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Abstract
In the wake of the numerous now-fruitful genome projects, we are entering an era rich in
biological data. The field of bioinformatics is poised to exploit this information in increasingly
powerful ways, but the abundance and growing complexity both of the data and of the tools
and resources required to analyse them are threatening to overwhelm us. Databases and their
search tools are now an essential part of the research environment. However, the rate of
sequence generation and the haphazard proliferation of databases have made it difficult to
keep pace with developments. In an age of information overload, researchers want rapid, easy-
to-use, reliable tools for functional characterisation of newly determined sequences. But what
are those tools? How do we access them? Which should we use? This review focuses on a
particular type of database that is increasingly used in the task of routine sequence analysis –
the so-called pattern database. The paper aims to provide an overview of the current status of
pattern databases in common use, outlining the methods behind them and giving pointers on
their diagnostic strengths and weaknesses.
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Introduction
There are now hundreds of databanks
around the world housing information
that floods from the genome projects.
The endeavour to store and analyse
these vast quantities of data has
required increasing levels of
automation. However, automation
carries a price. For example, although
software robots are essential to the
process of functional annotation of
newly determined sequences, they
pose a threat to information quality
because they can introduce and
propagate mis-annotations.1 Although
the curators strive to improve the
quality of their resources, databases
nevertheless carry the indelible scars of
time and are far from perfect. To get the
most from current biological databases
it is thus important to have an
understanding both of their powers and
of their pitfalls.

To characterise a new sequence, the
first step usually involves trawling a
sequence database with tools such as
BLAST2 or FASTA.3 Such searches
quickly reveal similarities between the
query and a range of database

sequences. The trick then lies in the
reliable inference of homology (the
verification of a divergent evolutionary
relationship) and, from this, the
inference of function. Ideally, a search
output will show unequivocal similarity
to a well-characterised protein over the
full length of the query, providing
sufficient information to make a
sensible diagnosis. Sometimes, however,
an output will reveal no significant hits
or, more commonly, will furnish a list
of partial matches to diverse proteins,
many of which are uncharacterised, or
possess dubious or contradictory
annotations.4

There are several reasons why such
searches might not give direct answers.
For example, the growth of sequence
databases and their population by
greater numbers of poorer-quality
partial sequences makes it increasingly
likely that high-scoring matches will be
made to a query simply by chance.
Low-complexity matches, in particular,
may swamp search outputs – these are
parts of a sequence that have high
densities of particular residues (eg
poly-GxP, such as occurs in sequences
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like collagen, or poly-glutamine tracts
that occur in Huntingdon’s disease
protein etc). Although it is possible to
mask such sequences, this can also
create complications. The modular and
domain nature of many proteins also
causes problems on different levels.
When matching multi-domain
proteins, it may not be clear which
domain or domains correctly
correspond to the query. Even if the
right domain has been identified, it
may not be appropriate to transfer the
functional annotation to the query
because the function of the matched
domain may be different, depending
on its biological context. Similar issues
arise with the existence of multi-gene
families, because database search
techniques cannot differentiate between
orthologues (usually the functional
counterparts of a sequence in another
species) and paralogues (homologues
that perform different but related
functions within the same organism).

Given these complexities, correct
functional assignment from searches of
sequence databases alone can be
difficult or impossible to achieve. As a

result, it is now customary also to search
a range of ‘pattern’ databases, so-called
because they distil patterns of residue
conservation within groups of related
sequences into discriminators that aid
family diagnosis. Searching pattern
databases is thus more selective than
sequence database searching because
discriminators are designed to detect
particular families. Different analytical
approaches have been used to create a
bewildering array of discriminators,
which are variously termed regular
expressions, profiles, fingerprints,
blocks, etc.5 – these terms are
summarised in Figure 1. The different
descriptors have different diagnostic
strengths and weaknesses and different
areas of optimum application, and have
been used to generate different pattern
databases, which also differ in content!
The aim of this paper is to provide an
overview of pattern databases in
common use and to offer pointers on
how best to use them. As this is a fast
moving area, a list of web addresses is
given in Table 1 to allow readers to
obtain current information on the
resources discussed.

Table 1:  Web addresses of pattern and alignment databases in common use. For a
more exhaustive list, refer to the annual database issue of Nucleic Acids Research
(http://www3.oup.co.uk/nar/)

PROSITE http://www.expasy.ch/prosite/

Blocks http://www.blocks.fhcrc.org/

PRINTS http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/

IDENTIFY http://dna.Stanford.EDU/identify/

Profiles http://www.isrec.isb-sib.ch/software/PFSCAN_form.html

Pfam http://www.sanger.ac.uk/Software/Pfam/

ProDom http://www.toulouse.inra.fr/prodom.html

SBASE http://www.icgeb.trieste.it/sbase/

PIR-ALN http://www-nbrf.georgetown.edu/pirwww/search/textpiraln.html

PROT-FAM http://vms.mips.biochem.mpg.de/mips/programs/classification.html

DOMO http://www.infobiogen.fr/~gracy/domo/

ProClass http://pir.georgetown.edu/gfserver/proclass.html

ProtoMap http://www.protomap.cs.huji.ac.il/

PIMA http://dot.imgen.bcm.tmc.edu:9331/seq-search/protein-search.html

InterPro http://www.ebi.ac.uk/interpro/

Modules and domains
cause different problems

Searching pattern
databases is more
selective

Searches don’t
differentiate
orthologues and
paralogues

Correct functional
assignment difficult
to achieve

06-attwood.p65 2/7/00, 10:39 AM46



Pattern databases

© HENRY STEWART PUBLICATIONS 1467-5463.  BRIEFINGS IN BIOINFORMATICS.  VOL 1. NO 1. 45-59. FEBRUARY 2000 47

THE METHODS BEHIND
THE DATABASES
At the heart of the analysis methods that
underpin pattern databases is the
multiple sequence alignment. When
building an alignment, as more distantly
related sequences are included, insertions
are often required to bring equivalent
parts of adjacent sequences into the
correct register, as illustrated schematically

