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Abstract
Many techniques have been developed for learning rules and relationships automatically from

diverse data sets, to simplify the often tedious and error-prone process of acquiring

knowledge from empirical data. While these techniques are plausible, theoretically well-

founded, and perform well on more or less artificial test data sets, they depend on their ability

to make sense of real-world data. This paper describes a project that is applying a range of

machine learning strategies to problems in agriculture and horticulture. We briefly survey

some of the techniques emerging from machine learning research, describe a software

workbench for experimenting with a variety of techniques on real-world data sets, and

describe a case study of dairy herd management in which culling rules were inferred from a

medium-sized database of herd information.
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Introduction

Machine learning is an emerging technology that can aid in the discovery of rules and patterns

in sets of data. It has frequently been observed that the volume of recorded data is growing at

an astonishing rate that far outstrips our ability to make sense of it, and the phrase “database

mining” is now being used to describe efforts to analyze data sets automatically for significant

structural regularities (Piatetsky–Shapiro & Frawley, 1991). Potential applications of these

techniques in domains such as agriculture and horticulture are legion. There are many

possible ways to capitalize on any patterns that are discovered. For example, their implicit

predictive ability could be embedded in automatic processes such as expert systems, or they

could be used directly for communication between human experts and for educational

purposes.

This paper explores what machine learning can do in the agricultural domain. We begin

with an overview of the technology, concentrating in particular on the more widely-applicable

“similarity-based” techniques. One of the practical problems in applying machine learning is

that it is hard to acquire a variety of learning tools and experiment with them in a uniform

way. We describe a software workbench, called WEKA, that collects together a number of

schemes and allows users to run them on real-world data sets and interpret and compare the

results. Next we show how the workbench can be applied to an agricultural problem: dairy

herd management. The aim is to infer the rules that are implicit in a particular farmer’s

strategy for culling less productive cows. These rules might be used, for example, to

communicate one farmer’s strategy to another, and are likely to be far more acceptable in

practice than a numeric “productivity index” such as is often used for this purpose. Several

unanticipated problems arose in the application of machine learning methods to the recorded

data. Once these problems were overcome, the results were encouraging, and indicate that

machine learning can play a useful role in large-scale agricultural problem solving.

Machine learning

As used in everyday language, “learning” is a very broad term that denotes the gaining of



3

knowledge, skill and understanding from instruction, experience or reflection. For the

purposes of the present work, we take it in a much more specific sense to denote the

acquisition of structural descriptions from examples of what is being described. There are

numerous other words that could be used to mean much the same thing; indeed others have

defined terms such as “generalization” (Schank et al., 1986), “inductive learning” (Michalski,

1983), and “inductive modelling” (Angluin & Smith, 1983) in almost identical ways.

Moreover, what is learned—our “structural description”—is sometimes called a

“generalization,” a “description,” a “concept,” a “model,” an “hypothesis.” For present

purposes we regard these as equivalent, and simply use the term “concept” to denote the

structural description that the machine acquires.

“Learning” in this sense implies the acquisition of descriptions that make the structure of

generalizations explicit. This rules out a number of interesting software paradigms that

parallel the skill acquisition process in humans by learning how to do something without

encoding this knowledge in a form which is easy to interpret. One example is connectionist

models of learning, which embed knowledge in high-dimensional numerically-parameterized

spaces and thereby transform learning into a process of weight adjustment. Another example

is genetic algorithms, which emulate an evolutionary form of adaptation by mutation and

natural selection. A third example is adaptive text compression, which creates a model of

incoming text and uses it to predict upcoming characters. The reason that we are prepared to

rule out such schemes is that we envisage that in the application domain being considered, the

acquired knowledge will frequently be used for purposes of communication, and the implicit

descriptions that are used in these schemes cannot be communicated between people nor

between machines having different architectures.

METHODS OF MACHINE LEARNING

The last decade has seen such an explosion of methods for machine learning that it is difficult

to classify them into a small set of main approaches. It is more useful is to examine several

dimensions along which they can be compared. Although these dimensions tend to be

overlapping rather than orthogonal, they do provide a useful framework for examining
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machine learning schemes (Witten et al. 1988, MacDonald et al., 1989.)

