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Two synchronous multiprocessor architectures based on 
pipelined optical bus interconnections are presented. The first 
is a linear pipeline with enhanced control strategies which make 
optimal use of the available communication bandwidth of the 
optical bus. The second is a two-dimensional architecture in 
which processors are placed in a square grid and interconnected 
to one another through horizontal and vertical pipelined optical 
buses. These architectures allow any two processors to com- 
municate with each other using one (for the linear case) or two 
(for the two-dimensional case) pipelined bus cycles. Further, 
they permit all processors to have simultaneous access to the 
buses using slots within a pipelined cycle. We show that the 
architectures have simple control structures and that well-known 
processor interconnections, e.g., the complete binary trees and 
the hypercuhe networks, can be efficiently embedded in them. 
These architectures have an effectively higher bandwidth than 
conventional bus configurations and appear to be good candi- 
dates for a new generation of hybrid optical-electronic parallel 
computers. 0 199 1 Academic Press, Inc. 

1. INTRODUCTION 

Two-dimensional meshes of processors have been exten- 
sively studied in various forms and augmentations [ 23,26, 
371. Large-scale implementations of two-dimensional 
meshes have been built [ 2, 10, 17 1. However, since the com- 
munication diameter of an iz X 71 mesh is O(n), different 
approaches have been considered to augment the commu- 
nication capabilities of the mesh to reduce this diameter. 
Meshes have been augmented with global buses [ 3, 10, 11, 
35 1, reducing the communication diameter but giving only 
very small bandwidth improvements. Row and column bus 
augmentations [29, 301 have yielded both a low commu- 
nication diameter and adequate bandwidth for certain classes 
of algorithms. Interconnection networks have been consid- 
ered for augmenting rows and columns in a mesh including 
trees [27, 28, 391 and compounded graphs [18, 191. The 
binary hypercube can also be viewed in this context as a two- 
dimensional mesh with horizontal and vertical hypercube 
interconnections [ 18, 19 1. 

* This work was, in part, supported by Air Force Grant AFOSR-89-0469 
and by NSF Grant MIP-8901053. 

One of the simplest mesh augmentation schemes is the 
row and column bus augmentation. However, exclusive write 
access to buses is a major contributor to the low bandwidth 
of bus interconnections. A unique property of optics provides 
an alternative to this exclusive access, namely, the ability in 
optics to pipeline the transmission of signals through a chan- 
nel. In electronic buses, signals propagate in both directions 
from the source, while optical channels are inherently di- 
rectional and have precise predictable path delays per unit 
distance. Hence, a pipeline of optical signals may be created 
by the synchronized directional coupling of each signal at 
specified locations along the channel. This property has been 
used to parallelize access to shared memory [ 5 1, to enhance 
the bandwidth in bus-connected multiprocessor systems 
[ 221, and to minimize the control overhead in networking 
environments [ 381. 

In this paper, we present two multiprocessor architectures, 
called Array Processors with Pipelined Buses ( APPB ) , which 
employ optical bus interconnections in processor arrays. In 
Section 2 we review the basic principle of pipelining messages 
on optical buses. In Section 3 we introduce our linear APPB, 
where processors are connected with a single optical bus. We 
present efficient approaches to message routing and network 
embedding,for the linear APPB as well as techniques for 
enhancing the bus utilization through enhanced control 
functions. In Section 4 we introduce our two-dimensional 
APPB, where processors are interconnected with horizontal 
and vertical optical buses. We discuss routing and embedding 
issues for this new architecture. We show how binary tree 
and hypercube interconnections can be effectively embedded 
and identify key design issues for effective embeddings of 
arbitrary interconnections. In Section 5 we compare the ef- 
ficiency of the pipelined bus communication model with 
that of nonpipelined buses and of store and forward com- 
munications in nearest-neighbor structures. Finally, Section 
6 contains concluding remarks. 

2. MESSAGE PIPELINING ON OPTICAL BUSES 

Consider the system of Fig. la, where n processors, each 
having a constant number of registers, are connected through 
a single optical waveguide (bus). Each processor is coupled 
to the optical waveguide with two passive couplers, one for 
injecting (writing) signals on the waveguide and the other 
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FIG. 1. (a) A system of n processors connected with a single optical 

waveguide (bus). (b) A linear array of n processors with nearest-neighbor 
connections. 

for receiving (reading) signals from the waveguide [ 20,401. 
Each receiving coupler passively taps a percentage (typically 
5-lo%, depending on the coupling ratio) of the optical signal 
power available on the bus. Thus the couplers do not intro- 
duce any delay to the propagation of optical signals along 
the bus. However, the degradation of signal power does place 
an upper limit on the number of processors that can be con- 
nected on the bus [ 81. As in the case of electronic buses, 
each processor j communicates with any other processor i 
by sending a message to i through the common bus. However, 
because optical signals propagate in one direction, a processor 
j may send signals to another processor i only if i > j. 

Assume that a message on an optical bus consists of a 
sequence of optical pulses, each having a width w in seconds. 
The existence of an optical signal of width w represents a 
binary bit 1, and the absence of such a signal represents a 0. 
Note that w includes a time for electro-optical conversions, 
rise and fall times, and propagation delay in the latch of the 
receiver circuits [6]. For analytical convenience, we let Do 
be the optical distance between each pair of adjacent nodes 
(it will become clear that the distance between two adjacent 
nodes need not be equal) and 7 be the time taken for an 
optical pulse to traverse the optical distance D,. To transfer 
a message from a node j to node i, i > j, the sender j writes 
its message on the bus. After a time ( i - j)7 the message 
will arrive at the receiver i, which then reads the message 
from the bus. 

The properties of unidirectional propagation and pre- 
dictable path delays of optical signals may be used advan- 
tageously. Specifically, unlike the electronic case, where the 
writing access to the bus by each node must be mutually 
exclusive, all nodes in the system of Fig. la can write on the 
bus simultaneously, provided that the following collision- 
free condition [ 221 is satisfied, 

Do > bwc,, (1) 

where b is the number of binary bits in each message, and 
cg is the velocity of light in the waveguide. Clearly if this 
condition is satisfied and the system is synchronized such 
that every node starts writing a message on the bus at the 

same instant, then no two messages injected on the bus by 
any two distinct nodes will collide. Here by colliding we 
mean that two optical signals injected on the bus by any two 
distinct nodes arrive at some point on the bus simultaneously. 
This kind of synchronized pulse generation is restrictive but 
it can be met in several ways [ 2 I]. An optically distributed 
clock can be broadcast without skew to each node, or electro- 
optical switches can be used in place of sources to “switch 
in” pulses generated from a single source. With this condition 
satisfied, every node can, in parallel, send a message to some 
other node, and the messages will all travel from left to right 
on the bus in a pipelined fashion, as shown in Fig. 2. Thus 
we use the term pipelined bus. In the rest of this paper we 
always assume that the collision-free condition ( 1) is satisfied. 