in Figure 2.6 As a result of this gap
insertion process, islands of conservation
emerge from a backdrop of mutational
change. These regions, usually termed
motifs or blocks, are typically around 10–
20 residues in length and tend to
correspond to the core structural or
functional elements of the protein.

The conserved nature of motifs
effectively provides us with a set of

Figure 1: At the heart of sequence analysis methods is the multiple sequence
alignment.  Application of these methods involves the derivation of some kind of
representation of conserved features of the alignment, which may be diagnostic of
structure or function. Various terms are used to describe the different types of data
representation, as shown. Within a single conserved region (motif), the sequence
information may be reduced to a consensus expression (a regular expression), often
simply referred to as a pattern. In this example, square brackets indicate residues that
are allowed at this position of the motif and x denotes any residue, the (2) indicating
that any residue can occupy consecutive positions in the motif. The term used to
describe groups of motifs in which all the residue information is retained within a set
of frequency (identity) matrices is a fingerprint, or signature.  Adding a scoring
scheme to such sets of frequency matrices results in position-specific weight matrices,
or blocks. Using information from extended conserved regions that include gaps
(usually referred to as domains) gives rise to profiles; and probabilistic models
derived from alignment profiles are termed hidden Markov models
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familial blueprints, and different
techniques have evolved to exploit this
fact. As shown in Figure 2, the
methods fall broadly into three
categories, depending on whether
they use single motifs, multiple motifs
or full domain alignments. All of these
methods involve the derivation of
some kind of discriminatory
representation of aspects of the
alignment, providing a characteristic
signature for the family that can be
used to diagnose future query
sequences.

The diagnostic success of the different
methods depends on how reliably true
family members (true-positives) can be
distinguished from non-family members
(true-negatives). In practice, there is a
crucial balance between the number of
incorrect matches that are made (false-
positives) and the number of correct
matches that are missed (false-negatives)
at a given scoring threshold. As shown in
Figure 3, for a given search, this requires
the distribution of true-positive matches
to be resolved from that of the true-
negatives, such that the overlap between

Figure 2: Illustration of the three principal methods for building pattern databases:
ie using single motifs, multiple motifs and full domain alignments. Single-motif (regular
expression pattern) approaches have given rise to the PROSITE and IDENTIFY
databases; multiple-motif methods have spawned the Blocks and PRINTS databases;
and domain alignment methods have resulted in the Profiles and Pfam resources
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them is minimised or eliminated. This
is important because, for matches in the
overlapping area, it can be difficult or
impossible to determine which are
correct (statistical approaches are used
to assign confidence levels to matches
in this area, but mathematical
significance does not give biological
proof ). The different analytical
methods that have been designed to
tackle these issues are outlined below.

Single-motif methods
Of the various approaches, single-motif
(regular expression pattern) methods are
easiest to understand. The idea is that a
particular protein family can be
characterised by the single most
conserved, often functionally important,
region (eg an enzyme active site)
observed in a sequence alignment. The
motif is reduced to a consensus
expression in which all but the most
significant residue information is

discarded. For example, the expression
D-x-{KR}-[NQ] means that a conserved
aspartic acid (D) residue is followed by an
arbitrary residue (x) and any residue except
lysine (K) or arginine (R), and finally a
polar residue, which may be asparagine
(N) or glutamine (Q). No other residues
or residue combinations are tolerated by
the expression; matches to it must
therefore be exact, or will be disregarded.

So rigid is this syntax that regular
expression patterns do not perform
well when used to represent highly
divergent protein families. For example,
such patterns will fail to match
significant sequences if they contain a
single amino acid difference. The
sequence DARN is thus a mis-match,
in spite of matching the above
expression in all but one position (it
has a forbidden arginine as its third
residue). Conversely, a pattern will
match anything that corresponds to it
exactly, regardless of whether it is a true
family member. The problem is that
matches to single motifs lack biological
context – a match to a pattern is just a
match to a pattern, and may well only
be fortuitous. To assess the likelihood of
a match being ‘real’, it must be verified
with corroborating evidence, whether
via other database searches, the
literature or experiment.

An approach that addresses the strict
nature of exact regular expression
matching is to assign amino acid residues
to distinct, but overlapping, substitution
groups corresponding to various
biochemical properties (eg charge and
size), as shown in Table 2. This is
biologically sensible because each amino
acid has several properties and can serve
different functions, depending on its
biochemical context.7 However, although
the technique is more flexible, its
inherent permissiveness has an
inevitable signal-to-noise trade-off, ie
resulting patterns not only have the
potential to make more true-positive
matches, but they will consequently also
match more false-positives. For example,
the sequence EVEN, which would be

Figure 3: Resolving true and false
matches. In a database search, the desire
is to establish which sequences are
related (true-positive) and which are
unrelated (true-negative).  At a given
scoring threshold, it is likely that several
unrelated sequences will match a search
pattern erroneously (so-called false-
positives), and several correct matches
will fail to be diagnosed (false-negatives).
In sequence analysis, the challenge is to
improve diagnostic performance by
capturing all (or the majority) of true-
positive family members, including no
(or few) false-positives, and minimising
or precluding false-negatives

Score

True positives

True negatives

False negatives False positives

Threshold

Number
of matches

Regular expressions
perform poorly with
divergent families

Difficult to
determine which
matches are correct

Mathematical
significance is not
biological proof

Reduce a motif to a
consensus expression
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excluded by the exact regular expression
above, would be matched by the
permissive one (because Asp and Glu
belong to the same group), even if
aspartic acid were biologically
mandatory at the first position of the
motif.

