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ABSTRACT

We derive colour spaces of the hue-colourfulness-luminance type, on the basis of a four-dimensional hypercube.
We derive a chromatic 2D hue that goes together with chromatic saturation and luminance, a toroidal hue
that goes together with a toroidal saturation and colourfulness, and also, a 3D tint that goes together with
colourfulness.
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1. INTRODUCTION

A tetrachromatic image of N×M pixels can be modeled as a function i : N×M → [0, 1]4 where the interval [0, 1]
represents the set of possible values in each of four, possibly overlapping, spectral bands. The total gammut of
the possible colours a pixel can take is therefore the hypercube [0, 1]4. In the hypercube we identify the black (or
”schwartz”) vertex s := [0000], and the white vertex w := [1111]; also, the subset A := {(t, t, t, t) : t ∈ [0, 1]}, the
achromatic segment between s and w. Tetrachromatic images can be visualized by feeding the RGB channels
of a projector or screen with 3 of the bands, in one or several of the of the 3!

(
4
3

)
= 24 possible ways of doing

this. Several closed surfaces and a closed 3-manifold are identified in the hypercube, they are used to define hue
for tetrachromatic colours. The modification of hue in tetrachromatic spaces can be used to attain interesting
effects in the corresponding images, and also, in tetrachromatic artificial vision. See also,12 and cite.

In addition to rods, which are effectively knocked out by excessive irradiance during the day, most mammals
have only two types of cone receptors, dolphins have only one and frugivorous primates, as we are, have three.
Many fish, birds and reptiles have 4, or more, cone receptor types. In the Bayer mosaic of a digital camera,
the RGB filters provide three bands at disjoint pixels that are susequenly interpolated3 at each pixel location,
so that the number of pixels in the resulting image is the same as that in the Bayer pattern. In photographic
cameras,4,5 as part of the developing field of computatinal photography, in addition to the R, G and B filtered
pixels, there are NIR, UV or panchromatic pixels6 that are exposed to unfiltered light (in the spectrum band
where the lens transmits the light and where the photoelectric transduction occurs) that include a significant
amount of energy in the NIR (near infrared) band. If the response of the RGB pixels is subtracted from the
response of a panchromatic pixel, a band of NIR+UVA results, where the energy of the two ends of the spectrum
is mixed. Süsttrunk has taken advantage of the fact that NIR light, having a longer wavelength than visible light,
effectively smooths out minute details in the scene being photographed; on the other hand, the use of UV light,
instead of IR, together with the appropriate optics, can be exploited for imaginery where detail is important,
e.g. in scientific imaginery. In multispectral imaging, bands of 20 nm cover the visible spectrum and sometimes
IR and UV as well. We integrate the responses in 4 bands to test our methods.

2. GEOMETRY AND 4D COLOUR

The set of 81 elements given by the 16 vertices, the 32 edges, the 24 square faces and the 8 solid cubes of
the hypercube boundary (8-24+32-16=0: the Euler characteristic of every closed 3-manifold is zero7 and the
boundary of the hypercube is a topological 3-sphere) together with the tetradimensional hypercube itself, is the
4-D linear cell complex K.

Email: arestrep@uniandes.edu.co; Telephone: (+57) 1 339 4949 ×2827



The subset of K given by the elements of dimension 3 or less, a 3-cell complex, is the 3-skeleton of K; the
union of its elements is the boundary T := ∂I4 of the hypercube I4 ⊂ R4. A colour [w, x, y, z] ∈ [0, 1]4 is on T if
at least one of its coordinates is 0 or 1; indeed, we write T = {w = 0}∪ {w = 1}∪ {x = 0}∪ {x = 1}∪ {y = 0}∪
{y = 1}∪ {z = 0}∪ {z = 1}. T is a piecewise linear (PL) tridimensional sphere that can be homeomorphed to
a more standard, round S3.

The subset of K given by the elements of dimension 2 or less is the 2-skeleton K2 of K; the union |K2| of
its elements is not a manifold due to the presence of line segments from which more than 2 (in fact 3) square
faces emerge; similarly, |K1| is not a 1-manifold since from each vertex, 4 edges emerge. In |K2| you find 8 PL
2-spheres, of 24 faces each, and 3 PL Heegaard tori of 16 faces each. These manifolds can be used geometrically
to define orientations of the points in the hypercube that, with corresponding coordinate systems, is used to
define several types of hue for 4D colours.