Similarity-based versus knowledge-based. Many learning methods use only the observed

similarities and differences between examples in order to form generalizations; we refer to

these as similarity based. Similarity-based learning analyses data more or less syntactically,

with little use of semantics. A few examples of such schemes can be found in Winston

(1972), Michalski (1980), and Lebowitz (1986).  In contrast, knowledge based methods use

prior knowledge—often called “background” knowledge—in the form of a “domain theory”

that guides the interpretation of new examples. If the domain theory is complete, of course,

there is no new knowledge to learn: the theory already contains a full prescription for

interpreting, or “explaining,” all the examples that will be encountered. However, it may still

be possible to learn new and more efficient ways of employing that theory to interpret

examples; this is often called “explanation-based learning” because it focuses on the

explanations that the theory is capable of generating for each example (Mitchell, et al. 1986,

DeJon et al., 1986). Some learning methods relax the requirement of a fully comprehensive

domain theory by assuming an incomplete domain theory and augmenting it by processing

new examples and incorporating them into the theory, either to correct erroneous parts or to

add new rules to the theory.

Noise-tolerant versus exact. Some machine learning schemes are robust and tolerant to noise

in the examples presented, whereas others are designed to work with exact information.

Generally speaking, knowledge-based schemes, like other knowledge-rich methods in AI,

tend to be brittle and break down if the input contains errors. Similarity-based methods

generally use much larger numbers of examples and therefore have an opportunity to average

out some effects of noise. This distinction is closely allied to another one: one-shot versus

multi-example learning schemes. Some methods operate by analyzing a single example

intensively, while with others, a large collection of examples is processed together. Clearly,

statistical  schemes fall into the second class.

Top-down versus bottom-up. Top-down machine learning methods delineate the space of

concept descriptions in advance and search it for concepts that best characterize the structural
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similarities and/or difference between the examples that are presented. Some top-down

methods are “exact” in that they guarantee to produce just that set of concepts which are

consistent with the examples (and of course this only makes sense in the case of noise-free

examples), whereas others are heuristic and come up with a “good” concept but not

necessarily the best one. Bottom-up schemes begin by analyzing the individual examples and

building up structures from them. They are sometimes called “case-based” because they focus

on the individual cases. Some bottom-up schemes are one-shot in that they examine single

examples intensively, perhaps interacting with the user to elicit an explanation of any unusual

features that they exhibit. Others are multi-example—for example, nearest-neighbor schemes

that classify new or “unknown” examples on the basis of that old or “known” one that is

closest in some high-dimensional space.

Supervised versus unsupervised. Supervised learning has come to mean learning from a

training set of examples whose desired output patterns are provided, having been assigned by

some expert or “teacher.” It does not imply that the learning process is subject to direct

supervision (that is the purpose of the interactive versus non-interactive distinction below);

indeed, supervised learning often processes a set of examples in batch mode. In contrast,

unsupervised learning is where a set of examples is supplied but there is no indication of the

classes that they belong to (Cheeseman et al, 1988, Fisher, 1987). In this situation, the

learning scheme is expected to analyze the similarities and differences between the examples

and come up with a clustering that, in effect, assigns classes to them. The clustering may be

performed on the basis of either numeric or non-numeric properties, and, perhaps,

background knowledge.

Interactive versus non-interactive. Some learning methods are interactive in that they require a

teacher to monitor the progress of learning, whereas others are not and proceed

autonomously. In some respects, the requirement for a teacher can substitute for the lack of

an adequate domain theory, for the teacher can be consulted to “explain” the situation

whenever a new example fails to fit the system’s expectations (Bareiss et al., 1988). The key

problem here is to implement a dialog between system and teacher that allows information to

be articulated by either party at the appropriate level, and understood by the other. A different
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possible role for a teacher, which is much easier to arrange, is to have them select the

ordering of examples and choose ones that are most helpful to the learner in its present state

of knowledge. This simplifies communication considerably, but it does require the teacher to

understand the inner workings of the machine learning scheme to some extent.

Single- versus multi-paradigm. A final distinction can be made between single-paradigm

learners and multi-paradigm ones. Because of the various strengths and weaknesses of

current machine learning schemes, there is currently a great deal of interest in combining

learning mechanisms that adopt several approaches (e.g. Pazzani et al., 1992). For example,

similarity-based learning may be used to correct or complete a partial domain theory, or a

judicious combination of bottom-up and top-down learning may outperform either on its

own.

CHARACTERIZING THE PROBLEM

The most important feature of a problem domain, as far as the application of machine learning

is concerned, is the form that the data takes. Most learning techniques that have actually been

applied assume that the data are presented in a simple attribute-value format in which a record

has a fixed number of constant-valued fields or properties. Figure 1a illustrates different

kinds of data types; nominal attributes, which are drawn from a set with no further structure;

linear attributes, which are totally ordered; and tree-structured attributes, which form a

hierarchy or partial order. Figures 1b and 1c show a sample object (or “entity”), and a sample

concept (that in fact subsumes the object), expressed as a vector of generalized attributes.