Multiple-motif methods
In response to these problems,
diagnostic techniques evolved to
exploit multiple motifs. Within a
sequence alignment, it is common to
find several motifs that characterise the
aligned family. Diagnostically, it makes
sense to use many or all such regions to
build a family signature. In a database
search, there is then a greater chance of
identifying a distant relative, whether or
not all parts of the signature are
matched. For example, a sequence that
matches only four of seven motifs may
still be diagnosed as a true match if the
motifs are matched in the correct order
in the sequence and the distances
between them are consistent with those
expected of true neighbouring motifs.
The ability to tolerate mis-matches,
both at the level of individual residues
within motifs, and at the level of motifs
within the complete signature, makes
multiple-motif matching a powerful
diagnostic approach.

Different multiple-motif methods
have arisen, depending on the
technique used to detect the motifs and
on the scoring method employed.
Probably the simplest to understand is
the technique of fingerprinting.8 Here,
groups of conserved motifs are excised
from a sequence alignment and used to
create a series of frequency (identity)
matrices – no mutation or other
similarity data are used to weight the
results. The scoring scheme is thus
based on the calculation of residue
frequencies for each position in the
motifs, summing the scores of identical
residues for each position of a retrieved
match. However, the simplicity of this
approach is both its strength and its
weakness. In other words, because the
method exploits observed residue
frequencies, the scoring matrices are
sparse and thus perform cleanly (with
little noise) and with high specificity; at
the same time, their absolute scoring
potential is limited by the nature of the
observed data. For richly populated
families, this is not a problem because
the resulting matrices will reflect the
constituent sequence diversity; but for
poorly populated families, the matrices
may be too sparse and may not encode
sufficient variation to be able to detect
distant relatives reliably, if at all.

One way to address this problem is to
use mutation or substitution matrices to
weight non-identical residue matches.
Commonly used scoring matrices
include the PAM9 and BLOSUM10

series. The former is based on the
concept of the point-accepted mutation
(PAM). PAM 250 is often used as a
default matrix in comparison programs
because it gives similarity scores
equivalent to 20 per cent matches
remaining between two sequences, the
Twilight Zone11 of similarity. The
BLOSUM matrices, which are derived
from observed substitutions in blocks of
aligned sequences from the Blocks
database, were designed to detect distant
similarities more reliably than the
Dayhoff series, which can only infer

Table 2: Overlapping sets of amino
acids and their properties. These are
used to create the permissive regular
expressions used as the basis of the
IDENTIFY resource

Residue property Residue groups

Small Ala, Gly

Small hydroxyl Ser, Thr

Basic Lys, Arg

Aromatic Phe, Tyr, Trp

Basic His, Lys, Arg

Small hydrophobic Val, Leu, Ile

Medium hydrophobic Val, Leu, Ile, Met

Acidic/amide Asp, Glu, Asn, Gln

Small/polar Ala, Gly, Ser, Thr, Pro

Intricate scoring system

Multiple-motif
matching is a powerful
diagnostic approach
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remote relationships because their
substitution rates were derived from sets
of highly similar sequences. Whatever
the approach, however, similarity
matrices are inherently noisy because
they indiscriminately weight both
random matches and weak signals. Thus
care should be taken to select a scoring
matrix appropriate to the evolutionary
distance at which relationships are being
sought. For practical purposes, this
means using a range of different
matrices.

Profile methods
An alternative philosophy to motif-
based approaches takes into account the
variable regions between conserved
motifs, which also contain valuable
information. Here, the complete
conserved portion of the alignment
(including gaps) effectively becomes the
discriminator. The discriminator,
termed a profile, defines which
residues are allowed at given positions,
which positions are highly conserved
and which degenerate, and which
positions can tolerate insertions. The
scoring system is intricate and may
include evolutionary weights and results
from structural studies, as well as data
implicit in the alignment. In addition,
variable penalties may be specified to

weight against insertions and deletions
occurring within core secondary
structure elements.12,13 Profiles
(sometimes referred to as weight
matrices) provide a sensitive means of
detecting distant sequence relationships
where only very few residues are well
conserved.

Just as there are different ways of
exploiting motifs, so there are different
ways of using alignments to build
family discriminators. An extension of
the concept of profiles lies in the
application of hidden Markov models
(HMMs).14 These are probabilistic
models consisting of a number of
interconnecting states – they are
essentially linear chains of match, delete
or insert states that attempt to encode
the sequence conservation within
aligned families. A match state is
assigned to each conserved column in a
sequence alignment, an insert state
allows for insertions relative to the
match states, and delete states allow
positions to be skipped, as illustrated in
Figure 4. Probabilities or costs (negative
log-probabilities) are associated with
each omission and each transition
between states. To align a sequence is to
find the highest-probability (lowest-
cost) path through the HMM.

