
Ownership Types for Flexible Alias Protection

David G. Clarke, John M. Potter, James Noble

Microsoft Research Institute, Macquarie University, Sydney, Australia
{clad,potter,kjx}@mri.mq.edu.au

Abstract

Object-oriented programming languages allow inter-object
aliasing. Although necessary to construct linked data struc-
tures and networks of interacting objects, aliasing is prob-
lematic in that an aggregate object’s state can change via an
alias to one of its components, without the aggregate being
aware of any aliasing.

Ownership types form a static type system that indicates
object ownership. This provides a flexible mechanism to
limit the visibility of object references and restrict access
paths to objects, thus controlling a system’s dynamic topol-
ogy. The type system is shown to be sound, and the specific
aliasing properties that a system’s object graph satisfies are
formulated and proven invariant for well-typed programs.

Keywords

Alias protection, sharing, containment, ownership, represen-
tation exposure, programming language design

1 Introduction

Sharing objects through aliasing is both a powerful feature of
object-oriented programming and a weakness [24]. Changes
to an object potentially affect all objects that refer to it,
even though the object being changed may be unaware of
the other objects. This complicates reasoning about object-
oriented programs; specifically, there is a lack of modularity
in reasoning due to the inability to iocalise object references.
Programs become difficult to understand because knowledge
of complete program behavior is required, ultimately lead-
ing to programs which are difficult to maintain. This paper
takes the first steps towards imposing discipline in control-
ling aliasing, something absent in current programming lan-
guages.

Our earlier work with dynamic change detection schemes
for aggregate objects [37] developed into the notion of per-
ible alias protection. That work proposed that aggregate
objects could be defined from components where potential
aliasing amongst the components is statically determined us-
ing aliasing modes. In [38], we provided the rationale for our

Permlsseon to make digItal or hard copes of all or part of this work for
personal or classroom use IS granted wthout tee provided that
COPES are not made or dtstrlbuted to, pro,,, or commerc,al advan-
tage and that copies bear th,s notIce and the full cltatoon on the first page
TO copy otherwise. to republish. to post on servers or to
redlstnbute to Ints, requires pr,or specific perm,ss!on and/or a fee
OOPSLA ‘98 lo/98 Vancouver, 8.C
E’ 1998 ACM l-581 13.005.819810010.. $5 00

model of flexible alias protection, supported by illustrative
examples, and suggested incorporating aliasing modes into
programming languages. For flexible alias protection three
key properties are required: no representation exposure; no
role confusion between entities with different modes; and
limited dependence on the mutable state of other objects
(not addressed in this paper).

In the current paper, we introduce ownership types:
static types annotated with context declarations that rep-
resent object ownership. For an object-based language, we
construct a type system based on ownership types and es-
tablish its soundness via a subject reduction theorem. We
refine the notion of representation exposure into a restricted
visibility property which limits the extent of object visibil-
ity, and a representation containment property which pro-
vides a notion of containment based on articulation points
[2] (also called dominators [3]). Absence of role confusion
is phrased in terms of role separation. These properties, in
particular the representation containment property, repre-
sent structural invariants on the object graphs of well-typed
programs which indicate the kinds of aliasing that are not
possible.

The paper is organised as follows. Section 2 describes
ownership types, object contexts and their intended seman-
tics in terms of object ownership, and considers some il-
lustrative examples in a Java-like language extended with
ownership types. Section 3 introduces a core language and
formalises a static semantics for it in terms of ownership
types. Section 4 describes an operational semantics and, by
providing a novel interpretation of ownership types, proves
a subject reduction property demonstrating soundness for
our ownership type system. Section 5 formalises and proves
representation containment and other properties. Section 6
discusses: the model of containment suggested by the artic-
ulation point formulation; the correspondence between the
work presented here and the flexible alias protection model
[38]; and any limitations. Section 7 considers related work,
including other proposals for providing alias protection. Sec-
tion 8 concludes with the current status of our theoretical
work and of the prototype implementation based on Pizza,
together with future directions.