Attribute vectors cannot describe situations that involve relations between objects. In

actuality, of course, databases are generally expressed as a set of relations, with several

records for a single entity and fields that reference other records or relations. Relations can be

described by functions which, like attributes, may be nominal, linear, or tree-structured.

Some researchers in machine learning are shifting their attention from algorithms that operate

in attribute-value domains to ones designed for more structured relational domains, for

example the field of inductive logic programming (ILP), which seeks to express concepts in a

language such as Prolog, and to infer these programs from data. One system which
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implements some aspects of ILP is the First Order Inductive Learner (FOIL), described in

Quinlan, (1990).

Another important feature of a problem domain is the quality of the data available. Most

“real” data is imperfect: incomplete (missing values for some attributes and objects), irrelevant

(some fields that do not relate to the problem at hand), redundant (involving unknown, or at

least unexpressed, relations between the attributes), noisy (for example, some attributes have

inherent measurement errors) and occasionally erroneous (e.g. incorrectly transcribed).

Methods of machine learning need to be robust enough to cope with imperfect data and to

discover laws in it that may not always hold but are useful for the problem at hand. The seven

levels of quality shown in Table 1 can be distinguished in a data set (Gaines, 1991). The aim

of a learning system is to discover a set of decision rules that is complete, in that it describes

all of the data; correct, predicting the data accurately; and minimal, i.e. with no redundancy

(level 1), given information at one of the other levels.

Another feature that strongly influences machine learning is whether or not operation

needs to be incremental. In many situations, new examples appear continually and it is

essential that the system can modify what it has already learned in the light of new

information. Learning is often exceedingly search-intensive and it is generally infeasible to

reprocess all examples whenever a new one is encountered.

EXPERT SYSTEMS AND STATISTICS

Often it is assumed that machine learning is proposed as a replacement for expert systems or

statistical methods such as clustering. In reality, the role of learning is to complement both

areas, increasing the set of tools available to the practitioner of either discipline.

In the case of expert systems, machine learning can be applied to the areas of knowledge

acquisition and maintenance. In the creation of a typical expert system, a person with detailed

knowledge about the problem domain and its solution supplies information that is converted

into rule sets to be incorporated into the knowledge base. This process requires that the expert

be able to articulate his or her knowledge clearly and effectively. In some cases, however,

there may be no expert available to supply the rules for the problem. When this happens, the
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extraction of rules and relationships from the domain may be undertaken using a machine

learning scheme. In the case of supervised machine learning, an expert may supply specially

selected cases or examples for a machine learning scheme and let it generate a model to

explain these examples. This may prove faster and more accurate than having to state each

rule explicitly. The process is incremental in the sense that as each example or case is seen,

the model is adapted to incorporate the new concept. This allows existing rule sets to be easily

updated over time if assumptions about the domain change—as happens very frequently in

practice.

In statistics, as in machine learning, patterns such as trends or clusters are often being

sought in the data. Much of conventional statistics is restricted to continuous, numeric data,

and seeks to test relationships that have been hypothesized in advance. Many machine

learning schemes can work with either symbolic or numeric data, or a combination of both,

and attempt to discover relationships in the data that have not yet been hypothesized. Once a

relationship has been discovered, further statistical analysis can be performed to confirm its

significance. Sometimes, both fields work independently towards the same goal, as in the

case of ID3 (Quinlan, 1986), a machine learning scheme, and CART (Breiman et al, 1984),

standing for “classification and regression trees,” a statistical scheme. These methods both

induce decision trees using essentially the same technique. Machine learning researchers also

incorporate statistics into learning schemes directly, as in the case of the Bayesian

classification system AUTOCLASS (Cheeseman et al, 1988).