Although capable of providing precise

Figure 4: Linear hidden Markov model (HMM). Each position of an alignment is
represented as a match (M), an insert (I), or a delete (D) state in the HMM.  This allows
a query sequence to be aligned by assigning the most probable state transition to each
of its residues

M1 M2 M3 M4

D1 D2 D4

I0 I1 I2 I3 I4

Begin

D3

End

Evolutionary distance;
profile; weight matrices;
hidden Markov models
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descriptors for particular families, as with
all methods there are drawbacks. One
problem arises from the specificity of
profiles and HMMs. For example, they
may be well trained for a given family,
but an outlier that was not included in
the training set may be missed if features
of its sequence are incompatible with
the model. Another problem may arise
where the nature of HMM training is
automatic and iterative. In such
circumstances, without adequate
supervision, the process may include
false-positive matches, which may
ultimately corrupt the model. Of course,
this problem is by no means tied
particularly to HMM training, as any
automatic iterative method risks
inclusion of false members.

PATTERN DATABASES
The different methods of analysing
sequences and encoding protein
families have given rise to different
pattern databases, as shown in Table 3.
Despite their differences, pattern
databases have arisen from the same
principle, ie homologous sequences
share conserved motifs, presumably
crucial to the structure or function of
the protein, which provide a signature
of family membership. A new sequence
that matches these predefined
characteristics may then be assigned to
a family. If the structure and function of
the family are known, searches of
pattern databases thus theoretically
offer a fast track to the inference of

biological function. Because these
resources are derived from multiple
sequence information, searches of them
are often better able to identify distant
relationships than are searches of the
sequence databases. However, none of
the pattern databases is yet complete.
They should therefore be used to
augment sequence searches, rather than
to replace them. The status of some of
the commonly used pattern resources is
outlined below.

PROSITE
PROSITE stores motifs in the form of
regular expression patterns,15 which are
derived from searches of
SWISS-PROT. Entries are deposited in
the database in two distinct files: (i) a
structured data file that houses the
pattern and lists all matches in the
parent version of SWISS-PROT, as
shown in Figure 5; and (ii) a
free-format documentation or
annotation file, which provides details
of the characterised family and, where
known, a description of the biological
role of the chosen motif/s and a
supporting bibliography. A number of
features of the data file are worthy of
note. The identifier (ID) and
description (DE) lines identify the
characterised family, and the DR lines
list all true (T), possible (P), false (F)
and missed/negative (N) matches to the
pattern – these results are summarised
in the NR lines. In the example shown
in Figure 5, 29 matches are made to the

Table 3: Some of the major pattern databases in common use. In each case, the
primary source is noted, together with the type of pattern stored (regular expression,
fingerprint, HMM, etc.)

Pattern database Data source Stored information

PROSITE SWISS-PROT Regular expressions (patterns)

PRINTS SWISS-PROT/TrEMBL Raw aligned motifs (fingerprints)

Profiles SWISS-PROT Gapped weight matrices (profiles)

Pfam SWISS-PROT/TrEMBL Gapped domain alignments (HMMs)

Blocks PROSITE/PRINTS Weighted aligned motifs (blocks)

IDENTIFY Block/PRINTS Permissive regular expressions (patterns)

Training problems

Pattern databases

Homologous sequences
share conserved motifs

Fast track to inference
of function
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pattern, all of which are true, and there
are two false negative matches. If we
inspect one of these (LOX4_SOYBN)
by retrieving its sequence from SWISS-
PROT, we find that a disallowed serine
in the ninth position of the motif
(HQIISHWLSTHAIVE) is the reason
for the mis-match – referring back to
the pattern (PA) line, we see that only
members of the group [NQRC] are
allowed at this point.

The quality of a pattern can thus
immediately be ascertained from the
NR lines, which are therefore probably
the most important lines to inspect
when first viewing a PROSITE entry. In
some cases, there are numerous false
positives and false negatives (especially
for large super-families with substantial
numbers of divergent sequences, such
as G-protein-coupled receptors,
lipocalins, etc.). Such patterns are
diagnostically unreliable and are a
limitation to the diagnostic potential of
the database. PROSITE release 16
(September 1999), with updates to 18th

October 1999, contains 1,035 entries
characterised by 1,375 patterns.

Blocks
Blocks, which is based on families
already identified in PROSITE, stores
motifs as aligned, clustered blocks,
which are derived from searches of
SWISS-PROT.16 The format of entries
is PROSITE-compatible, but details of
matches to a given block are not
provided. Nevertheless, the diagnostic
power of a block is given in terms of a
strength value (which is reported on
the BL lines). The strength is a
normalised quantity, allowing the
diagnostic performance of individual
blocks to be compared. Strong blocks
are more effective than weak blocks
(strength less than 1100) at separating
true-positives from true-negatives. In
searching the database, however, more
important than the strength of
individual blocks is the number of
blocks matched. High-scoring matches
to single blocks seldom have biological

Figure 5: Example PROSITE entry, showing the data file for the lipoxygenase pattern.
When viewing PROSITE on the Web, accession numbers are hyperlinked, allowing
direct access to the corresponding SWISS-PROT entry for each sequence matched.
Similarly, the documentation file for a given pattern can be accessed via the
hyperlinked PDOC accession number at the bottom of the file