To facilitate our discussion in subsequent sections we de- 
fine some terms. Let T be defined as before and IZ be the 
number of nodes on the pipelined optical bus. We define IZ T 
as a bus cycle and correspondingly r as a petit cycle. Note 
that a bus cycle is the time taken for an optical signal to 
traverse the entire length of the optical bus. For the discussion 
in this section, we do not include in a bus cycle the time 
taken to prepare and process a message before it can be in- 
jected on the bus. This time is explicitly introduced in our 
performance analysis in Section 5. If every node is writing 
a message simultaneously on the bus, then each node has to 
wait for at least a bus cycle to inject its next message. Note 
that each cycle on the pipelined bus may be emulated by n 
cycles in a linear array with nearest-neighbor communica- 
tions shown Fig. 1 b. Comparison of the two interconnection 
schemes is made in Section 5. 

Let us look at a simple routing task where each node 
transmits a message and each node is programmed to receive 
a message from the kth node (if it exists) to its left. All nodes 
start injecting messages at the beginning of a bus cycle, and 
all the messages travel on the optical bus in pipelined fashion 
without collision. By waiting for a specific interval of time, 
a node can selectively read the message intended for it as 
that message passes by the node. In our example, each node 
i is to receive a message from node i - k and thus must read 
its message from the bus after k7 time from the beginning 
of the bus cycle. In this way, a message routing pattern in 
which each node sends a message to the kth node to its right 
has been realized. In fact, as will be seen, we can realize 
various message routing patterns in a simple, straightforward 
way. 

3. LINEAR ARRAY PROCESSORS 
WITH PIPELINED BUSES 

In the system of Fig. 1 a, messages can be transmitted only 
from left to right. To allow message passing from right to 
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FIG. 2. Message pipelining on the optical bus. A blank rectangle indicates 
“no signal,” implying that some processor is not sending a message. 
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left, another optical bus is used, as shown in Fig. 3a. In this 
figure, we have two optical buses; the upper one is used for 
sending messages from left to right, and the lower one is used 
for sending messages from right to left. Each node can write 
and read messages on either bus as desired. Obviously signals 
in different buses do not disturb one another; that is, the 
two buses can support two separate pipelines. The system 
in Fig. 3a is our architecture of linear APPB. For convenience 
the linear APPB in Fig. 3a is schematically drawn as in 
Fig. 3b. 

To specify the time at which a node should receive a mes- 
sage, we introduce a control function twait( i), which is de- 
fined as the time that node i should wait, relative to the 
beginning of the bus cycle, before reading the message sent 
to it from some other node j. Thus 

twuit(i) = (i -j)7. 

If 7 is considered as a time unit, then twait can be interpreted 
in terms of the number of such time units and thus be written 
twuit( i) = i - j. Clearly if twait( i) > 0, then the message is 
to be received from the left; if twuit( i) < 0, then the message 
is to be received from the right. If twuit(i) = 0, then no 
message should be received by node i. The value of twait( i) 
can be stored in a wait register, and more than one such 
register may be used if a node is to receive more than one 
message in one bus cycle. 

This twuit control function, however, has the disadvan- 
tages that it depends crucially on timing accuracy and is 
sensitive to the optical distance D, between two adjacent 
nodes. An equivalent control function, mwuit , that does not 
have these disadvantages may be defined if we require that 
each node inject a message, real or dummy, every bus cycle. 
In this case we define mwait( i) as the number of messages 
that node i should skip before reading its message. For ex- 
ample, if mwait( i) = y, then node i should receive the 1 y 1 th 
message that passes i on the bus. That is, it has to wait until 
I y 1 - 1 messages have passed and then it reads its own 
message. The sign of y determines on which bus the message 
should be received. Clearly mwait is equivalent to twait and 

l 
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FIG. 3. (a) Linear array processors with pipelined buses ( APPB) (b) 
A schematic drawing of (a). 

either control function may be used. For convenience we 
simply write the control function as wait, and we assume 
that the optical distance between each pair of adjacent nodes 
i and i + 1 is constant. 

The control function wait can only be used when the 
communication pattern is known to the receiver in the sense 
that the receiver knows from which node the message is to 
be received. In cases where the communication pattern is 
unknown to the receiver, the coincident pulse techniques 
[ 5, 2 I] may be used such that an addressing pulse and a 
reference pulse coincide at the detector of the receiver, 
thereby addressing it. In this paper we use wait for addressing 
since the communication patterns which we discuss are 
known to the receiver. 

In the following we present techniques for message routing 
and network embedding in the linear APPB. For the purpose 
of evaluating the communication efficiency, we note that a 
lower bound on the number of bus cycles needed to transfer 
H messages in the linear APPB is [H/n1 , where n is the 
number of nodes on the optical bus. This lower bound is 
obtained by assuming a perfectly even distribution of mes- 
sages along the bus at each bus cycle, that is, every node has 
one message to send at each bus cycle. 

3. I. Message Routing in Linear APPB 

Various message routing patterns can be realized in a sim- 
ple, straightforward way. Since a routing pattern is deter- 
mined by the wait functions, we need only determine these 
wait functions for each routing pattern. The most common 
patterns are: 

One-to-One. The system executes a SEND( j, i) instruc- 
tion, which means that a message is to be transferred from 
node j to node i. Thus, wait(i) = i - j, where i is a single 
specific node. 

Broadcast. The system executes BROADCAST(j), 
which means that nodej broadcasts a message, and all other 
nodes i will receive that message. In this case, wait(i) = i 
- jfor all i P j. 

Semigroup Communication [ 41. The system executes a 
SEMIGROUP( i) instruction, which says that some global 
information, e.g., extrema and sum, is to be computed and 
stored at node i. This task can be accomplished by having 
the linear APPB logically function as a tree with the root 
being node i. Later in this section we present embeddings 
of binary trees which facilitate such a tree emulation task. 

Permutations. For each node j to send a message to a 
node i = PERM( j), where PERM( ) is an arbitrary per- 
mutation, we set wait(i) = i - j for all i. 