2 Ownership Types and Object Contexts

Typically in object systems, objects live in a global address
space called the heap, or object store. There are no strict
constraints on which parts of the object store an object can
access, because there are no restrictions on the way ob-

48

ject references are passed around. This has repercussions
when preventing representation exposure for aggregate ob-
jects. The components which constitute an aggregate object
are considered to be contained within that aggregate, and
part of its representation. But, because the object store is
global, there is, in general, no way to prevent other objects
from accessing that representation. Enforcing the notion of
containment with the standard reference semantics is im-
possible.

The key to solving this problem is to introduce the no-
tion of object contexts. Each object owns a context, and is
owned by the context that it resides within. Object contexts
provide a nested partitioning of the object store, reflecting
nesting of objects, that allows us to speak of an object’s
interior and exterior.

We annotate types with context declarations to yield
ownership types. Two variables having ownership types with
different declared contexts cannot refer to the same part of
the store, thus cannot be aliases for the same object. Our
ownership type system establishes a sensible notion of an
object’s interior.

We now informally develop these ideas.
A program begins execution in a root context. In a pro-

gram text this is denoted by the context norep (nobody’s
representation). Since the root context is global, its objects
are considered to be owned by the system, and are poten-
tially accessible to all objects in the system. This provides
a mechanism for sharing value objects [31, 251 and objects
which provide system-wide services. The context norep also
represents the standard constraints on references in object-
oriented programming languages; that is, none.

When a new object is created, it is alloted a new con-
text which is considered to be inside that object, and whose
contents are deemed to be owned by that object. In the
program text, this partition is denoted by rep, the partition
which holds the representation. We impose a restriction on
the use of rep, which is approximately that the only objects
that can access the rep partition are the object that owns it
and other objects inside that partition (or inside partitions
of objects inside that partition, and so on), but only if they
have been given explicit access to the rep partition. In other
words, a rep partition is not accessible from outside of its
owner. This is an informal statement of what we mean by
representation containment.

Note that rep is object dependent; it denotes a differ-
ent context for each object, just as this is different for each
object.

Within the definition of an object, that is, within its
class, the context parameter owner denotes the object con-
text that owns that object (the one referred to by this). The
owner of a new object is not necessarily the owner or the
rep context of the object creating it. It follows that owning
an object and having a reference to it are not necessarily
the same. The context parameter owner was not present in
[38]. The utility of this extension can be seen in the exam-
ples. Further, it is essential in assigning an ownership type
to this.

We have other context parameters which allow object
context information to be passed around. But we do not
treat object contexts as first-class values as this would make
it impossible to construct a static type system. Instead, we
treat context parameters analogously to the type parameters
of a generic class in Eiffel [32] or Pizza [39], or a template
in C++ [15] (except that we do not macro-expand to per-
form type-checking as in C++). Context parameters allow

ownership information to be passed from one context into a
newly created object. This allows us, for example, to create
a container whose links are its hidden representation, but
whose contents are owned by an object outside of the con-
tainer [38]. This is not possible with either Balloons [4] or
Islands [23].

These object context parameters (including owner) give
our system its flexibility.

An ownership type consists of a class name, a context
representing the owner, and bindings for the context param-
eters. The bindings to the owner and the context parameters
must use the visible contexts within the class where a type is
declared, that is rep, norep, owner, plus the context parame-
ters from the class header. Examples of ownership types are
given in the following sections.

The discussion here suggests using explicit first-class
stores such as those of [35] or the local stores of [46]. But
the partitioning of stores is merely a metaphor to enhance
understanding. Even the notion of ownership is static; the
object stores denoted by object contexts within an object
are fixed for the life of that object. There are no operations
on object contexts, and their value does not affect computa-
tion. Our contexts are statically enforceable, and although
they have a run-time interpretation, they do not require run-
time support. Thus object contexts and ownership types are
static conceptual entities only.

2.1 The object contexts rep and norep

The example in Figure 1 illustrates the object contexts rep
and norep.

By executing Main.main() until the end of the line
marked (*I, we get the following object graph:

4 driver]

1 engine 1

In this diagram, the solid arrows are references between ob-
jects, and the dotted arrows refer to an object’s owner. The
arrow marked with an x is a reference not allowed in our
system.