ID LIPOXYGENASE_1; PATTERN.
AC PS00711;
DT DEC-1992 (CREATED); NOV-1997 (DATA UPDATE); JUL-1998 (INFO UPDATE).
DE Lipoxygenases iron-binding region signature 1.
PA H-[EQ]-x(3)-H-x-[LM]-[NQRC]-[GST]-H-[LIVMSTAC](3)-E.
NR /RELEASE=36,74019;
NR /TOTAL=29(29); /POSITIVE=29(29); /UNKNOWN=0(0); /FALSE_POS=0(0);
NR /FALSE_NEG=2; /PARTIAL=0;
CC /TAXO-RANGE=??E??; /MAX-REPEAT=1;
CC /SITE=4,iron; /SITE=9,iron;
DR Q06327, LOX1_ARATH, T; P29114, LOX1_HORVU, T; P16050, LOX1_HUMAN, T;
DR P38414, LOX1_LENCU, T; P12530, LOX1_RABIT, T; P37831, LOX1_SOLTU, T;
DR P08170, LOX1_SOYBN, T; P27479, LOX2_BOVIN, T; P18054, LOX2_HUMAN, T;
DR P29250, LOX2_ORYSA, T; P14856, LOX2_PEA , T; P16469, LOX2_PIG , T;
DR Q02759, LOX2_RAT , T; P09439, LOX2_SOYBN, T; P09918, LOX3_PEA  , T;
DR P09186, LOX3_SOYBN, T; P09917, LOX5_HUMAN, T; P51399, LOX5_MESAU, T;
DR P48999, LOX5_MOUSE, T; P12527, LOX5_RAT , T; P38415, LOXA_LYCES, T;
DR P27480, LOXA_PHAVU, T; P38416, LOXB_LYCES, T; P27481, LOXB_PHAVU, T;
DR P38418, LOXC_ARATH, T; P38419, LOXC_ORYSA, T; P55249, LOXE_MOUSE, T;
DR P39654, LOXL_MOUSE, T; P24095, LOXX_SOYBN, T;
DR P38417, LOX4_SOYBN, N; P39655, LOXP_MOUSE, N;
3D 1YGE; 2SBL;
DO PDOC00077;
//

More important is
the number of blocks
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significance; conversely, matches to sets
of blocks from the same family are
unlikely to have arisen by chance, and a
probability value is calculated to reflect
that likelihood. Release 11.0 contains
4,034 blocks, representing 994 groups
from PROSITE release 15.

Recently, a number of other Blocks
databases have been made available. For
example, in Blocks+, supplementing the
entries derived from PROSITE families
are blocks from families in PRINTS that
are not already in Blocks, and then
successively, any additional blocks from
Pfam, ProDom and DOMO. Blocks+ is
thus comprehensive, containing 10,070
blocks from 2,235 sequence groups.
Complementing this resource is a version
of PRINTS in which block-scoring
methods have been exploited.16 Note,
however, that PRINTS’ motifs tend to be
deeper than those in Blocks because its
source database is larger; the diagnostic
performance of entries in the two
resources can therefore differ, Blocks-
format-PRINTS tending to be more
prone to problems of noise. Because the
Blocks databases are derived
automatically, their entries are not
annotated, but links are made to the
corresponding PROSITE and PRINTS
documentation files.

PRINTS
PRINTS stores motifs in the form
of fingerprints,17 which are derived
from searches of a non-redundant
SWISS-PROT/TrEMBL composite.
Each entry is manually annotated with
descriptions of the family, details of the
structural or functional relevance of the
motifs where known, cross-references
to related databases, bibliographic
references, etc. In addition, a full list of
matching sequences is provided,
including those that fail to match one
or more motifs. Fingerprint diagnostic
performance is indicated via a summary
that tabulates the numbers of complete
and partial matches. The fewer the
partial matches, the better the
fingerprint. The full potency of the

method derives from the mutual
context provided by motif neighbours.
The more motifs in a fingerprint, the
better able it is to identify distant
relatives, even when parts of the
signature are absent; conversely, the
fewer the motifs, the poorer the
diagnostic performance. Fingerprints
with only two motifs are diagnostically
little better than single motifs and are
therefore more likely to make false-
positive matches. When searching
PRINTS, probability- and expect-
values are calculated to assign a measure
of confidence to both complete and
partial matches. Release 24.0
(September 1999) contains 1,210 entries
(7,241 motifs), making it currently the
most comprehensive manually
annotated pattern database.

IDENTIFY
IDENTIFY stores motifs in the form of
regular expressions and is derived
automatically from motifs in Blocks and
PRINTS.7 The program used to create
the database constructs consensus
expressions from the motifs, adopting a
permissive approach in which different
residues are tolerated according to a set
of prescribed groupings (Table 2).
These groups correspond to various
biochemical properties, theoretically
ensuring that the resulting expressions
have sensible biochemical
interpretations. However, because in
practice the approach may lead to an
increase in noise, when searching the
resource, different levels of stringency
are offered from which to infer the
significance of matches. The approach is
thus diagnostically more powerful than
exact pattern matching.

Profiles
Profiles stores the conservation encoded
in gapped domain alignments in the
form of weight matrices,15 which are
derived from searches of SWISS-PROT.
As a result of their potency, profiles are
used to complement some of the poorer
regular expressions in PROSITE, or to

Full potency derives
from context of
motif neighbours

Fingerprint diagnostic
performance;
bio-chemical properties
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provide a diagnostic alternative where
extreme sequence divergence renders
the use of regular expressions
inappropriate. Each profile has separate
PROSITE-compatible data and
documentation files. This allows results
that have been validated and annotated
to an appropriate standard to be made
available as an integral part of PROSITE.
As before, diagnostic performance can
be ascertained from the DR and NR
lines. Profiles are less prone to make
false matches than are regular
expressions, but the numbers released
via PROSITE are only small (48 in
September 1998). A further 301 profiles
that have not yet achieved the necessary
standard of validation and annotation are
available in a pre-release distribution.