We see that the computation of wuit( i) is very simple and 
uniform. The only difference among the wait functions for 
different message routing patterns is that the nodes involved 
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are different. It is clear that all these communication tasks Thus, to realize children-to-parent message routing each 
can be performed using a single bus cycle, except the semi- parent should wait for wait&i) and wait,,, (i) time to read 
group communication, which takes log(n) bus cycles. Note the messages from its left and right child, respectively. Clearly 
that, in the linear APPB, message passing between two non- this routing task can be performed using one bus cycle. 
neighboring nodes is nearly as efficient as that between two For parent-to-children message transfer in E,, , each parent 
neighbors. Specifically, a message takes T more time to pass has two messages to send to its two children, respectively. 
one more node on the optical bus. This is not the case in In this case, two bus cycles are needed to carry out such a 
the linear array with nearest-neighbor connections shown in routing task, one to send messages to left children and one 
Fig. lb, where to pass a node, en route to another node, a to send messages to right children. Let wai&( j) and 
message has to go through a router. In this sense we may waitp,, (j) be the wait functions for a left child and right child, 
say that the APPB is communication efficient, and in par- respectively, to receive a message from its parent. Then, dur- 
ticular global-communication efficient. ing the first cycle we have 

3.2. Embedding Binary Tree and Hypercube Networks 
into Linear APPB 

In this subsection we show how to embed other intercon- 
nection networks into the linear APPB. Our first example is 
the embedding of complete binary tree networks. To show 
that a binary tree network can be embedded in the linear 
APPB it is sufficient to find the wait function for each pro- 
cessor in the linear APPB such that the desired routing pat- 
tern is accomplished. 

Let L be the number of levels of a complete binary tree 
and let the root of the tree be node 1. Each node i, i 2 1, 
which is not a leaf node has two children, 2i + 6, where 6 
= 0, 1, corresponding to i’s left and right child, respectively 
(see Fig. 4a for an example). Consider an embedding in 
which node i in the tree is mapped to node i - 1 in the linear 
APPB. For convenience, we call this embedding E,, (see Fig. 
4b). In E,, , the wait functions for node i to receive a message 
from its children are: 

wait,,* ( i) = 
i-(2i+6)=-(i+6), i<2L-‘, 

0, otherwise. 

level 0 

FIG. 4. Embeddings of complete binary trees in the linear APPB. (a) 
A binary tree. (b) The first embedding, E,, . (c) The second embedding, Ea. 

1 

jj. j - 2 = 5 , J = even, 
wait,J j) = 

0, otherwise, 

and during the second cycle we have 

I 

j- 1 j+ 1 
j--=- 2 2 ’ 

j= odd,andjf 1, 
wait,,,(j) = 

0, otherwise. 

Mapping each node i in the binary tree network onto node 
i (or i - 1 as was just done above) in the linear APPB is a 
straightforward approach. Using this straightforward ap- 
proach we can embed any type of network in the linear 
APPB. This approach, however, may not give a good 
embedding in the sense that it may take more time than 
needed, in number of bus cycles, to accomplish a given com- 
munication task. As is seen next, another tree embedding, 
Et2, has a better communication efficiency than E,, . 

Embedding Et2 may be viewed as pressing the binary tree 
from the root down until all the nodes fall in the level of the 
leaf nodes (see Fig. 4~). In this embedding the two children 
of a node i are on opposing sides of i. Thus the parent-to- 
children routing pattern, as well as the children-to-parent 
routing pattern, may be accomplished in one bus cycle. Spe- 
cifically, if i is a node at level I, where I is the integer satisfying 
2’ - 1 < i < 2’+‘, then the wait functions for i to receive 
the messages from its two children are 

wait&i) = 
i 

(-1)62L-l-2, i < zL-l, 

0, otherwise. 

The parent-to-children message routing pattern in Et2 is 
different from that in E,, in that the two messages from a 
parent will travel on two different buses. Then the two mes- 
sages from each parent node can be simultaneously injected 
on the two buses, respectively, in the same bus cycle. Hence, 
the parent-to-children routing pattern can be accomplished 
in one bus cycle. waitp,& can be determined by noting that 
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~ait~,~(j) = -waitC,6( i), where i is the parent ofj. That is, of its k neighbors if each node sends one message to one 
the wait functions for parent-to-children message transfer neighbor in each bus cycle. For example, at the hth bus cycle 
are a message is sent from each node to its neighbor at distance 

2 ‘-I. To accomplish this, the time that a node i has to wait 
(-1)6+‘2L-‘-l, j > 1, 

wuit,,( j) = 
i 

during the hth bus cycle before receiving a message from its 

0, j= 1. neighbor along the hth dimension is 

Next, we consider a k-dimensional binary hypercube in 
wuith( i) = f2h-‘. 

which the nodes are numbered such that if nodes i and j are In our discussions so far, we have allowed each node to 
neighbors across dimension h, 1~ h G k, then 1 i - j 1 = 2 h-’ send only one message on each bus during each bus cycle. 
(see Fig. 5a). Let EC, be the embedding of this k-cube into In other words after placing a message on the bus in the 
a linear APPB such that each node i in the hypercube is current cycle, all nodes must wait until the next cycle to 
mapped into node i in the linear APPB. With this embedding, initiate the next message. In the following subsection, we 
a node in the hypercube may send a distinct message to each show that such a wait is not always necessary. 

2 

/J-=== 
4 1 

3 

(4 

FIG. 5. (a) A binary hypercube and its dimension assignment. (b) Message routing patterns in the hypercube. (c) Message distribution in the 
hypercube. 
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3.3. Interleaved and Overlapped Pipelining The corresponding wait functions are 

Up until now, we have required that each node send only 
one message on each bus in one bus cycle and that the trans- 
mission of messages be initiated at the beginning of a bus 
cycle. Given these two restrictions, no specific control func- 
tion was needed for the initiation of messages. However, if 
some node does not have a message to send during a bus 
cycle, a slot of one petit cycle in duration will be created. 
Interleaved pipelining is a technique which tries to fully uti- 
lize the communication capacity of the pipelined bus by in- 
serting a message into any available slot. This may be ac- 
complished if a node is allowed to place more than one mes- 
sage on the same bus within a bus cycle, but at different petit 
cycles. To allow for this flexibility, a control function send,(j) 
must be used to specify the time, relative to the beginning 
of a bus cycle, at which node j should write its gth message 
on the bus. 

wait,(i) = i -j, jE S2s-1, 

i-j, j E S,, and 22sp2 

wait=(i) = 
< (j mod 22s) < 22sp’, 

i-j+22”-2, jESZsand 

0 < (j mod 2=‘) < 2=‘-=. 