AQ11: AN EARLY EXAMPLE OF AN AGRICULTURAL APPLICATION

An often quoted example of the application of machine learning in agriculture is the use of

the AQ11 program to identify rules for diagnosis of soybean diseases. In this early application

the similarity-based learning program AQ11 was used to analyze data from over 600

questionnaires describing diseased plants (Michalski & Chilausky, 1980). Each plant was

assigned to one of 17 disease categories by an expert collaberator, who used a variety of

measurements describing the condition of the plant. Figure 2a shows a sample record with

values of some of the attributes given in italics.
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The diagnostic rule of Figure 2b for Rhizoctonia root rot was generated by AQ11, along

with a rule for every other disease category, from a set of training instances which were

carefully selected from the corpus of cases as being quite different from each other—“far

apart” in the instance space. At the same time, the plant pathologist who had produced the

diagnoses was interviewed and his expertise was translated into diagnostic rules using the

standard knowledge-engineering approach. Surprisingly, the computer-generated rules

outperformed the expert-derived rules on the remaining test instances—they gave the correct

disease top ranking just over 97% of the time, compared to just under 72% for the expert-

derived rules (Michalski & Chilausky, 1980). Furthermore, according to Quinlan (in

foreword, Piatetsky–Shapiro & Frawley, 1991), not only did AQ11 find rules that

outperformed those of the expert collaborator, but the same expert was so impressed that he

adopted the discovered rules in place of his own.

The machine learning workbench

Given the proliferation of machine learning techniques, the task facing a scientist wishing to

apply machine learning to a problem in their own field is immense. Each technique is suitable

for particular kinds of problems, and has particular strengths and weaknesses. The

experimental status of machine learning means that it is impossible to offer one technique as a

general solution, so the key to applying machine learning widely is to simplify access to a

range of techniques.

To this end, the machine learning research group at the University of Waikato has

constructed a software ‘workbench’ to allow users to access a variety of machine learning

techniques for the purposes of experimentation and comparison using real world data sets.

The Waikato Environment for Knowledge Analysis (WEKA1) currently runs on Sun

workstations under X-windows, with machine learning tools written in a variety of

programming languages (C, C++ and LISP). The workbench is not a single program, but

rather a set of tools bound together by a common user interface.

The WEKA workbench differs from other machine learning environments in that its target

1 The weka is a cheeky, inquisitive native New Zealand bird, about the size of a chicken.
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user is a domain expert, in this case an agricultural scientist, who wants to apply machine

learning to real world data sets.  Other systems such as the MLC++ project at Stanford

University (Kohavi et al,1994), and the European Machine Learning Toolbox project

(Kodratoff et al, 1992) are intended for use by machine learning researchers and

programmers developing and evaluating machine learning schemes, while the Emerald system

(Kaufman et al, 1993) is designed as an educational tool.  The WEKA workbench is flexible

enough to be used as in a machine learning research role, and has also been used successfully

in undergraduate courses teaching machine learning. It is important to stress that WEKA is not

a multi-paradigm learner; rather than combining machine learning techniques to produce new

hybrid schemes, it concentrates on simplifying access to the schemes, so that their

performance can be evaluated on their own.

WEKA currently includes seven different machine learning schemes, summarized in

Table 2. In a typical session, a user might select a data set, run several different learning

schemes on it, exclude and include different sets of attributes, and make comparisons

between the resulting concepts. Output from each scheme can be viewed in an appropriate

form, for example as text, a tree or a graph. To allow users to concentrate on experimentation

and interpretation of the results, they are protected from the implementation details of the

machine learning algorithms and the input and output formats that the algorithms use.

The WEKA user interface is implemented using TK/TCL (Ousterhout, 1994), providing

portability and rapid prototyping. The main panel of the workbench is shown in Figure 3. On

the left is the file name and other information about the current data set. The next column

shows a list of the attributes in the data set, along with information about the currently-

selected one. The checkboxes indicate whether or not the attribute will be passed to the

learning scheme, while the diamond indicates which attribute to classify on when using a

supervised learning scheme. In the third column, the values that this attribute can take are

listed. If a particular value is selected, rules will be formed to differentiate tuples with this

value from the others; otherwise, classification rules are generated for each value. This degree

of control is useful for weeding out unused data items. The fourth column lists the available

machine learning schemes. Pressing a button marked ‘?’ displays a short description of the
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scheme. In the rightmost column, the user can control the way that the data is viewed and

manipulated.

We now briefly discuss the machine learning schemes that are included in the workbench

(Table 2). The first two are for unsupervised learning, or clustering. These are useful for

exploratory purposes when patterns in the data are being sought but it is not clear in advance

what they will be. For example, we have applied clustering to data on human patients with

diabetes symptoms, and discovered that the cases fall naturally into three classes which turn

out to have clinical implications (Monk et al., 1994). As mentioned earlier, AUTOCLASS

discovers classes in a database using a Bayesian statistical technique, which has several

advantages over other methods (Cheeseman et al., 1988). The number of classes is

determined automatically; examples are assigned with a probability to each class rather than

absolutely to a single class; and the example data can be real or discrete. CLASSWEB is a

reimplementation of an earlier system called COBWEB (Fisher, 1987), and also operates on a

mixture of numeric and non-numeric information, although it assigns each example to one

and only one class. Its evaluation criterion is psychologically rather than statistically

motivated, and its chief advantage over AUTOCLASS is that it consumes far fewer resources—

both memory space and execution time.