Pfam
Pfam stores the conservation encoded in
gapped domain alignments in the form
of HMMs,19 which are derived from
searches of SWISS-PROT and
TrEMBL. The resource is based on two
distinct classes of alignment:
hand-edited seed alignments, which are
deemed to be accurate; and an
automatically clustered set derived from
ProDom families. The seed alignments
are used to build HMMs, to which
sequences are automatically aligned to
generate final full alignments. The
collection of seed and full alignments,

coupled with minimal annotations
(often no more than a description line),
related database and literature
cross-references, and the HMMs
themselves, constitute Pfam-A. Pfam-B
is then generated automatically by
filtering out from existing ProDom
clusters all sequences that have been
matched in Pfam-A. Although the
methods and parameters used to create
the full automatic alignment are noted
(including Noise- and Trusted-Cutoff
values, which indicate the size and
location of the score gap between true
and false members), no indication is
given of the diagnostic performance of
a given HMM in terms of the numbers
of true and false matches made and the
number of true matches missed. Direct
visualisation of the final alignment is
thus probably the best indicator of how
sound its HMM is likely to be. Pfam
release 4.3 (September 1999) encodes
1,815 domains.

FAMILY-CLUSTER
DATABASES
In addition to the resources discussed
above, several ‘family-cluster’ alignment
databases are available for searching via
the Web, some of which are listed in
Table 4. The construction of alignment
and pattern databases is based on
different principles, so the two types of
resource should not be confused. The

Table 4: Some of the major alignment databases. In each case, the primary source is
noted, together with the level of information stored (ie whether domain, family or
superfamily alignments)

Alignment database Primary source Stored information

ProDom SWISS-PROT Domains

SBASE SWISS-PROT Domains

ProtoMap SWISS-PROT Families

PIR-ALN PIR Superfamilies, families and domains

PROT-FAM PIR Superfamilies, families and domains

ProClass SWISS-PROT/PIR Superfamilies, families and domains

DOMO SWISS-PROT/PIR Domains and repeats

PIMA Entrez Domains

Separate
documentation

HMMs; trusted-cutoff
values; family-cluster
alignment databases
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main difference between them is that
alignment databases tend to be derived
simply by automatic clustering of
sequence databases. This allows them to
be more comprehensive than pattern
resources because they do not depend
on manual crafting and validation of
family discriminators. However,
searches of alignment databases are
often less sensitive because they tend to
be based on implementations of
BLAST. Typical resources include
ProDom,20 SBASE,21 ProtoMap,22

PIR-ALN,23 PROT-FAM,24 ProClass,25

DOMO26 and PIMA.27

WHICH DATABASE
IS BEST?
The plethora of available databases
presents bewildering choices to the
sequence analyst. Which is
diagnostically most reliable? Which has
the most useful annotations? Which is
the most comprehensive? Which should
I use? It is difficult to assess the quality
of particular resources: each has
different diagnostic strengths and
weaknesses, each offers different family
coverage and different levels of
annotation – each has good points and
bad. Nevertheless, some general points
bear consideration.

Initially, the clustered family resources
appeal because they are so
comprehensive, yet they suffer certain
limitations. Automatic clustering is
based on pre-set scores and the
resulting clusters need not have precise
biological correlations. Furthermore,
the search tools tend to involve flavours
of BLAST or FASTA, which are good at
highlighting generic similarities but
cannot pinpoint differences (eg such as
between highly similar but functionally
disparate receptor subtypes).

Perhaps the biggest failing of
automatically generated pattern and
cluster databases is that they carry no
annotations. The advantage of searching
them is that they are more
comprehensive than their manually
derived counterparts. The disadvantage

is that there may be no way to ascertain
the biological significance of a match, if
indeed it has any (that a match has been
made does not mean an evolutionary
relationship necessarily exists). This is
important to understand – automatic
methods can only detect similarities, but it
is for the user to infer homology from
supporting biological evidence.

Among pattern databases, single-motif
methods that use exact regular
expression pattern-matching have known
diagnostic limitations. These methods
tolerate no similarity, so will fail to
diagnose sequences that contain subtle
changes not catered for by the pattern.
Moreover, single motifs offer no
biological context within which to assess
the significance of a match – each has
therefore to be verified individually.
Multiple motif approaches inherently
offer improved diagnostic reliability by
virtue of the mutual context provided by
motif neighbours. Thus, if a query fails to
match all the motifs in a signature, the
pattern of matches formed by the
remaining motifs still allows the user to
make a confident diagnosis.

Pattern resources derived from
existing databases have the limitation
that they offer no further family
coverage. Nevertheless, they have the
advantage of implementing different
analytical methods from their source
databases, thus offering different scoring
potentials on the same data, and
furnishing important opportunities to
diagnose relationships missed by the
original implementations.

Finally, manually annotated databases
are set apart from their automatically
created counterparts by virtue of (i)
attempting to provide validation of
results, and (ii) offering detailed
information that helps to place
conserved sequence information in
structural or functional contexts. This is
vital for the user, who not only wants to
discover whether a sequence has
matched a pre-defined motif, but also
needs to understand its biological
significance.