To show how interleaved pipelining works, let us now 
examine the routing patterns in EC,. Since message transfers 
in opposite directions on the two buses of the linear APPB 
form two separate and symmetric pipelines, we need to look 
at only one direction. Consider the left-to-right message 
transfer in EC,, anddefineksets,&= {j 1 O<j<n,O 
<(jmod2h)<2h-‘}, 1 < h & k, of nodes for the k-cube. 
That is, S,, is obtained by partitioning the n nodes of the 
hypercube into 2 h-node groups and including in Sh the first 
2h-’ nodes in each group. For example, for the 4-cube in 
Fig. 5a, we have S, = (0, 2, 4, 6, 8, 10, 12, 14}, & = (0, 
1,4,5,8,9,12,13},S3={0,1,2,3,8,9,10,11},and& 
= { 0, 1, 2, 3, 4, 5, 6, 7 } . Note that all the k sets, Sh, have 
the same cardinality 2 ‘-I, and each contains node 0. Hence, 
in the realization of the binary k-cube using a linear APPB, 
there are k routing patterns. In the hth pattern, 1 < h < k, 
the nodes in set Sh send messages to their neighbors along 
the hth dimension in the hypercube, as indicated with the 
arrowed curves in Fig. 5b. Correspondingly, the messages 
can be divided into k sets, Mh, 1 < h < k, which are sent by 
the k sets of nodes Sh , respectively. For the routing patterns 
in Fig. 5b, these message sets are shown in Fig. 5c. 

A node for which the send or wait function is not defined 
above should not send or receive any message. Note that the 
times determined by these send and wait functions are with 
respect to the beginning of each bus cycle s. Also note that 
since the receiving node i knows the id of the sending node 
j (since they are neighbors in the k-cube), it knows which 
of the two values of wait2( i) should be used. As an example, 
the interleaved pipelining for the messages in Fig. 5c is 
achieved by interleaving message sets M1 and M2 in the first 
bus cycle and M3 and M4 in the second bus cycle. The ar- 
rowed lines in Fig. 5c show how the messages are being in- 
terleaved, and the resulting message pipelines are shown in 
Fig. 6a. 

It can be seen that using interleaved message pipelining, 
the total communication time taken for each node to send 
a message to each of its neighbors is k/2 + 1 bus cycles, 
where the last bus cycle is due to the time needed to clear 
out the first n / 4 messages ( sent by nodes 0 through n / 4 - 1) 
in Mk that were inserted in front of Mk-, . Comparing with 
k bus cycles, the time needed if each node sends one message 
per bus cycle, our savings in the communication time is (k 
- 2)/2 bus cycles. Although this savings is significant there 
are still unused slots from the rightmost nodes on the bus, 
as can be seen from the message pipeline at time t = 16 in 
Fig. 6a. We next show how to utilize these empty slots using 
overlapped pipelining. 

Using interleaved pipelining, the messages in the two sets 
MZs-, and M2s, 1 < s c k/2, are interleaved and sent in the 
same bus cycle. Let send1 (j) and send,(j) be the times at 
which node j writes its messages in M+, and Mzs, respec- 
tively, on the bus during bus cycle s. Correspondingly, let 
wait,(i) and waitz( i) be the wait functions for a node i to 
receive the messages in Mzsel and Mzs, respectively, during 
bus cycle s. Then, for interleaved pipelining we have the 
following send functions for a node j at bus cycle s, 1 < s 
<k/2: 

send,(j) = 0, j E &-, , 

sen4j) 

In overlapped pipelining, we pipeline the message pipelines 
obtained from interleaved pipelining by allowing the mes- 
sages for bus cycle s to be initiated before bus cycle s - 1 
terminates, as long as message collision does not occur. For 
this purpose we define a new control function, steps, which 
specifies the time, with respect to the beginning of the first 
bus cycle, at which the messages for bus cycle s are initiated. 
Clearly, savings in communication time is possible if step, 
- step,-, < n7. In this case, we avoid confusion by calling 
the bus cycles message transfer steps. 

In EC,, the control function step,, 1 < s < k/2, specifies 
when S2$- i and S2, should start sending their messages. Spe- 
cifically let step, = 0 and let step,, 1 < s =% k/2, be the time 
interval in number of petit cycles between the initiations of 
steps 1 and s. Then, messages from step s and step s - 1 
will not collide if 

0, j E S,, and 2 ‘se2 < (j mod 2=‘) < 2=‘-‘, 
r 

22s-2 > j E S2, and 0 6 (j mod 22s) < 22s-2. 
3 

step, = step,-, + n - 4 2 2s-2, 1 <s+ 
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The send and wait functions defined in the previous subsec- 
tion are still applicable here, but they are now defined with 
respect to the time determined by step,, the beginning of 
transfer step s, rather than the beginning of each bus cycle 
s. Figure 6b shows the result of overlapped pipelining of the 
message pipelines in Fig. 6a. Note that in interleaved pipe- 
lining there was also some overlapping between the two mes- 
sage pipelines generated in two consecutive bus cycles, as 
can be seen from the message pipeline at time t = 16 in Fig. 
6a. But, as has been mentioned previously, interleaved pipe- 
lining does not fully utilize the pipelined bus. 

These control functions step, send, and wait together result 
in a minimized total communication time. To show this we 
first note that since the cardinality of Mh, 1 < h < k, is n/ 
2, the total number of messages is kn/2. Thus, if we assume 
that the message distribution over processors is perfectly even 
in each bus cycle (every processor has a message to send in 
each bus cycle), then the time needed for transferring these 
messages is at least r kn/2nl= k/2 bus cycles, or equivalently 
kn/2 petit cycles. In our case, however, such an assumption 
of even message distribution does not hold. For example, 
no message can be inserted on the bus at processor n - 1 in 
the first bus cycle, as can be seen from the message pipeline 
at time t = 0 in Fig. 6b. Now we compute the total time, in 
number of petit cycles, using the control functions deter- 
mined above. It can be shown that 

The time due to send2 at step k/2 is 2 k-2 = n/4. Finally it 
takes n petit cycles for the bus to clear out. Therefore the 
total time in number of petit cycles is 

k 
n+l+:+n=jn+l. 

Finally, we note that interleaved message pipelining may 
also be applied to binary tree routing patterns. From our 
previous discussion we know that the parent-to-children 
message routing in E,, has to be done in two bus cycles and 
that the same message routing task can be performed using 
a single bus cycle in Et2. Communication efficiency in Et2 
can be further improved by using interleaved message pipe- 
lining because during parent-to-children message transfer 
only every other node is sending a message. Thus each parent 
can send two messages to each child in one bus cycle. 