An Engine is part of a Car and there should be no exter-
nal alias to it. Otherwise an engine could be started violat-
ing the implied precondition of method go0, namely, that
a car must have a driver before it can start its engine.

By giving the field engine the ownership type rep
Engine, we are saying that the engine is part of the car’s
representation and thus it belongs to the context owned by
the given instance of Car. Furthermore the engine is not
accessible outside of this instance.

To outlaw the x-marked references, we characterise the
representation containment property as follows: all paths
from the root of the system to an object must pass through
that object’s owner.

Further points to note about this example are as follows.
By typing the field driver as norep Driver, we consider

the car’s driver to be owned by the system.
The engine cannot be accessed using the field name, or

be returned from an external method call. The first could

49

2.2 Context Parameters

The next example illustrates context parameters, bindings,
and some of the restrictions they impose (Figure 2).

class Pair<m,n> {
m X fst;
n Y snd;

class Engine {
void start0 { . . . }
void stop0 { . . . }

I

class Driver { . . . }

class Car {
rep Engine engine; // representation
norep Driver driver; // not representation

Car0 { // constructor
// new engine as part of representation
engine = new rep Engined;
driver = null;

I
rep Engine getEngine { return engine;)

void setEngine(rep Engine e) { engine = e; }

void go0 {
if (driver != null) engine.startO;

I
I

class Main {
void main0

norep Driver bob = new norep Driver0 ;
norep Car car = new norep Car 0 ;

car.driver = bob; // (*)
car.goO;
car.engine.stop(); // fails
car.getEngine() .stop(); // fails

// but not in Java
rep Engine e = new rep EngineO;
car.setEngine(e); // fails

// different rep
I

I

I
class Intermediate {

rep Pair<rep, norep> pairl;
norep Pair<rep. norep> pair2;

rep Pair<rep, norep> a0 { return pairl; }
norep Pair<rep, norep> b0 { return pair2; }
rep X x0 { return pairi.fst; }
norep Y y0 { return pairl.snd; }

void updateX() {
pair1 .f st = new rep X0;

I
1

class Main {
norep Intermediate safe;

void main0 {
rep Pair<rep, norep> a;
norep Pair<rep, norep> b;
rep X x;
norep Y y ;

a = safe.a(); // wrong
b = safe.b(); // wrong
x = safe.x(); // wrong
y = safe.yO; // valid

safe.updateX() ; // valid
I

I

Figure 2: Context Parameters Example
Figure 1: Car Example

be prevented in Java by making the engine private. But,
Java allows the contents of a private field to be returned by a
method. This is not allowed for objects with rep-annotated
type. For this reason we say that our system provides ob-
ject protection, which is stronger than the name protection
offered by conventional programming languages.

The call car.setEngine(e) fails because the rep of the
caller and the callee refer to different contexts, namely the
root and the car context, respectively, and are therefore
distinct. The two types are incompatible.

The interpretation of rep also implies that the type rep
Engine will be different in different instances of the class
Car. This implies that different cars must have different
engines.

The class Pair has two context parameters m and n. By
giving fst type III X and snd type n Y, we are specifying
that the values stored in f st and snd come from potentially
different contexts. The actual context depends upon the
bindings to the context parameters m and n when class Pair
is used.

Class Intermediate uses Pair a number of times. The
type of the field pair1 is rep Pair<rep,norep> and can
be read as follows: the field pair1 is owned by the current
instance; parameter m of Pair is bound to rep, meaning that
contents of the field pairl. f st are owned by the current
instance; and parameter n is bound to norep, meaning that
contents of the field pair1 . snd are owned by the system.

The following diagram illustrates a typical object graph
which this code could represent:

50

Within main0 the first three calls to safe are invalid be-
cause they create alternative access paths to an object’s rep-
resentation. In particular, b() does this indirectly by creat-
ing a path to f st2 through pair2, circumventing the owner
safe. Consequently, our type rules must prevent the exter-
nal visibility of fields whose types use rep in any parameter
position.

