although the presentation in this
paper is based on an optical model in which delays inherent
in optical fibers serve as slots for space multiplexing, it is
possible to use shift registers as buffer memories for these
slots [361. Thus pipelined buses may be implemented in
either optics or electronics. However, for the electronic im-
plementation, the signal propagation delay, To, will depend
on the speed of the shift registers, resulting in a relatively
small value for the ratio of processing to communication
times, p.

We proposed efficient approaches to fundamental message
routings including one-to-one, broadcast, semigroup com-
munications, and permutations for the APPB architectures.
Such efficient accomplishment of these commonly used
message routing patterns can significantly improve the effi-
ciency of many parallel algorithms. We presented here effi-
cient embeddings of the binary trees and hypercube networks.
Embeddings for other well-known interconnection networks,
including pyramids, shuffle-exchange networks, X-binary-
trees [91, and X-quad-trees, have also been obtained [14,
161. Such efficient embeddings of these well-known com-
munication structures allow all algorithms designed for these
structures to be efficiently executed on the APPB architec-
tures. They also allow an APPB to be logically reconfigured
as an architecture which is more suitable for a given com-
putation task.

We have not considered in this paper several issues that
are relevant to the implementation of the proposed archi-
tectures. Such issues include the synchronization of the pro-
cessors to the accuracy implied by the speed of optics, tem-
poral pulse positioning, optical fanout, and the distribution
of optical power in a way that allows the detector at each
processor to detect the optical signals correctly. These issues
must be addressed with regard to the reliability, scale, and
device technology which is appropriate for computing ap-
plications. Some of these issues have been presented in [7,
25, 311.

In our experimental work [6, 8, 2 l] we are investigating
the practical limits to these technological concerns. We have
shown that three factors, threshold power margin, synchro-
nization error, and coupling ratio, determine the system scale.
On the basis of current and near-term technology, our ex-
periments show that synchronization error does not con-
tribute significantly to the bounds of system size. Rather,
power distribution effects dominate. Preliminary investiga-
tions show that by using off-the-shelf optical components we
can currently build linear buses operating at 300 MHz and
containing about 100 processors. Using more sophisticated

electro-optics (gallium arsenide, custom couplers, and dual
level bus structures) we believe that IO-GHz buses of over
400 processors are feasible. Further, we believe that near-
term technologies such as fiber amplifiers as well as alternate
bus structures will alleviate the power distribution problem.

1.

2.

3.

4.

5.

6.

I.

8.

9.

10.

11.

12.

13.

REFERENCES

Bailey, D., and Cuny, J. An efficient embedding of large trees in processor
grids. Proc. 1986 International Conference on Parallel Processing. IEEE
Computer Society, Silver Spring, MD, 1986, pp. 8 19-822.
Batcher, K. E. Design of a massively parallel processor. IEEE Trans.
Comput. C-29,9 (1980), 836-840.
Bokhari, S. H. Finding maximum on an array processor with a global
bus. IEEE Trans. Comput. C-32,2 (1984), 133-139.
Chen, Y. C., Chen, W. T., Chen, G. H., and Sheu, J. P. Designing
efficient parallel algorithms on mesh-connected computers with multiple
broadcasting. IEEE Trans. Parallel Distrib. Systems 1, 2 (1990), 24 I-
245.

Chiarulli, D. M., Melhem, R. G., and Levitan, S. P. Using coincident
optical pulses for parallel memory addressing. IEEE Cornput., (Dec.
1987), 48-57.

Chiarulli, D. M., Levitan, S. P., and Melhem, R. G. Self routing inter-
connection structures using coincident pulse techniques. SPIE Proc.
International Symposium on Advances in Interconnects and Packaging,
Boston, MA, 1990, Vol. 1390.
Chiarulli, D. M., Levitan, S. P., and Melhem, R. G. Optical bus control
for distributed multiprocessors. J. Parallel Distrib. Comput. 10 (1990),
45-54.

Chiarulli, D. M., Levitan, S. P., and Melhem, R. G. Demonstration of
an all optical addressing circuit. Proc. OSA Topical Meeting on Optical
Comput., Salt Lake City, UT, 1991, pp. 235-238.
Despain, A. M., and Patterson, D. A. X-tree: A tree structured multi-
processor computer architecture. Proc. 5th International Symposium
on Computer Architecture, 1918, pp. 144-15 1.
Duff, M. J. B., Watson, D. M., Fountain, T. J., and Shaw, G. K. A
cellular logic array for image processing. Pattern Recognition 5 (1973),
229-237.