The other schemes in the workbench are for supervised learning. C4.5 performs top-

down induction of decision trees from a set of examples which have each been given a

classification (Quinlan, 1992). Typically, a training set will be specified by the user. The root

of the tree specifies an attribute to be selected and tested first, and the subordinate nodes

dictate tests on further attributes. The leaves are marked to show the classification of the

object they represent. An information-theoretic heuristic is used to determine which attribute

should be tested at each node, and the attribute that minimizes the entropy of the decision is

chosen. C4.5 is a well-developed piece of software that derives from the earlier ID3 scheme

(Quinlan, 1986), which itself evolved through several versions. OC1, another scheme in the

workbench, also induces decision trees top-down, but each node classifies examples by

testing linear combinations of features instead of a single feature (Murthy et al., 1993).

Although restricted to numeric data, this method consistently finds much smaller trees than
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comparable methods that use univariate trees.

CNF, DNF, PRISM, and INDUCT all represent the concepts they induce in the form of rules

rather than decision trees. It is easy to convert a decision tree to a set of rules, but more

economical descriptions with smaller numbers of rules and fewer terms in each can usually be

found by seeking rules directly. CNF and DNF are simple algorithms for creating rules that

take the form of conjunctions (the terms in a rule are ANDed together) and disjunctions (terms

ORed together) respectively.  Interesting and surprising results have been reported on

differences between these two seemingly very similar concept representations (Mooney,

1992). PRISM uses a top-down approach, like that of C4.5, for rule rather than decision tree

induction (Cendrowska, 1987); and INDUCT is an improved version that is probabilistically

based and copes with situations that demand non-deterministic rules (Gaines, 1991).

FOIL, for “first-order inductive learner” (Quinlan, 1990), induces logical definitions,

expressed as Horn clauses, from data presented in the form of relations. It begins with a set

of relations, each defined as a set of related values. Given a particular “target” relation, it

attempts to find clauses that define that relation in terms of itself and other relations. This

approach leads to more general, functional definitions that might be applied to new objects.

FOIL, like C4.5, uses a information-theoretic heuristic to guide the search for simple, general

clauses.

The schemes that constitute the current version of the WEKA workbench are not claimed to

be a representative selection of machine learning programs. They are all similarity-based

rather than knowledge-based;. This partly reflects the difficulty of finding a uniform way to

represent background knowledge, but is mainly due to the fact that domain theories are few

and far between in agricultural applications. Not surprisingly, all the schemes included are

noise-tolerant. There are no bottom-up schemes; this is a deficiency that we plan to rectify

shortly. Neither are there any interactive schemes, although the normal mode of operation of

the workbench is fairly interactive, involving as it does manual selection of pertinent attributes

and the synthesis of new ones (see below). We are considering including a fully-interactive

learning scheme; again, the problem is representation of knowledge—and its communication
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in a form that makes sense to a non-specialist in computer science.

Case study: dairy herd culling

New Zealand’s economic base has historically been agricultural, and while this emphasis has

decreased in recent decades, agriculture is still vitally important to the country’s wealth. Dairy

farming is in turn a large part of the agricultural sector, and the Livestock Improvement

Corporation, a subsidiary of the New Zealand Dairy Board, is an organization whose

mandate is to improve the genetics of New Zealand dairy cows.

THE LIVESTOCK DATABASE

The Corporation operates a large relational database system to track genetic history and

production records of 12 million dairy cows and sires, of which 3 million are currently alive.

Production data are recorded for each cow from four to twelve times per year, and additional

data are recorded as events occur. Farmers in turn receive information from the Livestock

Improvement Corporation in the form of reports from which comparisons within the herd can

be made. Two types of information that are produced are the production and breeding indexes

(PI and BI respectively), which indicate the merit of the animal. The former reflects the milk

produced by the animal with respect to measures such as milk fat, protein and volume,

indicating its merit as a production animal. The latter reflects the likely merit of a cow’s

progeny, indicating its worth as a breeding animal. In a well-managed herd, averages of these

indexes will typically increase every year, as superior animals enter the herd and low-index

ones are removed.