The call to y0 is valid because it does not create ille-
gal access paths, since the owner of snd2 is the root of the
system.

From a typing point of view, the invalidity of calls occurs
because a type containing rep in one class is different from
a syntactically identical type containing rep in a different
class.

The call to updateX() is valid even though it involves a
rep, because the rep in the field pairl. f St’s type is the rep
from Intermediate via a binding to Pair’s context param-
eter m. This is as one would expect.

We require textually distinct types appearing in the same
class to be distinct, regardless of their bindings. This means,
for example, if the field snd had type n X it would be incom-
patible with values of type m X. This keeps type-checking
modular, and also provides a strong notion of role separa-
tion. The type system guarantees that the two sets of val-
ues with different ownership types will be kept separate. In
a sense, inside such a class, different virtual partitions are
created for each context parameter, even though they may
ultimately be unified.

2.3 Owner context

Figure 3 illustrates code for an unbounded stack built from
a singly-linked list of Link nodes. The class XStack provides
the handle to the links.

A Link node contains a data element with context pa-
rameter n. XStack has a context parameter m which is bound
to n of Link. This means that the contents of the appropri-
ate data elements will be owned by the context correspond-
ing to the binding of the m parameter of XStack.

An example XStack is illustrated in the following dia-
gram:

4

‘.., L.,,

/link1 1
next

--l’link2 I”ext link3 1

class Link<n> {
owner Link<n> next;
n X data;

Link(n X inData) {
next = null;
data = inData;

class XStack<m> {
rep Link<m> top;

XStackO { top - null;)

void push(m X data) {
rep LinkCm> newTop = nev rep Link<m>(data) ;
neuTop.next = top;
top = newTop;

1

m X pop0 {
rep Link(m) oldTop = top;
rep Link<ti top = oldTop.next;
return top.data;

1

boolean isEmpty { return top == null; }
1

Figure 3: Owner Context Example

Without more context we do not know the owners of the
data elements (given by the unknown binding to XStack’s
context parameter m) or the owner of the instance xstack.

This illustrates the reusability of a class which has con-
text parameters, analogous to generic classes in an object
oriented-language with parametric polymorphism.

The main interest in this example is the effect owner has
on the expressiveness of representation containment. To wit,
all the links of the XStack are owned by the xstack object
and are not visible outside of it. Within XStack, the links
can be freely manipulated. This provides a flexible notion
of containment.

To see how this works, observe that the top link is rep,
so it is owned by the XStack instance, xstack. Inside the
instance of Link stored in top, owner is bound to the rep
context of xstack. This can be seen from the diagram.
Now the field top.next has type owner Link<+. Thus it
is also owned by xstack. Using the same argument, we can
see that xstack owns all the links, as shown. Similarly, the
data in all the links belongs to the same partition.

It is worth noting that the links of this xstack are in-
compatible with the links of a different instance of XStack.
The links of a data structure built in this manner are owned
exclusively by the handle object (xstack). Unlimited self-
referential structures can be built using this mechanism.

Another point worth reiterating is that the owner object
is not the object that creates another object, nor does the
owner have to refer to the objects it owns. The owner merely

51

forms a boundary between the inside and the outside of an
object.

3 Formalisation of an Ownership Type System

The technical part of the paper spans this and the following
two sections. We present an object-based language which
resembles the core of Java without inheritance, extended
with object contexts.

Ownership types are then defined, followed by the usual
machinery required to build a type system. The key element
in the type system is the static visibility constraint present
in the type rules for field access and update, and for method
call. As these expressions represent object access, we must
invalidate those which would give access to another object’s
representation. Our type system checks each class against
the types purported in the class declaration [16]. This keeps
the type system simple and modular.

Next we present the operational semantics for our lan-
guage. The reduction rules are standard, demonstrating
that we do not require ownership information at run-time.
The additional type rules which determine valid stacks and
stores are a little different. These type rules are based on
ownership structures which are novel; they provide a run-
time interpretation of ownership types. Ownership struc-
tures have the same form as ownership types, but the con-
texts are replaced by object identifiers for the owner of ob-
jects of the given type and the owners of the objects it uses.
Using ownership structures, we formulate and prove subject
reduction.