2.1 Tint

Tint is a ”3D hue;” black and white are tints. Denote the central point of the hypercube as g = [ 1
2 ,

1
2 ,

1
2 ,

1
2 ]. To

give ”spherical” coordinates (d,Θ) to any point p ∈ I4, let d be a measure of the distance between p and g (for
example, the max of the absolute values of the components of p − g∗ ), and let Θ ∈ T be the point where the
ray from g through p leaves the hypercube. Call Θ the tint, or generalized hue, and call d the colourfulness,
or generalized saturation of p. In this sense, T is the set of tints. Note that s (black) and w (white) are fully
colourful and are tints.

2.2 Chromatic Hue

Chromatic hue is two-dimensional; points in A, including s and w, are said to be achromatic and have no defined
(chromatic) hue. Consider the

(
4
2

)
2 = 12 faces that do not meet neither the vertex s nor the vertex w. You get

a polyhedron, an ”equatorial,” topological 2-sphere, ”linked” with the achromatic line, that we use to define a
chromatic hue (i.e. a hue that is undefined for points on A). Call this polyhedron the chromatic dodecahedron,
given by D := {w = 0, x = 1} ∪ {w = 1, x = 0} ∪ {w = 0, y = 1} ∪ {w = 1, y = 0} ∪ {w = 0, z = 1} ∪ {w = 1, z =

0}∪ {x = 0, y = 1}∪ {x = 1, y = 0}∪ {x = 0, z = 1}∪ {x = 1, z = 0}∪ {y = 0, z = 1}∪ {y = 1, z = 0}. Each of the faces
of D has a ”primary” w, x, y or z at its fullest value 1, and another at its minimum value 0. Each square face
of D is further subdivided into two triangles so that the points in each triangle obey the same ordering of their
coordinates; e.g. the triangle with vertices [0, 1, 0, 1] [0, 1, 0, 0] [1, 1, 0, 1] of points [w, x, y, z] with y ≤ w ≤ z ≤ x,
and the triangle [1, 1, 0, 0] [0, 1, 0, 0] [1, 1, 0, 1] of points [w, x, y, z] with y ≤ z ≤ w ≤ x, are the subdivision of the
face {x = 1, y = 0} of points [w, x, y, z] with min{w, x, y, z} = y and max{w, x, y, z} = x. There are 24 such
ordering triangles; together, they give the subdivision of D called the chromatic icositetrahedron IT. IT = D
is the set of (chromatic) hues; on each ordering triangle ∆ ⊂ IT, the relative contribution of the primaries is
fixed; each ordering representing a hue family.

To get the hue family corresponding to a chromatic colour (not in A,) you may find out the permutation that
orders its coordinates. More precisely, the hue h of p := [w, x, y, z] is the point h ∈ ∆h ⊂ IT that is obtained as
h = 1

ρ [w, x, y, z]− ν
ρ [1, 1, 1, 1] where ρ is the chromatic saturation given by the range of the primaries, and ν is the

min. Note that at least one coordinate of h has value 1 and another, 0. Each chromatic point p is in the unique
chromatic triangle Λh = w−s−h; ∆h∪Λh = h. Indeed [wxyz] = (1−ζ)s+ρh+ν[1111], where ζ is the max of the
primaries, is an expresion with barycentric coordinates [1−ζ, ν, ρ], in the plane spanned by the points s, w and h.

2.3 Hue in a rhombic dodecahedron

When the points of R4 are projected along the direction [1111] onto the 3-subspace (through the origin)†, D
projects, without self-intersections, to a 2D rhombic dodecahedron‡. The achromatic segment projects to the
∗The set of points [x0, x1, x2, x3] with max{xi} = r is the boundary of the hypercube of side 2r, centered at the origin.
†This is computed by subtracting the average of the primaries from each primary.
‡The rhombic dodecahedron is a Catalan solid, i.e. a polyhedron that is dual to an Archimedean solid; in this case,

to the cuboctahedron, which has 12 vertices, 24 edges, 8 triangle faces and 6 square faces; two triangles and two squares
meet at each vertex.



central point of the enclosed solid rhombic dodecahedron and the cubes in T project to overlapping parallelepipeds

in it. The points a = [
√

3
4 ,−

√
1
12 ,−

√
1
12 ,−

√
1
12 ], b = [0,

√
2
3 ,−

√
1
6 ,−

√
1
6 ] and c = [0, 0,

√
1
2 ,−

√
1
2 ] form an

orthonormal basis that gives 3D coordinates to the projection space. The coordinates of the projections of the
vertices of D are shown in Table 1.