Infer homology;
validation of results

Bewildering choices

Different strengths
and weaknesses

Structural and
functional contexts

06-attwood.p65 2/7/00, 10:39 AM56



Pattern databases

© HENRY STEWART PUBLICATIONS 1467-5463.  BRIEFINGS IN BIOINFORMATICS.  VOL 1. NO 1. 45-59. FEBRUARY 2000 57

A COMPOSITE
PATTERN DATABASE
Today, comprehensive sequence
analysis requires accessing a variety of
disparate databases, gathering the range
of different outputs and arriving at
some sort of consensus view of the
results. In the future, however, this
process should become more
straightforward. The curators of
PROSITE, PRINTS, Pfam, Profiles and
ProDom are creating a unified database
of protein families, termed InterPro.
The aim is to provide a single family
annotation resource, based on existing
documentations from PRINTS and
PROSITE, and on the minimal
annotations in Pfam, with each InterPro
document linking back to the relevant
entries in the satellite pattern databases.
This will simplify sequence analysis for
the user, who will thereby have access
to a central resource for protein family
diagnosis.

CONCLUSION
Creating and searching pattern
databases are activities that lie at
different ends of a fallible chain of
events. We begin with a sequence
alignment, we create some kind of
scoring function to encode the
conservation within the alignment (a
scoring matrix, HMM, etc.), we store
the discriminators in a database, and we
search them with different algorithms.
Problems arise if unrelated sequences
have crept into the alignment, which in
turn lead to errors in the
discriminators, which then give
ambiguous or incorrect search results.
Alternatively, the discriminators may be
sound, but the search algorithms may
not be sufficiently sensitive to allow
unequivocal diagnosis, leading the user
to false conclusions of family ties. If the
user has performed this experiment on
a newly determined sequence and
submits the results to one of the
sequence databases, the annotation
error becomes available for mass
propagation.

Recently, there has been
doom-mongering in the literature
about the quality of our databases, some
harbingers of misfortune predicting a
future error catastrophe. At the same
time, claims of success for some
approaches to family classification and
function prediction have been equally
overdone. A more balanced view
recognises that our databases and search
routines are not perfect, but with the
right approach we can avoid the pitfalls
of jumping to over-pessimistic or
over-zealous conclusions.

Until we have sufficient experimental
data available, pattern and sequence
databases are probably the best tools we
have for accessing the functional and
evolutionary clues latent in the
sequences flooding from the genome
projects. Pattern databases offer several
benefits: (i) by distilling multiple
sequence information into family or
domain descriptors, trivial errors in the
underlying sequences may be diluted;
(ii) annotation errors may be quickly
spotted if the description of one
sequence differs from that of its family;
and (iii) they allow specific diagnoses,
placing individual sequences in domain
or family contexts for a more informed
assessment of possible function. By
contrast, searches of sequence databases
tend to reveal only generic similarities,
making precise pinpointing of a
particular biological niche more
difficult.

While there is some overlap between
them, the contents of the pattern
databases differ. Together they encode
about 2,200 families, including globular
and membrane proteins, modular
polypeptides, and so on. It has been
estimated that the total number of families
might be in the range 1,000 to 10,000, so
there is a long way to go before any of
the databases can be considered
complete. Thus, in building a search
strategy, it is good practice to include all
available pattern resources, to ensure that
the analysis is as comprehensive as
possible and that it takes advantage of a

Error catastrophe

Unified family database

Functional clues

Fallible chain of events

Informed assessment
of function

False conclusions
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variety of search methods. Where there is
consensus, diagnoses can be made with
greater confidence.

Unfortunately, creating and annotating
family descriptors is time-consuming, so
pattern databases have not kept pace
with the deluge of sequence data and
are consequently still very small.
Nevertheless, as they become more
comprehensive, as the volume of
sequence data expands and search
outputs become more complex, their
diagnostic potency ensures that pattern
databases will play an increasingly
important role as the post-genome quest
to assign functional information to raw
sequence data gains pace.

Acknowledgements
The author is grateful to the Royal Society for a
University Research Fellowship.

References

1. Doerks, T., Bairoch, A. and Bork, P. (1998),
‘Protein annotation: detective work for
function prediction’, Trends Genetics,
Vol. 14, pp. 248–250.

2. Altschul, S. F., Madden, T. L., Schaffer, A.
A., Zhang, J., Zhang, Z., Miller, W. and
Lipman, D. J. (1997), ‘Gapped BLAST and
PSI-BLAST: A new generation of protein
database search programs’, Nucleic Acids
Res., Vol. 25(17), pp. 3389–3402.

3. Pearson, W. R. (1998), ‘Empirical statistical
estimates for sequence similarity searches’,
J. Mol. Biol., Vol. 276(1), pp, 71–84.

4. Hofmann, K. (1998), ‘Protein classification
and functional assignment’, in ‘Trends
Guide to Bioinformatics’, Elsevier Science,
New York, pp. 18–21.

5. Attwood, T. K. (1997), ‘Exploring the
language of bioinformatics’, in ‘Oxford
Dictionary of Biochemistry and Molecular
Biology’, Stanburg, H., Ed., Oxford
University Press, Oxford, pp. 715–723.

6. Attwood, T. K. and Parry-Smith, D. J.
(1999), ‘Introduction to Bioinformatics’,
Addison Wesley Longman, Harlow.

7. Nevill-Manning, C. G., Wu, T. D. and
Brutlag, D. L. (1998), ‘Highly specific
protein sequence motifs for genome
analysis’, Proc. Natl Acad. Sci., USA,
Vol. 95, pp. 5865–5871.