Ownership structures also allow us to formulate the de-
sired structural properties of object graphs that our type
system enforces, namely, role separation, restricted visibil-
ity, and representation containment. After proving these
properties, we conclude with a discussion of their impact on
aliasing.

3.1 The Core Language

The core language is a simple object-based language with
object contexts. This language and the subsequent type
rules are based on [16], with our extensions. Unfortunately,
our treatment diverges from the concise operational seman-
tics of [16] due to the object dependence of our ownership
types.

The core language syntax is:

P =
defn =
field =
meth =

e =

arg =
local =

GY =
C =

il; 1

fd =
md =

t =

defn’ locar e
class c<m*> { field* meth’ }
t fd
t md (arg’) { locar e }
new t 1 null 1 e;e 1 x 1 x=e
1 e.fd 1 e.fd = e I e.md(e’)
tx
tY
variable name or this
a class name
an object context parameter
m I rep I norep 1 0
a field name
a method name
c<MIM’>

We represent a program, P, as a collection of classes fol-
lowed by an expression to evaluate, together with its local

variables.
Classes take a number of context parameters, and con-

sist of a collection of fields and methods. Simple control
constructs can be added without affecting the type rules.

Expressions, e, are, in order, object creation, null, se-
quencing, local variable access, local variable update, field
access, field update and method,call. We treat method argu-
ments and this as local variables, with the obvious restriction
that this cannot be updated.

Types, t, are written c<M]M*>, where c is the under-
lying class. The parameter preceding the] is the owner,
and the remaining parameters are the bindings to the con-
text parameters for class c. This notation differs slightly
from the examples: the type previously written rep c<m,n>
is written c<replm,n>. Furthermore, we use 0 as a short-
hand to denote owner, and treat it as we treat other context
parameters.

The expression new c<MJ& can be understood as fol-
lows: firstly it creates a new object from class c in context
M; it then passes M and ii? into the new object, so that the
context information is available within the new object. For
simplicity there are no explicit constructors.

Although Flexible Alias Protection suggested piggyback-
ing context parameters onto type parameters in an object-
oriented language with parametric polymorphism [38], to
understand the essence of ownership types, we do not in-
clude parametric polymorphism in the core language.

3.2 Ownership Types

Before defining ownership types, we introduce ownership
schemes as a notational convenience. An ownership scheme
is a template from which we can create ownership types and,
tater, ownership structures. Ownership schemes are denoted
t E c<O]rIr>, where ti are the context parameters taken from
the declaration of c and 0 is the implicit owner context.

We create an ownership type from an ownership scheme
by substituting for the parameters 0 and rst. Ownership
types appear inside class bodies as the declared types of
fields, of method arguments and return values, and of local
variables. The substituted values are taken from rep, norep,
0, and the set of context parameters from the declaration
of the class in which the ownership type appears.

For example, assume class d is declared as class
d<pl,p2>. Then it has ownership scheme d<O(pi,p2>. Let
c = {O,Pl,P2}. Then t = c<p]@>, where {p} U fi s
C U {rep, norep}, is a valid ownership type appearing in the
body of class d. This is captured by the following definition,
where C will be known from the context.

Definition 1 (Ownership Type) Let C be a set of con-
text parameters and t^ = c-@lfi> is an ownership scheme.
An ownership type is given by subs$tuting elements of
C U {rep, norep} for the parameters oft.

3.3 Static Visibility Constraint

The key to the type system is the static visibility constraint.
It restricts the access to fields and methods which are de-
clared with rep in their type. Such fields and methods con-
tain or access the representation of a particular object. We
want to restrict access to those fields and methods to the
object that corresponds to the owner of the representation.
In a given class, the only expression statically guaranteed

52

to denote the object which owns the rep is this. Other ex-
pressions denote-potentially different objects, so the rep in
the type of their fields and methods may be different. Based
on these observations, we formulate our static visibility con-
straint as follows:

3.4.2 Notation

To simplify the presentation of the type system, we compress
each class c in program P into a field and method dictionary
as follows:

Definition 2 (Static Visibility) FOT an expression e and
an ownership type t, we say that t is visible to e if the fol-
lowing condition is satisfied:

SV(e, t) $f e # this + rep 6 contexts(t).