Table 1. The 14 vertices of the chromatic dodecahedron are projected onto the 3-subspace normal to [1,1,1,1]. Then, the
projections are given 3-space coordinates in the third column, which provide an embedding in 3-space of D.

vertex projection [a, b, c]
0111 [− 3

4 ,
1
4 ,

1
4 ,

1
4 ] [-0.8660, 0, 0]

0010 [− 1
4 ,−

1
4 ,

3
4 ,−

1
4 ] [-0.2887, -0.4082, 0.7071]

0011 [− 1
2 ,−

1
2 ,

1
2 ,

1
2 ] [-0.5774, -0.8165, 0]

0001 [− 1
4 ,−

1
4 ,−

1
4 ,

3
4 ] [-0.2887, -0.4082, -0.7071]

0101 [− 1
2 ,

1
2 ,−

1
2 ,

1
2 ] [-0.5774, 0.4082, -0.7071]

0100 [− 1
4 ,

3
4 ,−

1
4 ,−

1
4 ] [-0.2887, 0.8165, 0]

0110 [− 1
2 ,

1
2 ,

1
2 ,−

1
2 ] [-0.5774, 0.4082, 0.7071]

1010 [ 1
2 ,−

1
2 ,

1
2 ,−

1
2 ] [0.5774, -0.4082, 0.7071]

1011 [ 1
4 ,−

3
4 ,

1
4 ,

1
4 ] [-0.2887, -0.8165, 0]

1001 [ 1
2 ,−

1
2 ,−

1
2 ,

1
2 ] [0.5774, -0.4082, -0.7071]

1101 [ 1
4 ,

1
4 ,−

3
4 ,

1
4 ] [0.2887, 0.4082, -0.7071]

1100 [ 1
2 ,

1
2 ,−

1
2 ,−

1
2 ] [0.5774, 0.8165, 0]

1110 [ 1
4 ,

1
4 ,

1
4 ,−

3
4 ] [0.2887, 0.4082, 0.7071]

1000 [ 3
4 ,−

1
4 ,−

1
4 ,−

1
4 ] [0.8660, 0, 0]

The ”abc coordinates” of the intersection of the ray from the center [0, 0, 0] of the rhombic dodecahedron
through the projection [

√
3/4w −

√
1/12(x+ y + z),

√
2/3x−

√
1/6(y + z),

√
1/2(y − z)] of a chromatic point

[wxyz], and the boundary of the rhombic dodecahedron, gives a hue η. Since each chromatic triangle projects to
a line segment, from the center of the rhombic dodecahedron to its boundary, η is the projection [a.h,b.h, c.h]
of h. The distance σ =

√
w2 + x2 + y2 + z2 − 4λ2 from the center of D to the point is a measure of chromatic

saturation; also, the projection [λ, λ, λ, λ], λ := w+x+y+z
4 on A, gives a measure of luminance. In this way, an

alternate colour space ηλσ results.

2.4 A toroidal hue

The tint Θ ∈ S3 of a colour p different from g is given by Θ = g + χ(p − g) where χ = 1
2max{|w′|,|x′|,|y′|,|z′|}

where w′ = w − 0.5, x′ = x − 0.5, y′ = y − 0.5 and z′ = z − 0.5. The indexes i of the coordinates Θi of
Θ = [Θ0,Θ1,Θ2,Θ3] of value 0 or 1 indicate the cube Θ is at; for example, if Θ1 = 0, then Θ ∈ {x = 0}.

A coordinate system for the points in an S3 results by considering a Heegaard splitting of genus 1. It uses two
angles and a ”signed distance” r ∈ [−1, 1], rather than the better-known, spherical coordinates of three angles.
A Heegaard torus splits the 3-sphere into two open solid tori and their common boundary.