One major decision that farmers must make each year is whether to retain a cow in the

herd or remove it, usually to an abattoir. About 20% of the cows in a typical New Zealand

dairy herd are culled each year, usually near the end of the milking season as feed reserves

run short. The cows’ breeding and production indexes influence this decision, particularly

when compared with the other animals in the herd. Other factors which may influence the

decision are:

• age: a cow is nearing the end of its productive life at 8–10 years;
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• health problems;

• history of difficult calving;

• undesirable temperament traits (kicking, jumping fences);

• not being in calf for the following season.

The Livestock Improvement Corporation hoped that the machine learning project

investigation of their data might provide insight into the rules that farmers actually use to

make their culling decisions, enabling the corporation to provide better information to farmers

in the future. They provided data from ten herds, over six years, representing 19 000

records, each containing 705 attributes. These attributes are summarized in Table 3.

INITIAL DATA STRUCTURING

The machine learning tools used for the analysis were primarily C4.5 (Quinlan, 1992) and

FOIL (Quinlan, 1990). The initial raw data set as received from the Livestock Improvement

Corporation was run through C4.5 on the workbench. Classification was done on the fate

code attribute, which can take the values sold, dead, lost and unknown. The resulting tree,

shown in Figure 4, proved disappointing.

At the root of the tree is the transfer out date attribute. This implies that the culling

decision for a particular cow is based mainly on the date on which it is culled, rather than on

any attributes of the cow. Next, the date of birth is used, but as the culling decisions take

place in different years, an absolute date is not particularly meaningful. The cows age would

be useful, but is not explicitly present in the data set. The cause of fate attribute is strongly

associated with the fate code; it contains a coded explanation of the reason for culling. This

attribute is assigned a value after the culling decision is made, so it is not available to the

farmer when making the culling decision. Furthermore, we would like to be able to predict

this attribute—in particular the low production value—rather than include it in the tree as a

decision indicator. The presence of this attribute made the classification accuracy artificially

high, predicting the culling decision correctly 95% of the time on test data. Mating date is

another absolute date attribute, and animal key is simply a 7-digit identifier.

The problems with this decision tree stem from the denormalization of the database used



15

to produce the input, and the representation of particular attributes. The solutions to these

problems are discussed below.

The effects of denormalization

Most machine learning techniques expect as input a set of tuples, analogous to one relation in

a database. Real databases, however, invariably contain more than one relation. The relational

operator join takes several relations and produces a single one from them, but this

denormalizes the database, introducing duplication and dependencies between attributes.

Dependencies in the data are quickly discovered by machine learning techniques, producing

trivial rules that relate two attributes. It is therefore necessary to modify the data or the scheme

to ignore these dependencies before interesting relationships can be discovered. In the project

described here, trivial relationships (such as between the fate code and cause of fate attributes)

are removed after inspecting decision trees by omitting one of the attributes from

consideration.

In this particular data set, a more serious problem stemmed from the joining of data from

several seasons. Each cow has particular attributes that remain constant throughout its

lifetime, for example animal key and date of birth. Other data, such as the number of weeks

of lactation, are recorded on a seasonal basis. In addition to this, monthly tests generate

production data, and movements from herd to herd are recorded at various times as they

occur. This means that data from several different years, months, and transfers were included

in the original record which was nominally for one year; data that should ideally be

considered separately (see Table 3).

Although culling decisions can occur at any point in the lactation season, the basic

decision to retain or remove an animal from the herd may be considered, for the purposes of

this investigation, to be made on an annual basis. Annual records should contain only

information about that year, and perhaps previous years, but not “foresight” information on

subsequent data or events as may have been included through the original extract from the

database. The dataset was renormalized into yearly records, taking care that “foresight”

information was excluded. Where no movement information (which included culling
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information) was recorded for a particular year, a retain decision replaces the missing value.

Monthly information was replaced by a yearly summary. While the data set was not fully

normalized (dependencies between animal key and date of birth still existed, for example), it

was normalized sufficiently for this particular application.

Attribute representation

The absolute dates included in the original data are not particularly useful. Once the database

is normalized into yearly records, these dates can be expressed relative to the year that the

record represents. In general, the accuracy of these dates need only be to the nearest year,

reducing the partitioning process evident in Figure 4.