4. TWO-DIMENSIONAL ARRAY PROCESSORS 
WITH PIPELINED BUSES 

Linear optical buses have the disadvantage that message 
transfer may incur O(N) time dela 

P 
in an N-processor sys- 

tem. To reduce this delay to 0( N), we consider two-di- 
mensional APPBs. In a two-dimensional APPB, each node 
is coupled to four buses as shown in Fig. 7a, where the two 
horizontal buses are used for passing messages horizontally 
in the same way as before, and the two vertical buses are 
used for passing messages vertically in a similar way. For 
convenience we diagram our two-dimensional APPB as in 
Fig. 7b. Each node in a two-dimensional APPB of size N 
= m X n will be given two identifications, one being a pair 
of numbers (x, y), 0 < x < m, 0 < y < n, indicating the 
row-column position of the node in the two-dimensional 
APPB, and the other being the row-major index, i = xn + y, 
0 G i < N, of the node. Corresponding to the bus cycle 
defined for the linear case, in the two-dimensional APPB we 
define nr and mr as a row bus cycle and a column bus cycle, 
respectively, where 7 is a petit cycle as defined previously. 
When there is no confusion, e.g., while talking about message 
transmissions in a row, we simply say a bus cycle instead of 
a row bus cycle. 



216 GUO ET AL. 

4.1. Message Routing in Two-Dimensional APPB 

A unique issue that arises in the two-dimensional APPB 
is the relay of messages. Specifically, suppose a message is 
to be transferred from node (xi, yI ) to node (x2, y2 ), with 
XI Z x2 and yl Z ~2. Then the message may first be sent from 
(x1, yl ) to (xi, y2), which is the node at the intersection of 
row x1 and column ~2, in the first bus (a row bus cycle) and 
then from (xi, y2) to (x2, y2) in the second bus cycle (a 
column bus cycle). That is, the message has to be buffered 
at node (xi, y2) at the end of the first bus cycle and then 
relayed to its destination in the second bus cycle. For the 
purpose of relaying the message, we define a control function 
relay for node (xi, y2) as 

reb4(xl, ~211 = ~2 - yl, 

which indicates that node (xi, y2) will read a message from 
a row bus at time ] y2 - y1 I (relative to the start of the row 
bus cycle) and then write that message on the proper column 
bus at the beginning of the following column bus cycle. If 
relay[ (xi, y2)] = 0, then no message is to be relayed by node 
(xi, y2). Clearly, in the worst case up to n messages have to 
be relayed and, therefore, n relay buffers are needed at the 
relaying node. Now we are ready to show how the four most 
commonly used message routing patterns discussed in the 
previous section can be realized in the two-dimensional 
APPB. 

One-to-One. The system executes a SEND[ (x1, y, ), (x2, 
y2)] instruction, which requires that node (xi, yI) send a 
message to node (x2, y2). We have relay[ (xl, y2)] = y2 
- y, (in row bus cycle), and wait[ (x2, y2)] = x2 - x1 (in col- 
umn bus cycle). This communication takes two bus cycles. 

Broadcast. The system executes a BROADCAST[ (x, y)] 
instruction, which states that node (x, y) broadcasts the same 

FIG. 7. Two-dimensional APPB. (a) A processor coupled to four wave- 
guides in the two-dimensional APPB. (b) A schematic drawing of the tww 
dimensional APPB. 

message to all other nodes (Xi, yj). In a row bus cycle, (x, 
Y) broadcasts the message to nodes (x, Yj), Yj # y. Then in 
the following column bus cycle all (x, Yj) , including (x, y ), 
broadcast the message in their corresponding columns. Thus 
relay[(x, Yj)] = Y, - Y, and wait[(xj, Yj)] = X, - X. This 
communication also takes two bus cycles. 

Semigroup Communication. This corresponds to the 
execution of SEMZGROUP[ (x, y)], which says that some 
global information is to be computed and stored at node (x, 
y) . This task can be accomplished using two linear semigroup 
operations, one in rows and the other in a column. That is, 
first we view each row as a linear APPB and do SEMZ- 
GROUP(y) in all rows. Then in column y, we perform 
SEMIGROUP( Thus 2 log(n) bus cycles are needed for 
this task. 

Permutations. Let PERM[(x, y)] be an arbitrary per- 
mutation. To avoid using n relays at each node, we can use 
a three-phase routing approach [24, 321 or equivalently a 
three-bus-cycle approach in the two-dimensional APPB. In 
this approach the first bus cycle is a “preprocessing” step 
which distributes messages in each row such that the messages 
going to the same row will occupy different columns. Then 
the second and third bus cycles will route the messages to 
their destination row and destination node, respectively. We 
note that for arbitrary permutations this approach implies 
the use of a centralized controller which would compute the 
message destinations for the preprocessing step. This cal- 
culation requires the construction of a bipartite graph and 
its partitioning into complete matchings, which would dom- 
inate the time complexity for the total task of computing 
and implementing an arbitrary permutation. In applications 
where a permutation can be precomputed, this time cost can 
be amortized over many subsequent applications of the per- 
mutation. 

4.2. Embedding Binary Trees in Two-Dimensional APPB 

As mentioned previously, arbitrary message routing and 
permutations in two-dimensional APPB may require n re- 
laying buffers in each node in the worst case. In this subsec- 
tion we present an embedding for a binary tree network in 
which only one relay buffer is needed to route messages. An 
embedding of an L-level complete binary tree into a two- 
dimensional APPB with n = 2k columns may be obtained 
by (i) mapping levels 0, . . . , k - 1 of the tree to row 0 of 
the two-dimensional APPB and (ii) mapping level 1, k < I 
< L, of the tree to the 21pk rows, 21ek, 21ek + 1, . . . , 2’-k+’ 
- 1, of the APPB such that the two children of the same 
parent are mapped into two adjacent rows in the same col- 
umn as the parent. Specifically we define our embedding of 
a binary tree network into the two-dimensional APPB by a 
mapping F(i) = (F,(i), F,(i)), which maps each node i, 1 
< i < 2=, in the tree to a node ( FX( i), F,(i)) in the two- 
dimensional APPB. Let i be a node at level 1,O < I< L, in 
the binary tree. The mapping is defined by 
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lo. 1 < i < 2k. 
-’ F,(i) = 
21ek + i mod 21-k L , 2k=Gic2, 

and 

F,(i) = 
> 2 k < i c 2L. 