Out of the 24 square faces in T, 16 faces can be chosen whose union U is a Heegaard torus for T; this can be
done in three ways since the 8 cubes in T can be grouped in 1

2

(
4
2

)
= 3 ways, into two groups of four cubes each,

so that each group is a solid torus. Here, we consider the solid tori Vyz := {z = 0}∪{y = 1}∪{z = 1}∪{y = 0}
and Vwx := {w = 0}∪{x = 1}∪{w = 1}∪{x = 0}. The boundaries of Vwx and Vyz are the torus U; U can be
seen as the union of four square pipe segments (stacks of squares) in two ways; each pipe segment (topological
cylinder or annulus) is a stack of 1-squares that are meridians for the solid torus in question and longitudes for
the other solid torus. For the solid torus Vyz we have the pipes of square meridians with vertices
P0 := {(0, 0, s, 0), (1, 0, s, 0), (1, 1, s, 0), (0, 1, s, 0) : s ∈ [0, 1)} (z=0),

P1 := {(0, 0, 1, s), (1, 0, 1, s), (1, 1, 1, s), (0, 1, 1, s) : s ∈ [0, 1)} (y=1),

P2 := {(0, 0, 1− s, 1), (1, 0, 1− s, 1), (1, 1, 1− s, 1), (0, 1, 1− s, 1) : s ∈ [0, 1)} (z=1) and

P3 := {(0, 0, 0, 1− s), (1, 0, 0, 1− s), (1, 1, 0, 1− s), (0, 1, 0, 1− s) : s ∈ [0, 1)} (y=0),

similarly, the boundary of the Vwx is given by the pipes of square meridians with vertices
Q0 := {(0, t, 0, 0), (0, t, 1, 0), (0, t, 1, 1), (0, t, 0, 1) : t ∈ [0, 1)} (w=0),



Q1 := {(t, 1, 0, 0), (t, 1, 1, 0), (t, 1, 1, 1), (t, 1, 0, 1) : t ∈ [0, 1)} (x=1),

Q2 := {(1, 1− t, 0, 0), (1, 1− t, 1, 0), (1, 1− t, 1, 1), (1, 1− t, 0, 1) : t ∈ [0, 1)} (w=1) and

Q3 := {(1− t, 0, 0, 0), (1− t, 0, 1, 0), (1− t, 0, 1, 1), (1− t, 0, 0, 1) : t ∈ [0, 1)} (x=0).

As remarked, U = ∪Pi = ∪Qi. Each point of T is either in the open solid torus Vwx, in the open solid torus
Vyz, or in their common boundary U. The subindex n of the pipe segment together with the value of t or s, as
in n.t, or n.s, give an angular measure that ranges from 0 to 4, mod-4.

For Θ in an open torus, there is a distance r 6= 0 from the boundary of the 2-square in the pipe the tint is at;
the distance from the boundary is measured with the product metric; that is, for example, for the piece of solid
torus bounded by pipe P0, a tint point [w, x, t, 0] is at distance 0.5−max{|w− 0.5|, |x− 0.5|} from its boundary.
There are two 1-squares in pipes, say Pn and Qm, with corresponding parameters s and t such that one of them
(a meridian) bounds the two-square the tint is in, and the other intersects the first square at a point u ∈ U .
Let u = (φwx, φyz) := (n.s,m.t) be the toroidal hue of p; if Θ is on U, let r = 0. Denote Θ as (φwx, φyz, r);
with the understanding that if r = ±0.5 (i.e. if Θ is precisely on the axis or core of a solid torus), exactly one
of the angles φ or ψ is left undefined and only the longitude of the corresponding solid torus that contains Θ
is specified. For example, the tint of p = [0.9, 0.2, 0.3, 0.4] is [R, r, φwx, φyz] = [0.4000, 0.2500, 1.1250, 3.7500],
at (product) distance 0.4 from the center of the hypercube, with Θ corresponding to pipes w = 0 and y = 0,
with s = 1/8 (i.e. x = 1/8) and t = 3/4 (i.e. z = 1/4), inside Vwx, at distance 0.25 from the boundary of the
corresponding 2-square. Call r the toroidal saturation; its 3D analog would be the distance of a point in the
boundary of the RGB cube to the chromatic hexagon.8

 s or t 

p

Figure 1. A pipe of Vwx or Vyz. The squares in each pipe are indexed by the parameters s or t and provide the ”decimal
part” of the angles mod-4, φwx = n.s and φyz = m.t.