In a discussion with staff from the Livestock Improvement Corporation, it was suggested

that a culling decision may not be based on a cow’s absolute performance, but on its

performance relative to the rest of the herd. To test this hypothesis, attributes were added to

the database representing the difference in production from the average production over the

cow’s herd. In order to prevent overly biasing the learning process, all the original attributes

were retained in the data set, and derived attributes added to the records were not

distinguished in any way. It was left to the machine learning schemes to decide if they were

more helpful for classification than the original attributes. Throughout this process, meetings

were held with staff at the Livestock Improvement Corporation. Discussions would often

result in the proposal of more derived attributes, and the clarification of the meaning of

particular attributes. Staff were also able to evaluate the plausibility of rules, which was

helpful in the early stages when recreating existing knowledge was a useful measure of the

correctness of our approach.

An obvious step would be to automate the production of derived attributes, to speed up

preprocessing and avoid human bias. However, the space of candidates is extremely large,

given the number of operations that can be performed on pairs of attributes. Typing the

attributes, and defining the operations which are meaningful on each type, would reduce the

space of possible derived attributes. For example, if the absolute dates in the original data are

defined as dates, and subtraction defined to be the only useful operator on dates, then the



17

number of derived attributes would be considerably reduced, and useful attributes such as age

would still be produced. This is an interesting and challenging problem for investigation in

the future.

SUBSEQUENT C4.5 RUNS WITH MODIFIED DATA

After normalizing the data and adding derived attributes, C4.5 produced the tree in Figure 5.

Here, the fate code, cause of fate and transfer out date attributes have been transformed into a

status code which can take the values culled or retained. For a particular year, if a cow has

already been culled in a past season, or if it has not yet been born, the record is removed. If

the cow is alive in the given year, and is not transferred in that year, then it is marked as

retained. If it is transferred in that year, then it is marked culled. If, however, it died of

disease or some other factor outside the farmer’s control, the record is removed. After all, the

aim of this exercise is to discover the farmer’s culling rules rather than the incidence of

disease and injury.

The tree in Figure 5 is much more compact than the full tree shown in Figure 4. It was

produced with 30% of the instances, and correctly classifies 95% of the remaining instances.

The unconditional retention of cows two years or younger is due to the fact that they have not

begun lactation, and no measurements of their productive potential have yet been made. The

next decision is based on the cow’s worth as a breeding animal, which is calculated from the

earnings of the cow’s offspring. The volume of milk that the cow produces is used for the

final decision. The decisions in this tree are plausible from a farming perspective, and the

compactness and correctness of the tree indicate that it is a good explanation of the culling

decision. It is interesting to note that the tree consists entirely of derived attributes, further

emphasizing the importance of the preprocessing step.

Conclusions and future directions

From the work completed on the Livestock Improvement Corporation data it was possible

to isolate three steps that are necessary for the extraction of rules from a database.

The first step is extracting the data from its original form (in this case relational) to a two-
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dimensional flat-file form suitable for processing by the machine learning programs in the

workbench. This step is basically mechanical, and in principle could be achieved by simple

join operations on the database tables. In practice, however, the quality of the data—in

particular the large number of missing values—makes this non-trivial. This step also involved

the creation of the transformed attributes (e.g. age instead of birth date) and combined

attributes (e.g. not left herd and positive milk test = retained in herd).

The second step involves gaining insight about the problem domain from the extracted

and transformed dataset. It was helpful during this step to try initial runs of the dataset

through the machine learning tools. Some of these runs identified attributes, such as cow

identification number, which clearly have nothing to do with the culling decision. Through

questions directed at the domain experts, a greater understanding of the meaning of these

attributes was obtained, resulting in a better selection of the attributes to be used.

The third step was the use of machine learning tools to generate rules. Once a reasonably

well-structured dataset had been prepared in the standard file format, it was an easy matter to

process the dataset through the different algorithms available in the WEKA workbench, and

compare the resulting rule sets. The rules which resulted were referred to domain experts, and

the feedback used to iterate through all three steps to obtain new results.

In each of these three steps, domain expertise was essential to complement the data

transformation and machine learning processing skills required to prepare and process the

data sets.

Is there a likely future scenario of an automatic and unattended machine learning algorithm

being turned loose for background overnight processing against large relational databases?

We think the potential for this kind of intelligent agent may be there, but that there is much

that has to be done in the interim to create new algorithms and processing techniques that can

discover meaning in large and complex relational data structures, rather than the small and

simple two-dimensional attribute tables that have been used in the tests of machine learning

that are reported in the literature.

In the shorter term, there may be a high payback in making machine learning techniques
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easily usable by domain experts, who have intimate understanding of the nature of their data

and its relationships. Current developments include an attribute editor to simplify the process

of deriving new attributes from the data. This interactive tool will provide functions to

compute new attributes based on combinations of attributes, as well as inter-record

calculations such as rates of change in time-series data.