As an example the embedding for the 4-level binary tree 
in Fig. 8a is shown in Fig. 8b. Let us call this embedding 
Et3. Et3 has the following properties: (i) Parent nodes i, 1 
< i < 2 k-‘, and their children are in row 0; (ii) parent nodes 
i, 2kP’ < i < 2k, which are in row 0, have their children in 
row 1; and (iii) parent nodes i, 2k < i < 2L-‘, and their 
children are in the same column. Properties (i) and (ii) are 
obvious. Here we prove only (iii). Since in the binary tree 
each parent node i has two children 2i + 6,6 = 0, 1, to prove 
(iii) we need only show that FJ i) = FJ 2i + 6) for 2 k < i 
< 2L-‘. For that, let i be a parent node at level 1, where k 
=S I < L - 1 and i = ~2’ + q for some integers p and q such 
that 0 < q < 2’. Then 

F,(2i + 6) = 
I 

(2(p2’+ q) + G)mod 2’+’ 
21+1-k 

J 

= (p2 

I 

‘+’ + 2q + G)mod 2’+’ 
21+1-k 

1 

It is now clear that the relay function is not needed for 
message transfer between parent nodes i and their children 
if 1 < i -c 2k-’ or 2k =S i < 2 L-1. However, such a relay is 
needed if 2 k-’ G i < 2 k. The wait and relay functions for 
E,, are obtained in the following. 

FIG. 8. (a) A 4-level binary tree. (b) Its embedding, E,,, in the two- 
dimensional APPB. 

Let waitJ(x, y)], where (x, y) = I;(i), be the wait func- 
tions for a parent node i to receive a message from its left 
and right child for 6 = 0 and 1, respectively. For the case 1 
<i<2 k-‘, the results for the linear APPB directly give 
wait,,,[(x, y)] = -(y + 6). For the case 2k G i < 2L-‘, let 
i be at level 1, k < I < L - 1, and i = ~2’~~ + q. Then 

F,(i) = 21-k + i mod 21pk = 21pk + q; 

F,(2i + 6) = 21+‘-k + (2i + G)mod 2’+lek 

= 2’+lek + (p2’+lek + 2q + G)mod 2’+lpk 

= 21+1-k + 2q + 6; wait,+J(x, y)] = F,(i) - F,(2i + 6) 

= (2/-k + q) - (2/+1-k + 2q + 6) = -(x + 6). 

wuitP,6( j) can be obtained by recalling that waitP,6( j) 
= -wui&( i), where i is the parent ofj. 

For the case where 2k-’ G i -K 2k, a wait and a relay 
function are needed. Let reluy,,,[ (0, y)] , 0 G y < 2 k, be the 
relay function of node (0, y) for relaying the message from 
a child node (again, 6 = 0 for the left child and 6 = 1 for the 
right child) to its parent. Then we can show that 

reluy,,,[(O, y)] = -1, 0 G y < 2k, 

wuit,,[(O, y)] = 2k - y - 6, 2k-’ G y < 2k. 

Note that each node (0, y) needs to relay only one child-to- 
parent message with the message from left (right) child being 
relayed by (0, y) with y even (odd), and that even though 
node 0 is not a node in the tree, it helps relay messages. Also 
note that rel~y,,~ is applicable to column bus cycles. Now let 
reluyJ (0, y)] , y even (odd), be the relay function for node 
(0, y) to relay the message from a parent (0, Y) to its left 
(right) child for 6 = 0 ( 1). Then reZuyP,d is easily obtained 
from relay,,,[ (0, y)] = -wuit,,J (0, Y)] . And wait,, is de- 
termined as in the linear case. 

4.3. Network Embeddings Requiring No Reluys 

Embedding Et3 still requires one message relay for com- 
munication between two neighboring nodes in binary trees. 
To further improve the communication efficiency, in this 
subsection we show how to obtain embeddings of binary 
trees as well as hypercubes such that no such message relay 
is needed. Two approaches may be used to eliminate message 
relays by intermediate nodes: a hardware approach and a 
“software” approach. In the hardware approach, optical 
switches are used at the intersections of row and column 
buses to switch an optical signal, say, from a row bus to a 
column bus, without requiring relay by an intermediate pro- 
cessor [ 15 1. In this paper we consider the “software” ap- 
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preach, which relies on designing embeddings such that all 
neighboring processors in a network are mapped into the 
same row or column in the two-dimensional APPB. Thus, 
no message relay is needed and no relay function is required. 
This improves the communication efficiency significantly. 
However, it has the disadvantage that nodes in the APPB 
may not be fully utilized. 

A basic measure that is usually used to evaluate the quality 
of an embedding of a source graph G, = { V, , U, } with a set 
of nodes V, and a set of edges U, into a mesh architecture 
with a set of nodes V, is the expansion cost, which is defined 
as the ratio of the number of nodes in the target mesh to the 
number of nodes in the embedded graph. Another measure 
useful for such evaluation is the dilation cost. Specifically, 
the dilation of an edge u E U, , which is mapped to a path 
Q in the target mesh, is 1 Q 1 - 1, where ) QI is the number 
of nodes on Q. However, the mesh model corresponding to 
that of APPBs is different from those studied previously [ 1, 
13,341 because the efficiency of the communication between 
any two nodes in the same row or column in an APPB does 
not depend on the distance between these two nodes. There- 
fore the criterion that is to be satisfied by an embedding is 
different from previously studied criteria. Specifically, it is 
desirable to obtain an embedding in which any two neigh- 
boring nodes in the source graph are mapped into either the 
same row or the same column in the two-dimensional APPB, 
thus allowing them to communicate with each other using 
a single bus cycle. An embedding which satisfies this require- 
ment will be said to satisfy the alignment condition. Note 
that Et3 obtained in the previous subsection does not satisfy 
the alignment condition and thus requires message relays. 
That embedding, however, does have an optimal expansion 
cost of 2 ‘/( 2L - 1) . In contrast, the binary tree embedding 
presented in the following satisfies the alignment condition, 
but its expansion cost is not optimal. This demonstrates a 
trade-off between the expansion cost and the dilation cost 
for network embeddings in the two-dimensional APPB. 

Consider Fig. 9a and assume that we already have an 
embedding of an s-level binary tree with N, = 2” - 1 nodes 
into a two-dimensional APPB of size a, X b, . The embedding 
is assumed to satisfy the alignment condition. That is, all 
the neighboring nodes in the s-level tree are mapped into 
the same row or column in the two-dimensional APPB. Us- 
ing this level s embedding (starting level) as building blocks, 
the embedding for an (s + 2) -level tree is obtained as shown 
in Fig. 9b. Clearly in this embedding the neighboring nodes 
are again on the same row or column. A still larger tree is 
obtained by repeating this modular building procedure until 
the desired size is achieved. Let us call this embedding Et4. 
Assuming that in Et4 the embedding of an L-level tree, L 
=s+2a,a=o, l)...) occupies an area, in number of 
nodes, equal to AL in the two-dimensional APPB, we may 
inductively prove that 

AL = 29A, + (1 - 2-‘L-““2)b,]. 

@) 
FIG. 9. Modular embedding of binary trees, I$,, in the two-dimensional 

APPB. (a) A building block in which an s-level binary tree is embedded. 
(b) Embedding of an (S + 2)-level binary tree. 