2.5 Runge Ball

A 4D round space is obtained by deforming the hypercube into the standard 4-ball {(w′, x′, y′, z′) ∈ R4 :
w2 + x2 + y2 + z2 ≤ 1}. This can be done in several ways; one is to deform the ρµ triangle, into a semicircle and
to spin it around S2, with hinge the µ basis of the triangle, where S2 is the chromatic dodecahedron deformed
into a sphere. Another way is to spin the midray (that that originates at intermediate gray) around S3, with
hinge the point of intermediate gray. In the first case we have a space with coordinates the luminance, the
chromatic saturation and a 2D (the equatorial sphere derived from the chromatic dodecahedron) spherical hue;
in the second case, we have a space with coordinates given by the generalized saturation r and a generalized 3D
hue given by the S3 that is derived from the boundary of the hypercube.

Let [w, x, y, z] be a point in the hypercube, shift the hypercube so that intermediate gray ends up at the
origin of 4-space R4 and rescale so that the maximum values of the coordinates is 1 and the minimum is -1. Let
[w′, x′, y′, z′] = 2[w − 0.5, x− 0.5, y − 0.5, z − 0.5] be the coordinates of the resulting hypercube [−1, 1]4.



The lightness in this space is given by the angle with the achromatic axis: λ = arcos w′+x′+y′+z′

2
√
w′2+x′2+y′2+z′2

=

arcos w+x+y+z−2

2
√
w2+x2+y2+z2+1−(w+x+y+z)

. Rather than using a chromatic saturation measure i.e. a distance measure to

the achromatic line segment, we use a distance g obtaining a measure of colourfulness in the sense of ”ungrayness”.
Let Λ = max{|w′|, |x′|, |y′|, |z′|}; if Λ 6= 0, the point on the boundary of the hypercube that is in the same
direction is 1

Λ [w′, x′, y′, z′] (at least one of its coordinates has value of 1); let d = 1
Λ

√
w′2 + x′2 + y′2 + z′2

and normalize by this length (with the result that the hypercube is deformed into a 4-ball), getting the point
s = [s0, s1, s2, s3] := 1

d [w′, x′, y′, z′] whose distance from the center of the ball is

κ =
√
w′2+x′2+y′2+z′2

Λ−1
√
w′2+x′2+y′2+z′2

= Λ. Thus

κ = max{2w − 1, 2x− 1, 2y − 1, 2z − 1} is the colourfulness of the point [w, x, y, z]. χ = 1
2Λ .

3. RGBP: RGB+PANCHROMATIC

Another source of tetrachromatic images is computational photography. TrueSense imaging inc. markets a digital
image sensor that, in addition to R, G, and B pixels, includes Panchromatic pixels (also called monochromatic,
that are covered by the microlens but otherwise are not filtered) in a pattern as shown in Fig. 2. The proportions
are 1/4 of green pixels, 1/8 of red pixels, 1/8 of blue pixels and 1/2 panchromatic pixels. Even though the
photosensitive transducers respond well into the UV, the microlens blocks wavelengths below 350 nm. The
sensor responds in the infrared but the response is negligible above 1050 nm.

Sorry for the delayed response, I was on vacation. Typically, we output the data in the pattern of the color
filter array. Then the data is interpolated to get the three color channels (RGB). The pattern is

Figure 2. Pattern in the array of the sensor Truesense Imaging KAI-01150: P B P G; B P G P; P G P R; G P R P.

Since our objective is to explore the uses of tetrachromatic colour image processing, we do not interpolate
the data in the image shown in but we convert each 4× 4 pixel block into a tetrachromatic pixel, by averaging
the pixels in each band in the block. Thus even though the original image is 1152 × 2044, the image we work
with is 287 × 510 pixels. Also, the bands we use are w = R, x = G, y = B and z = P − (R + G + B), so, the
z-primary is actually an approximation to a combination of NIR and UV wavelength bands. Something similar
occurs in our visual system when the S and L channels are combined in a process opposed to the M channel (the
other processes being L+M.vs.S, and (nonopposing) L+M+S.)

3.1 Tetrachromatic metamerism

The data provided by TrueSense of the quantum efficiency of each sensor type, at each 10 nm from 350 to 1100
nm, provides 76 data per band. We decided to work with these vectors and assume that the response to a light
with equally sampled spectrum would be

w
x
y
z

 =


r1 ... r76

g1 ... g76

b1 ... b76

p1 ... p76




S1

.
..
S76



The sampled responses of the sensor (courtesy of Keith Wetzel) provide a linear transformation R76 → R4.
The kernel of this transformation is the orthogonal space to the subspace M := span{r, g, b, p}, and then any



Figure 3. Outdoors, 16-bit, RGBP image of a Macbeth chart; courtesy of Amy Enge. Below, RGB visualization without
corrections.

two spectra S1 and S2 such that S1 − S2 ∈M⊥ produce the same response [wxyz]. We provide a basis for M⊥

which has dimension 72. We derive 3 triangular matrices of row vectors, in the first one M1 we have a basis for
the orthogonal complement of span(r), in the second one M2 a basis for the orthogonal complement of spanr, g,
then, in M3 a basis for (span{r, g, b})⊥ and finally, in M4, a basis for (span{r, g, b, p})⊥.