Overall, WEKA is fulfilling its role of bringing the potential of machine learning from the

computer science laboratory into the hands of experts in diverse domains.
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Figure 1 Attribute domain (adapted from Haussler, 1987)
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Environmental descriptors Condition of leaves Condition of stem
  time of occurrence July   leaf spots   stem lodging
  precipitation above normal   leaf spot colour   stem cankers
  temperature normal   colour of spot on other side   canker lesion colour
  cropping history 4 years   yellow leaf spot halos   reddish canker margin
  damaged area whole fields   leaf spot margins   fruiting bodies on stem
  severity mild   raised leaf spots   external decay of stem
  plant height normal   leaf spot growth   mycelium on stem

  leaf spot size   external discolouration
Condition of seed normal   shot-holing   location of discolouration
  mould growth absent   shredding   internal discolouration
  discolouration absent   leaf malformation   sclerotia
  discolouration colour —   premature defoliation
  size normal   leaf mildew growth Condition of roots
  shriveling absent   leaf discolouration   root rot

  position of affected leaves   root galls or cysts
Condition of fruit pods normal   condition of lower leaves   root sclerotia
  fruit pods normal   leaf withering and wilting
  fruit spots absent

(a) Diagnosis Brown spot

(b) Rhizoctonia root rot IF [leaves=normal AND stem=abnormal AND
 stem-cankers=below-soil-line AND canker-lesion-colour=brown]

OR [leaf-malformation=absent AND stem=abnormal AND
 stem-cankers=below-soil-line AND canker-lesion-colour=brown]

Figure 2 Example record and rule in the soybean disease classification problem
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Figure 3 The WEKA user interface
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Transfer out date
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Other
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Sold Animal Key
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Figure 4: Decision tree induced from raw herd data



27

<= -10.8

Age

<= 2 > 2

Retained Payment BI
relative to herd
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RetainedMilk Volume PI
relative to herd

> -33.93

Retained

<= -33.93
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Figure 5. Decision tree from processed data set
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1 Minimal rules A complete, correct, and minimal set of decision rules

2 Adequate rules A complete and correct set of rules that nevertheless contains
redundant rules and references to irrelevant attributes

3 Critical cases A critical set of cases described in terms of a minimal set of
relevant attributes with correct decisions

4 Source of cases A source of cases that contains such critical examples described in
terms of a minimal set of relevant attributes with correct decisions

5 Irrelevant attributes As for 4 but with cases described in terms of attributes which
include ones that are irrelevant to the decision

6 Incorrect decisions As for 4 but with only a greater-than-chance probability of correct
decisions

7 Irrelevant attributes
and incorrect decisions

As for 5 but with only a greater-than-chance probability of correct
decisions

Table 1 Levels of quality of input (Gaines, 1991)
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Scheme Learning approach Reference

Unsupervised AUTOCLASS Bayesian clustering Cheeseman et al. (1988)
CLASSWEB Incremental conceptual clustering Fisher et al. (1987), Fisher (1989)

Gennari (1989)

Supervised C4.5 Decision tree induction Quinlan (1992)

OC1 Oblique decision tree induction for
numeric data

Murthy et al. (1993)

CNF & DNF Conjunctive and disjunctive normal
form decision trees respectively

Mooney (1992)

PRISM DNF rule generator Cendrowska (1987)
INDUCT Improved PRISM Gaines (1991)
FOIL First-order inductive learner Quinlan (1990), Quinlan (1991),

Quinlan et al. (1993), Cameron-
Jones et al. (1993)

Table 2 Machine learning schemes currently included in the WEKA workbench
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Relation Number of
attributes

Recording basis

Animal Birth Identification
Animal Sire
Animal
Test Number Identification
Animal Location
Female Parturition
New Born Animal
Female Reproductive Status
Female mating
Animal Lactation
Test Day Production Detail
Non production trait survey
Animal Cross Breed
Animal Lactation—Dam
Female Parturition—Dam
New Born Animal—Dam
Animal—Dam—Sire

3
1
6
1

3 × 6
5

3 × 4
3

10 × 3
60

12 × 43
30

3 × 2
12
5

3 × 4
2

Once
Once
Once
Monthly
When moved
When calving
When calving
Once
When mated
Yearly
Monthly
Once
Once
Once
Once
When dam calves
Once

Table 3: Dairy herd database relations