Duff, M. J. B., and Fountain, T. J. Cellular Logic Image Processing.
Academic Press, New York, 1986.
Fujimoto, J., Weiner, A., and Ippen, E. Generation and measurement
of optical pulses as short as 16 fs. Appl. Phys. Lett. 44 (1984), 832-
834.

Gordon, D., Koren, I., and Silberman, G. Embedding tree structures
in VLSI hexagonal arrays. IEEE Trans. Comput. C-33, 1 (1984), 104-
107.

14. Guo, Z. Array processors with pipelined busses and their implication
in optically and electronically interconnected multiprocessor architec-
tures. Ph.D. thesis, Department of Electrical Engineering, University of
Pittsburgh, 199 1.

15. Guo, Z., Melhem, R. G., Hall, R. W., Chiarulli, D. M., and Levitan,
S. P. Array processors with pipelined optical busses. Proc. 3rd Symposium
on Frontiers of Massively Parallel Computation, 1990, pp. 333-342.

16. Guo, Z., and Melhem, R. G. Embedding pyramids in array processors
with pipelined busses. Proc. International Conference on Application
Specific Array Processors, 1990, pp. 665-676.

17. Hunt, D. J. The ICL DAP and its application to image processing. In
Duff, M. J. B., and Levialdi, S. (Eds.). Languages and Architectures for
Image Processing. Academic Press, San Diego, CA, 198 1.

18. Jrad, A. M., and Hall, R. W. The OFC enhanced mesh architecture: A
performance study. Proc. 198 7 Workshop on Computer Architecturefor
Pattern Analysis and Machine Intelligence, 1987, pp. 184- 19 1.

282 GUO ET AL.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28

29

30.

31.

32.

33.

34.

3.5.

36.

37.

38.

Jrad, A. M., and Hall, R. W. Orthogonal fast channels: An enhanced
mesh architecture. Proc. 1987 International Conference on Parallel Pro-
cessing. IEEE Computer Society, Silver Spring, MD, 1987, pp. 828-
831.
Kawasaki, B. S., Hill, K. O., and Lament, R. G. Biconical-taper single-
mode fiber coupler. Opt. Lett. 6, 7 (198 I), 327-328.
Levitan, S. P., Chiarulli, D. M., and Melhem, R. G. Coincident pulse
techniques for multiprocessor interconnection structures. Appl. Opt. 29,
14 (1990), 2024-2033.
Melhem, R. G., Chiarulli, D. M., and Levitan, S. P. Space multiplexing
of waveguides in optically interconnected multiprocessor systems.
Comput. J. 32,4 (1989), 362-369.
Miller, R., and Stout, Q. F. Mesh computer algorithms for computational
geometry. IEEE Trans. Comput. C-38,3 (1989), 321-340.
Misra, M., and Prasanna-Kumar, V. K. Efficient VLSI implementation
of iterative solutions to sparse linear systems. Tech. Rep. IRIS 246,
University of Southern California, 1988.
Nassehi, M., Tobagi, F., and Marhic, M. Fiber optic configurations for
local area networks. IEEE J. Selected Areas Commun. SAC-3,6 (1985),
941-949.
Nassimi, D., and Sahni, S. Data broadcasting in SIMD computers. IEEE
Trans. Comput. C-30, 5 (1981), 101-107.
Nath, D., Maheshwari, S. N., and Bhatt, P. C. P. Efficient VLSI networks
for parallel processing on orthogonal trees. IEEE Trans. Comput.
C-32,6 (1983), 569-581.
Prasanna-Kumar, V. K., and Eshaghian, M. M. Parallel geometric al-
gorithms for digitized pictures on mesh of trees. Proc. 1986 International
Conference on Parallel Processing. IEEE Computer Society, Silver Spring,
MD, 1986, pp. 270-273.
Prasanna-Kumar, V. K., and Raghavendra, C. S. Array processor with
multiple broadcasting. J. Parallel Distrib. Comput. 4 (1987) , 173- 190.
Prasanna-Kumar, V. K., and Reisis, D. Image computations on meshes
with multiple broadcast. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-
11, 11 (1989), 1194-1202.
Prucnal, P., Blumenthal, D., and Perrier, P. Self routing photonic
switching demonstration with optical control. Opt. Engrg. 26,5 (1987),
413-477.