In M1
76×75 the ith row (the diagonal is a diagonal of 1’s) looks like [0, ..., 0, 1,−ri/ri+1, 0, ..., 0]. By making

sure a linear combination of each two consecutive rows in M1
76×75 is orthogonal to g, you get for example M2

76×74

with ith row given by [0, ..., 0, 1,mi,i+1 + βmi+1,i+1, βmi+1,1+2, 0, ..., 0] (the diagonal of M2
76×74 is a diagonal of

1’s), where the m’s are the components of M1
76×75 and β = − gi+mi,i+1gi+1

mi+1,i+1gi+1+mi+1,i+2gi+2
.

Likewise, by making sure a linear combination of each two consecutive rows in M2
76×74 is orthogonal to b,

one obtains M3
76×73 whose ith row looks like [0, ..., 0, 1,mi,i+1 +βmi+1,i+1,mi,i+2 +βmi+1,i+2, βmi+1,1+3, 0, ..., 0]

(the diagonal is a diagonal of 1’s), where the m’s are the components of M2
76×74 and

β = − bi+bi+1mi,i+1+bi+2mi,i+2
bi+1mi+1,i+1+bi+2mi+1,i+2+bi+3mi+1,i+3

.

Finally, a linear combination of each two consecutive rows in M3
76×73 that is orthogonal to p, one obtains

M4
76×72 with ith row [0, ..., 0, 1,mi,i+1 + βmi+1,i+1,mi,i+2 + βmi+1,i+2,mi,i+3 + βmi+1,i+3, βmi+1,1+4, 0, ..., 0],

where the m’s are the components of M3
76×73 and

β = − bi+bi+1mi,i+1+bi+2mi,i+2+bi+3mi,i+3
bi+1mi+1,i+1+bi+2mi+1,i+2+bi+3mi+1,i+3+bi+4mi+1,i+4

.
The basis elements in are shown in Fig. 5. The rows in M1

76×75 have support of length 2, those in M2
76×74 have



Figure 4. Quantum efficiencies corresponding to Truesense sensors.

support of length 3, those in M3
76×73 have support of length 4 and those in the basis M4

76×72 of (span{r, g, b, p})⊥
have support of length 5. See Fig. 5.

4. PROCESSING

The application of a law to each pixel of a tetrachromatic image produces a new tetrachromatic image that can
then be visualized or fed to a computer vision algorithm. By appropriately modifying the hue, it is possible to
visualize tetrachromatic images in such a way that certain aspects are made conspicuous, or more aesthetic.

Simple modification types of tetrachromatic hue are given by rotations of the 2-sphere, of the 3-sphere, or of
the Heegaard torus.In the Runge 4-ball, with boundary S3, a point can be expressed as (d,Θ). A point Θ ∈ S3

can be expressed for example as a point in R4 of unitary norm, equivalently as a quaternion or, in ”spherical
coordinates,” with three angles θ, φ, ψ. We propose yet another coordinate system based on a Heegaard torus
for S3.

The space of rigid motions of S3 (the rotations of R4) has the group structure SO(4); it is the topoloical space
S3 ×RP3 for which S3 × S3 is a double cover.§ To modify the generalized hue in a basic way, a rigid motion of
S3 is implemented; such motions can be coded as a pair (θ1, θ2) ∈ S3×S3 and are implemented by pre and post
multiplying a unit quaternion (s∈ S3) times unit quaternions p and q, as in psq. The space H of the quaternions
can be seen as (R4,+,×) or as (C2,+,×). For C2, the analogous case of an orthogonal transformation is that of
a unitary transformation that rather than preserving the structrure of the inner product in R2, it preserves the
standard hermitian form (z1, z2).(w1, w2) = z1w̄1 + z2w̄2; a point of S3 is also denoted as a pair (z1, z2) ⊂ C2,
with z1z̄1 + z2z̄2 = 1 The rigid motions of S2 are implemented by pre and post multyplying a pure quaternion s
times a unit quaternion q and its conjugate, as in qsq∗.