With this result, the expansion cost for the embedding of an 
L-level tree is 

c = & = 2L-S[A, + (1 - 2-‘L-““2)b,] 

L NL 2L-- 1 

2L-S[A, + (1 - 2-‘L-““2)bs] = 
2L-“(Ns + 1) - 1 ’ 

It can be checked that CL is monotonically increasing with 
L. However, for large L, the value of CL asymptotically 
equals 

c L,max 
_ 4 + bs 

N,+l’ 

Note that, if N, 9 1 and A, B a,, the value of CL simplifies 
to CL = As/N, = C, > 1. That is, the expansion cost for the 
entire embedding is determined by the expansion cost of the 
building block. Thus low expansion costs may be obtained 
if the starting building block satisfies N, 9 1, A, 9 b,, and 
C’, + 1. Some examples of building blocks are shown in Fig. 
10 with their corresponding expansion cost CL,,, . Note that 
in this modular embedding scheme, as the embedding goes 
one level higher, the number of levels of the tree increases 
by 2. Thus ifs is even (odd) then L is even (odd). Therefore 
according to whether the desired level L of the tree is even 
or odd, the starting level s must be chosen properly. 

To determine the control functions for Et4, let r/ be the 
root at an embedding level 1, 1 = s + 2, s + 4, . . . , L, and 
(x1, yl) be the coordinate, i.e., the row-column position, of 
r, in the two-dimensional APPB. Then from Fig. 9b, the 
coordinate of ri is 

(XL vd = (al-*, bj-2 - 11, 

where aI and bl can be found to be equal to 2(‘p”)/2( a, + 1) 
- 1 and 2(1-S)‘2bs, respectively. Thus, 

(xl, yr) = (2(‘-s-2)/2(as + 1) - 1, 2(r-s-2)‘2bs - 1). 
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(a) A 2.level tree. (b) A 3-level tree. (c) A 4-level tree. 
hcw4d 

(d) A 5-level tree. 

(e) A 6.level bee. 

(f) A 7-level tree. 

FIG. 10. Example building blocks for the modular embedding of binary 
trees, &, and their corresponding expansion costs CL,max: (a) 1.5, (b) 1.5, 
(c) 1.25, (d) 1.31, (e) 1.22, (f) 1.12. 

Now the control functions can be determined as follows. 
First, within the building block determine the wait functions 
according to the specific building block in use. Let (x,, ys) 
be the coordinate of r,, the root in the building block. We 
then need only determine the wait functions for the new 
nodes which appear as we go to a higher-level embedding. 
For example, in Fig. 9b when we go from level s to s 
+ 2, the new nodes are Y,+~, u,+~, and v,+~. By letting 
wuit,,,( r,) be the wait function for node rl to receive a mes- 
sage from child node uI, we have 

w&,,,(o) = Y/ - YI-2, 

w~&,,(~J = -(YI - YI-2 + l), 

waiLm,(u~) = w&,r,_,(v~) = +(x/ - x1-2), 

where the coordinate (x1, yr) is as determined previously. 
These are the wait functions for the new parents to receive 
messages from their children. The wait functions for the 
children to receive messages from these new parents are ob- 
tained by recalling that wait, = -wait,. 

Next we show that the binary hypercube of 22k nodes can 
also be embedded in a two-dimensional APPB of size 2k 
X 2 k such that the alignment condition is satisfied. As in the 
case of binary trees, the embedding is again modular with 
the basic module being the binary 2-cube shown in Fig. 11 a. 
A 3-cube embedding is obtained by putting together two 
such 2-cubes side-by-side as shown in Fig. 11 b, and a 4-cube 
embedding is obtained by putting together two 3-cubes one 
above the other as shown in Fig. 1 lc and so on. Note that 
the nodes in Fig. 1 lc correspond to the cube nodes of Fig. 
5a. In this way the embedding, denoted EC2, of the binary 
hypercube of the desired size is obtained modularly. 

It is observed that in embedding EC2, each row and column 
is itself a binary k-cube. For example, if we take the column 
number y as the node id for the nodes in any row x, then 
row x is a binary k-cube consisting of nodes y, 0 < y < 2 k. 

Let us call each row or column a subcube. Then we have 
2 k+l such subcubes. For each subcube, if we use the column 
id y (or the row id x) to identify its nodes, all the control 
functions step, send, and wait are exactly the same as those 
derived for EC, in the linear APPB. Thus the total commu- 
nication time for emulating the hypercube can be minimized 
through overlapped pipelining as presented in the previous 
section. It can be seen that all the neighboring nodes in the 
hypercube are mapped to either the same row or the same 
column in the two-dimensional APPB. Therefore EC2 satisfies 
the alignment condition and thus requires no message relay 
for communications between neighboring nodes in the hy- 
percube. Finally, since the number of nodes used in the two- 
dimensional APPB is equal to that of the hypercube, we 
achieve a minimal expansion cost of unity. 

5. BANDWIDTH ANALYSIS 

In this section, we evaluate the merit of the pipelined 
communication structure by comparing it with linear arrays 
which utilize nearest-neighbor and exclusive access bus in- 
terconnections. We evaluate the different models irrespective 
of the technology used to implement them. In other words, 
we assume that the transmission rate and the propagation 
delay are the same for both optical and electronic commu- 
nication links. 

Consider the linear array of n processors with nearest- 
neighbor connections as shown in Fig. lb and assume that 
the physical separation between each pair of neighboring 
processors is D. Such an array may emulate one cycle of a 
pipelined bus in a time n( Tp + T,), where To is the prop- 
agation time required for a signal to travel the distance D 
and Tp is the time required to process a message at the sending 
and the receiving ends of a communication link. T, includes 
synchronization, message generation, buffering, and routing. 
We note that for the cases of interleaved and overlapped 
pipelining discussed in Section 3.3, at most two messages 
might be processed in this time. The bandwidth of the near- 
est-neighbor connected array, B,, defined as the maximum 
number of messages that may be transmitted per second, is 
thus given by 

1 B,= ’ =_I_- 
n(T, + 7’0) T,p+l’ 

where p = Tp/To. 