Raghavendra, C. S., and Prasanna-Kumar, V. K. Permutations on Illiac-
IV type networks. IEEE Trans. Comput. C-37, 7 (1986), 662-669.
Shank, C. The role of ultrafast optical pulses in high speed electronics.
In Morou, G., Bloom, D., and Lee, C. (Eds.). Picosecond Electronics
and Opto-Electronics. Springer-Verlag, New York, 1985.
Singh, A. Near optimal embedding of binary tree architecture in VLSI.
Proc. 8th Symposium on Distributed Computing Systems, 1988, pp.
86-93.
Stout, Q. F. Mesh connected computers with broadcasting. IEEE Trans.
Comput. C-32,9 (1983), 826-830.
Tanenbaum, A. S. Computer Networks. Prentice-Hall, Englewood Cliffs,
NJ, 1981.
Thompson, C. D., and Kung, H. T. Sorting on a mesh-connected parallel
computer. Commun. ACM 20,4 (1917)) 263-27 1.
Tobagi, F., Borgonovo, F., and Fratta, L. Expressnet: A high-performance
integrated-services local area network. IEEE J. Selected Areas Commun.
SAC-l, 5 (1983), 898-912.

39. Ullman, J. D. Computational Aspects of VLSI. Computer Science Press,
Rockville, MD, 1984.

40. Whalen, M. S., and Wood, T. H. Effectively nonreciprocal evanescent-
wave optical-fibre directional coupler. Electron. Len. 21, 5 (1985), 175-
176.

ZICHENG GUO is finishing his Ph.D. in the Department of Electrical
Engineering at the University of Pittsburgh. His current research interests
include parallel computer architectures and algorithms, optical communi-
cations in multiprocessor networks, and image computation and pattern
recognition.

RAMI G. MELHEM is an associate professor of computer science at the
University of Pittsburgh. He received a B.E. in electrical engineering from
Cairo University, Egypt, in 1976, an M.S. in mathematics/computer science
from the University of Pittsburgh in 198 1, and a Ph.D. in computer science
from the University of Pittsburgh in December 1983. He has been an assistant
professor of computer science at Purdue University from 1984 to 1986 and
at the University of Pittsburgh from 1986 to 1989. His research interests
include optical computing, parallel systems, fault-tolerant systems, and the
application of large computational arrays to scientific problems.

RICHARD W. HALL received the B.S.E. degree in electrical engineering
from The Evening College of the Johns Hopkins University in 1969 as part
of the Westinghouse-Johns Hopkins Awards Program and the M.S. and
Ph.D. degrees in electrical engineering from Northwestern University in
197 1 and 1975, respectively. He joined the Department of Electrical Engi-
neering at the University of Pittsburgh in 1975 and is currently an associate
professor in that department. His current research interests are in the study
of parallel algorithms and architectures for visual information processing.

DONALD M. CHIARULLI is an assistant professor of computer science
at the University of Pittsburgh. He received a B.S. degree in physics from
Louisiana State University in 1976, an M.S. degree in computer science
from Virginia Polytechnic Institute in 1979, and a Ph.D. in computer science
from Louisiana State University in 1986. From 1979 to 1983, he was Pres-
ident of Datanet Services Inc., a consulting and software development firm.
While at Louisiana State he was responsible for the design and construction
of The Factoring Machine, a reconfigurable VLIW machine for factoring
large numbers. Dr. Chiarulli’s current research interests include hybrid op-
tical/electronic computer architecture, optical interconnects, VLSI design,
and parallel computation. He is a member of the IEEE Computer Society,
ACM, SPIE, and the Optical Society of America.

STEVEN P. LEVITAN is the Wellington C. Carl Assistant Professor of
Electrical Engineering at the University of Pittsburgh. He received the B.S.
degree from Case Western Reserve University (1972) and his M.S. (1979)
and Ph.D. (1984) degrees, both in computer science, from the University
of Massachusetts, Amherst. He worked for Xylogic Systems, designing hard-
ware for computerized text processing systems, and for Digital Equipment
Corp. on the Silicon Synthesis project. He was an assistant professor from
1984 to 1986 in the Electrical and Computer Engineering Department at
the University of Massachusetts. In 1987 he joined the electrical engineering
faculty at the University of Pittsburgh. Dr. Levitan’s research interests include
computer-aided design for VLSI, parallel computer architecture, parallel
algorithm design, and VLSI design. He is a member of the IEEE Computer
Society, ACM, SPIE, and OSA.

Received April 6, 1990; accepted January 11, 199 1