The hue can thus be independently processed of the luminance (and saturation), by automorphisms (could be
PL in particular) either of the 3-sphere, a hue sphere or of a hue torus. There are 8 (intersecting) dodecahedra
(PL topological spheres) in the complex ∂I4 and also three (intersecting) PL Heegaard tori, so it is possible to

§The set of rotations of the plane is the group SO(2) which has the topology of S1 while the set of rigid motions of S2

(of rotations of R3) is the group SO(3) which has the topology of RP3.



modify an image in multiple ways. As the hue surfaces are rotated or otherwise automorphed, the colours of a
tetrachromatic image change in interesting ways. The automorphisms respect the continuity; the rotations are
isometries and respect the antipodicity or complementary colours as well.

For toroidal hue, for PL rotations, the 1D squares with sides parallel to the axes w and x are meridians of
the yz solid torus and longitudes of the wx solid torus; the 1D squares with sides parallel to the axes y and z
are meridians of the wx solid torus and longitudes of the yz solid torus. Similarly for the other cases. Shifts
around such squares implement modifications of hue. The automorphisms of the torus can be characterized
with a process of cut and twist, as in;9 then, an automorphism of each solid torus is obtained by extending
the automorphism of its boundary in such a way that it is the identity on its core and the amount of twisting
gradually increases towards its boundary.

The linear (i.e. noncircular, nonspherical) coordinates such as colourfulness, chromatic saturation and lumi-
nance, are transformed here via exponential-law maps xγ , γ ∈ (0,∞].

As examples, consider the image in Fig. 6; it has been processed in Runge space in Fig. 7 and in toroidal
space in Fig. 8. Also, the image in Fig. 3, has been processed in toroidal space in Fig. 9; in this case, the band
w is the difference between the averages of R, G and B, and the average of P .

5. CONCLUSIONS

Tetrachromatic colour spaces find applications in the visualization of 4-spectral images and the modeling of
tetrachromatic vision systems. Its use in satellite imaginery10 is likely since it provides alternate ways to the
mere feeding of the visualizing RGB channels with permutations of the image wxyz channels.

As a technique for computational photography, the exploitation of IR and UV bands is likely to be of use in
different ways, for example, increasing or decreasing detail, and also as hints for the modification of RGB colour.
There may be a problem of chromatic aberration here, as the paths of different wavelengths, i.e. those of UV
and NIR, may focus at different planes. Further work remains to be done in the exploitation of automorphisms
of spheres and tori, different from isometries. Depending on the application different types of tetrachromatic
colour processing will be needed.

Existent linear techniques for smoothing and contrast enhancing such as the moving average, the moving
median and unsharp masking, can be extended not only to the circular case11 but also to spherical cases.

The visualization of tetrachromatic images can me tackled as well with movie sequences where a few frames
that are fed to the RGB channels of a projector and that result from 3 of the four bands of processed versions
of the tetrachromatic image.

APPENDIX A: Matlab code

Kernel of [p;r;g;b]:

function[AL4] = TrueSense(AC)

ALREV=[B,G,R,P];

figure; plot(L,ALREV);

AL1= zeros(76,75);

for ii=1:75

AL1(ii,ii)= 1;

AL1(ii,ii+1)= -R(ii)/R(ii+1);

end

figure; plot(L,AL1)

AL2= zeros(76,74);

for ii=1:74

AL2(ii,ii)= 1;

BETA= -(G(ii) + G(ii+1)*AL1(ii,ii+1)/AL1(ii,ii))/(AL1(ii+1,ii+1)*G(ii+1) + AL1(ii+1,ii+2)*G(ii+2));

AL2(ii,ii+1)= AL1(ii,ii+1)/AL1(ii,ii) + BETA*AL1(ii+1,ii+1);

AL2(ii,ii+2)= BETA*AL1(ii+1,ii+2);



end

figure; plot(L,AL2)

AL3= zeros(76,73);

for ii=1:73

AL3(ii,ii)= 1;

BETA= -(B(ii) + B(ii+1)*AL2(ii,ii+1)/AL2(ii,ii) + B(ii+2)*AL2(ii,ii+2)/...