8. Parry-Smith, D. J. and Attwood, T. K.
(1992), ‘ADSP – a new package for
computational sequence analysis’, Comput.
Appl. Biosci., Vol. 8(5), pp. 451–459.

9. Dayhoff, M. O., Schwartz, R. M. and
Orcutt, B. C. (1978), ‘A model of
evolutionary change in proteins’, in ‘Atlas
of Protein Sequence and Structure’, Vol. 5,
Suppl. 3, Dayhoff, M. O., Ed. National
Biomedical Research Foundation,
Washington, DC, pp. 345–352.

10. Henikoff, J. G. and Henikoff, S. (1992),
‘Amino acid substitution matrices from
protein blocks’, Proc. Natl Acad. Sci., USA,
Vol. 89, pp. 10915–10919.

11. Doolittle, R. F. (1986), ‘Of URFs and
ORFs: A Primer On How to Analyse
Derived Amino Acid Sequences’, University
Science Books, Mill Valley, CA.

12. Gribskov, M., McLachlan, A. D. and
Eisenberg, D. (1987), ‘Profile analysis:
Detection of distantly related proteins’,
Proc. Natl Acad. Sci., USA, Vol. 84(13),
pp. 4355–4358.

13. Luthy, R., Xenarios, I. and Bucher, P.
(1994), ‘Improving the sensitivity of the
sequence profile method’, Protein Sci.,
Vol. 3(1), pp. 139–146.

14. Hughey, R. and Krogh, A. (1996),
‘Hidden Markov models for sequence
analysis: extension and analysis of the basic
method,’ Comput. Applic. Biosci., Vol. 12(2),
pp. 95–107.

15. Hofmann, K., Bucher, P., Falquet, L. and
Bairoch, A. (1999), ‘The PROSITE
database, its status in 1999’, Nucleic Acids
Res., Vol. 27(1), pp. 215–219.

16. Bairoch, A. and Apweiler, R. (1999), ‘The
SWISS-PROT protein sequence data bank
and its supplement TrEMBL in 1999’,
Nucleic Acids Res., Vol. 27(1), pp. 49–54.

17. Henikoff, J. G., Henikoff, S. and
Pietrokovski, S. (1999), ‘New features of
the Blocks Database servers’, Nucleic Acids
Res., Vol. 27(1), pp. 226–228.

18. Attwood, T. K., Flower, D. R., Lewis, A. P.,
Mabey, J. E., Morgan, S. R., Scordis, P.,
Selley, J. and Wright, W. (1999), ‘PRINTS
prepares for the new millennium’, Nucleic
Acids Res., Vol. 27(1), pp. 220–225.

19. Bateman, A., Birney, E., Durbin, R., Eddy,
S. R., Finn, R. D. and Sonhammer, E. L. L.
(1999), ‘Pfam 3.1: 1313 multiple alignments
and profile HMMs match the majority of
proteins’, Nucleic Acids Res.,  Vol. 27(1),
pp. 260–262.

20. Gouzy, J., Corpet, F. and Kahn, D. (1999),
‘Recent improvements of the ProDom
database of protein domain families’, Nucleic
Acids Res., Vol. 27(1), pp. 263–267.

21. Murvai, J., Kristian Vlahovicek, K., Barta,
E., Szepesvári, C., Acatrinei, C. and Pongor,
S. (1999), ‘The SBASE protein domain
library, release 6.0: A collection of
annotated protein sequence segments’,
Nucleic Acids Res., Vol. 27(1), pp. 257–259.

Pattern databases play
an important role

06-attwood.p65 2/7/00, 10:40 AM58



Pattern databases

© HENRY STEWART PUBLICATIONS 1467-5463.  BRIEFINGS IN BIOINFORMATICS.  VOL 1. NO 1. 45-59. FEBRUARY 2000 59

22. Yona, G., Linial, N., Tishby, N. and
Linial, M. (1998), ‘A map of the protein
space – an automatic hierarchical
classification of all protein sequences’, in
‘Proceedings of 6th International
Conference on ISMB’, AAAI Press, Menlo
Park, CA, pp. 212–221.

23. Srinivasarao, G. Y., Yeh, L.-S. L., Marzec,
C. R., Orcutt, B. C., Barker, W. C. and
Pfeiffer, F. (1999), ‘Database of protein
sequence alignments: PIR-ALN’, Nucleic
Acids Res., Vol. 27(1), pp. 284–285.

24. Mewes, H. W., Heumann, K., Kaps, A.,
Mayer, K., Pfeiffer, F., Stocker S. and
Frishman, D. (1999), ‘MIPS: a database for

genomes and protein sequences’, Nucleic
Acids Res., Vol. 27(1), pp. 44–48.

25. Wu, C. H., Shivakumar, S. and Huang, H.
(1999), ‘ProClass protein family database’,
Nucleic Acids Res., Vol. 27(1), pp. 272–274.

26. Gracy, J. and Argos, P. (1998), ‘DOMO: a
new database of aligned protein domains’,
Trends Biochem. Sci., Vol. 23(12), pp. 495–497.

27. Smith, R. F. and Smith, T. F. (1992),
‘Pattern-induced multi-sequence alignment
(PIMA) algorithm employing secondary
structure-dependent gap penalties for use
in comparative protein modelling’, Protein
Eng.,  Vol. 5(1), pp. 35–41.

06-attwood.p65 2/7/00, 10:40 AM59