(b) w 
FIG. 11. Modular embedding of binary hypercubes, EC,, in the two- 

dimensional APPB. (a) 2-cube. (b) 3cuk. (c) 4-tube with the node labeling 
corresponding to that in Fig. 5a. 
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For the pipelined linear APPB, the optical distance, Do, 
between two consecutive processors should be larger than 
the message length bwc, (see Eq. ( 1) in Section 2). In other 
words, if D 2 bwc,, we set D,, = D; otherwise Do should be 
made equal to bwc, (for example, by coiling an optical fiber) 
so that each processor can inject a message into the bus 
without collision. Thus, the signal propagation time, TD,, 
between two consecutive processors is max ( T,, CUT, } , 
where (Y = ( bwcg)/ D. The pipelined bus cycle time is then 
Tp + nTDmax { 1, a}. Given that n messages may be trans- 
mitted during a pipelined bus cycle, the bandwidth of the 
pipelined bus is 

BP = n 
Tp + nTDmax{ 1, (Y} ’ (2) 

and thus, 

B P= NP + 1) 
43 p + n max{ 1, (Y} . (3) 

In Fig. 12a a parametric plot showing the relation between 
BP/B, and p is given in terms of n for a < 1 and (Y > 1. The 

1 n-2 an-2 P 
ia) 

FIG. 12. The ratio, BP/B,, of the bandwidth of a pipelined bus to that 
of a linear array with nearest-neighbor connections as a function of p. a, 
and n. (a) A parametric curve. (b) For a fixed-size system with n = 64. 

curve for ac < 1 corresponds to the case where the message 
length is less than or equal to the physical separation between 
processors, while the curve for (Y > 1 reflects the case where 
message length is longer than the physical separation between 
processors, and thus the optical path has been extended to 
accommodate the entire message. By taking the limit of Eq. 
(3) as p + co, it is clear that, for fixed (Y and large p, the 
ratio BP/B, approaches IZ. Also, when p = 1 and (Y < 1, we 
obtain BP/B, x 2. In Fig. 12b we plot BP/B, versus p for a 
fixed-size array with n = 64 and for several values of (Y. These 
plots show that the pipelined bus is more effective for larger 
values of p and smaller values of a. 

For multiprocessor interconnections, D is determined by 
placement and routing within VLSI chips, by PC board con- 
nections, or by back-plane interconnections. In all cases, D, 
and therefore T,, is relatively small. Given that Tp is, at 
least, on the order of microseconds, the ratio, p, of processing 
to communication times should be much larger than 1 (on 
the order of lo- 1000). Also, with current technology it is 
reasonable to assume that cy is relatively small (between 1 
and 10). For example, for board-to-board communications 
(D = 10 cm), it is possible to drive an optical communi- 
cation line at the speed of 10 GHz. Assuming that the speed 
of light in optical fibers is c, = 2 X 10 * m/s, and that each 
message contains b = 16 bits, we obtain (Y x 3. The same 
value of cy is obtained if optical communications are imple- 
mented on GaAs wafers at 100 GHz and a physical processor 
separation of 1 cm. Note that the value of (Y may be reduced 
if parallel buses are used to reduce b. 

Next we compare the bandwidth of a pipelined bus with 
that of an exclusive access bus. Given that the bandwidth of 
an exclusive access bus is B, = 1 /( Tp + nTD), we have 

B A?= nb + n) 
Be p+nmax{l,a} ’ 

This shows that as (Y approaches 1, the pipelined bus can 
accommodate n messages in the same cycle time as the ex- 
clusive access bus. For larger (Y, the pipelined bus cycle will 
be stretched to accommodate the length of the messages, and 
thus, the performance gain due to pipelining will be less 
than it. 

The above analysis is independent of the media used for 
communication. If optical pipelined buses are to be com- 
pared with electronic buses, then the physical constraints on 
the electronic propagation speed should be taken into ac- 
count. Specifically, the effect of capacitive loading and mu- 
tual inductance on the signal propagation speed (the trans- 
mission line effect) should be considered. Thus, message 
pipelining using electro-optical technology offers a potential 
for substantially enhancing bandwidth utilization. Further, 
pipelining techniques will be of increasing effectiveness be- 
cause this technology offers the capability of generating very 
short pulses [ 12, 331, thus reducing w and decreasing cr. 
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6. CONCLUDING REMARKS 

We have presented efficient communication architectures 
which exploit the optical signal’s properties of unidirectional 
propagation and predictable path delays in order to pipeline 
messages on optical buses. As shown in Section 5, the pipe- 
lined model has its merits irrespective of the technology in 
which it is implemented. Although the presentation in this 
paper is based on an optical model in which delays inherent 
in optical fibers serve as slots for space multiplexing, it is 
possible to use shift registers as buffer memories for these 
slots [ 361. Thus pipelined buses may be implemented in 
either optics or electronics. However, for the electronic im- 
plementation, the signal propagation delay, To, will depend 
on the speed of the shift registers, resulting in a relatively 
small value for the ratio of processing to communication 
times, p. 

We proposed efficient approaches to fundamental message 
routings including one-to-one, broadcast, semigroup com- 
munications, and permutations for the APPB architectures. 
Such efficient accomplishment of these commonly used 
message routing patterns can significantly improve the effi- 
ciency of many parallel algorithms. We presented here effi- 
cient embeddings of the binary trees and hypercube networks. 
Embeddings for other well-known interconnection networks, 
including pyramids, shuffle-exchange networks, X-binary- 
trees [ 91, and X-quad-trees, have also been obtained [ 14, 
161. Such efficient embeddings of these well-known com- 
munication structures allow all algorithms designed for these 
structures to be efficiently executed on the APPB architec- 
tures. They also allow an APPB to be logically reconfigured 
as an architecture which is more suitable for a given com- 
putation task. 

We have not considered in this paper several issues that 
are relevant to the implementation of the proposed archi- 
tectures. Such issues include the synchronization of the pro- 
cessors to the accuracy implied by the speed of optics, tem- 
poral pulse positioning, optical fanout, and the distribution 
of optical power in a way that allows the detector at each 
processor to detect the optical signals correctly. These issues 
must be addressed with regard to the reliability, scale, and 
device technology which is appropriate for computing ap- 
plications. Some of these issues have been presented in [ 7, 
25, 311. 

In our experimental work [ 6, 8, 2 l] we are investigating 
the practical limits to these technological concerns. We have 
shown that three factors, threshold power margin, synchro- 
nization error, and coupling ratio, determine the system scale. 
On the basis of current and near-term technology, our ex- 
periments show that synchronization error does not con- 
tribute significantly to the bounds of system size. Rather, 
power distribution effects dominate. Preliminary investiga- 
tions show that by using off-the-shelf optical components we 
can currently build linear buses operating at 300 MHz and 
containing about 100 processors. Using more sophisticated 

electro-optics (gallium arsenide, custom couplers, and dual 
level bus structures) we believe that IO-GHz buses of over 
400 processors are feasible. Further, we believe that near- 
term technologies such as fiber amplifiers as well as alternate 
bus structures will alleviate the power distribution problem. 
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