AL2(ii,ii))/(B(ii+1)*AL2(ii+1,ii+1) + B(ii+2)*AL2(ii+1,ii+2) + B(ii+3)*AL2(ii+1,ii+3));

AL3(ii,ii+1)= AL2(ii,ii+1)/AL2(ii,ii) + BETA*AL2(ii+1,ii+1);

AL3(ii,ii+2)= AL2(ii,ii+2)/AL2(ii,ii) + BETA*AL2(ii+1,ii+2);

AL3(ii,ii+3)= BETA*AL2(ii+1,ii+3);

end

figure; plot(L,AL3)

AL4= zeros(76,72);

for ii=1:72

AL4(ii,ii)= 1;

BETA= -(B(ii) + B(ii+1)*AL3(ii,ii+1)/AL2(ii,ii) + B(ii+2)*AL3(ii,ii+2)/AL2(ii,ii)) + B(ii+3)*AL3(ii,ii+3)/AL3(ii,ii)/...

(B(ii+1)*AL3(ii+1,ii+1) + B(ii+2)*AL3(ii+1,ii+2) + B(ii+3)*AL3(ii+1,ii+3)) + B(ii+4)*AL3(ii+1,ii+4);

AL4(ii,ii+1)= AL3(ii,ii+1)/AL3(ii,ii) + BETA*AL3(ii+1,ii+1);

AL4(ii,ii+2)= AL3(ii,ii+2)/AL3(ii,ii) + BETA*AL3(ii+1,ii+2);

AL4(ii,ii+3)= AL3(ii,ii+3)/AL3(ii,ii) + BETA*AL3(ii+1,ii+3);

AL4(ii,ii+4)= BETA*AL3(ii+1,ii+4);

end

APPENDIX B: Spinning

Let I = [0, 1] and let A ⊂ In; also, let H ⊂ A. Topologically, the spin of A with Sm with hinge H is the
quotient space A × Sm modulo the equivalence relation with corresponding equivalence classes of the form
Eh = {(h, s)|s ∈ Sm}, for each h ∈ H.
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Figure 5. Kernel of [r; g; b; p] : R76 → R4.



Figure 6. Original tetrachromatic image. Tetrachromatic bands NIR,R,G; NIR,R,B; NIR,G,B and RGB are fed to visu-
alizing channels R, G, B.



Figure 7. (Θ, d) processing: (s, d) 7→ (psq, dγ). p=[1/2, 1/2, -1/2, -1/2], q=[-1/2, -1/2, 1/2, 1/2], γ = 0.6; bands 1 (in R),
3 (in G), 4 (in B). p=[1/2, 1/2, 1/2, -1/2], q=[1/2, -1/2, 1/2, 1/2], γ = 1.0; bands 1, 2 and 3. p=[1/2, 1/2, 1/2, -1/2],
q=[-1/2, 1/2, 1/2, 1/2], γ = 1.0; bands 2, 3 and 4. p=[1/2, 1/2, 1/2, -1/2], q=[1/2, -1/2, 1/2, 1/2], γ = 1.0; bands 1, 2
and 4.



Figure 8. Torus processing. (φwx, φyz) 7→ (φwx + 0.2, φyz + 0.5), bands 124; (φwx, φyz) 7→ (φwx, φyz + 0.5), bands 124;
(φwx, φyz) 7→ (φwx + 0.2, φyz + 0.2), bands 124; (φwx, φyz) 7→ (φwx, φyz + 0.5), bands 123.



Figure 9. Corrections Rγ1, rγ2, φwx + ∆wx, φyz + ∆yz; in (R,Θ) coordinate space system, where Θ = (r, φwx, φyz). From
top left, γ1 = 1, γ2 = 0.7, ∆wx = 0, ∆yz = 0, visualized with RGB ← wxy; γ1 = 1, γ2 = 1.3, ∆wx = 0, ∆yz = 0,
visualized with RGB ← wyz; γ0.5 = 1, γ2 = 1.5, ∆wx = 0, ∆yz = 0, visualized with RGB ← wxy; γ1 = 0.6, γ2 = 1.4,
∆wx = 0, ∆yz = 0, visualized with RGB ← wyz and γ1 = 1.1, γ2 = 1.4, ∆wx = 0.005, ∆yz = −0.1, visualized with
RGB ← wxy. The w component is given by the difference (Raverage +Gaverage +Baverage)−PANaverage, and the x, y, z
components are the signals Raverage, Gaverage and Baverage, respectively.