SV(e, t) is called the static visibility constraint, where the
function contexts(-) extracts the arguments from an owner-
ship scheme, or a structure built from an ownership scheme
using a substitution. It is defined as follows:

contexts(c0+~) dzf {m} U 7%

Because we restrict access to “this” which can denote
only one object in any context, we say that we provide
object-based protection.

Note that the static visibility check is performed on the
‘declared type. This allows one to bind rep to the context
parameters of internal containers, preventing those contain-
ers from being accessible outside of the current object, but
allowing representation to be stored within them.

3.4 The Type System

Before the rules of the type system are presented, we define
substitution and related functions which appear explicitly
in our type system.

3.4.1 Substitution

A substitution is a function from context parameters to some
set T. Substitutions are applied to both ownership schemes
and ownership types. The set T will depend on the context
in which the substitutions are used.

If c<O1r?z> is an ownership scheme, then a substitution CI
is a map from (0) U 7iz to T. Substitutions are be applied
as follows:

u(d<nJnl, . . , n,>) dGf d<u(n)lu(nl), . . . , o(n,)>

u(n) “izf p, ifn+ipEu

u(n) dzf n, if n $Z dam(u)

For example, if u = (0 I-+ p, ml I+ pl , . . , m, I-+ pr} is
a substitution based on ownership scheme c<Olfi>, then

u(d<Olml, . . , m,>) = dcplpl, . ,p,>
u(d<maIrep, 0, norep>) = d<pslrep,p, norep>.

Allied with substitutions is the function, $.J, which is a
kind of inverse to substitution. II, returns the substitution
which was performed on an ownership scheme to generate
some other structure, and is defined as:

+(c<nlnl,..., nr>)d~f{O+in,ml++nl ,..., m,++nn,}
where t^ = c<@~+z> is the ownership scheme for class c.
By definition, if u = 4(t) and E is the ownership scheme
underlying t, then u(i) = t.

A" ef {fd ++ t}’
a map from field names to their types

MC ef {md ti ((i 4 t,,,), 2, e, {y ++ t}‘)}’
a map from method names to a 4-tuple consisting
of the method’s type (with argument types t and
result type t,,,), its argument variable names, its
body, and a mapping from local variables to their
types.

These dictionaries are easily determined from a program.

Since the underlying class of an ownership scheme is deter-
mined by inspection, we allow the above dictionaries to be
associated with ownership schemes, types and structures as
well.

3.4.3 The Type System

The type system is defined with respect to a program, P,
and two environments: an object context environment and a
type environment. An object context environment, denoted
C, is a collection of context parameters, defined as follows:

C::=cIC,m

where m are context parameters and E is the empty envi-
ronment. Generally these are the context parameters that
appear in a class declaration along with 0.

A type environment, denoted P, is a mapping from vari-
ables to ownership types, defined as follows:

In our system, the domain of I? will always include this and
appropriate arguments and local variables for checking a
method definition. The notation I’{Z : z!} represents ex-
tension of a type environment with multiple variables and
their types.

The type system is given in Figure 4, and is based on the
following judgements.

l-, P : t P is well-formed with ownership type t
P kd defn defn is well-formed

P, C, PI-,,, meth meth is well-formed
P,C,rl-,e:t e is well-formed with ownership type t

P, c t-t t t is well-formed

3.4.4 Explanation

The rule (Program) states that a program is valid if each of
its definitions are valid, and the expression to be evaluated
is well-typed given the types of its local variables. The local
variables’ types do not contain any context parameters as
the expression is not evaluated within the body of some
class.

Class validity is checked by the rule (Class). It assigns
this the type c<@)r?z>. Methods are typed in an environment
with this given that type, and C includes 0 and the context
parameters from the class header. We also require that the
field types are well-formed using the same C.

53

(Program)
P kd defni for j E [l, n] P, 8 l-t t{ for I E [l, m] P, 8, {$: I?} l--e e : t

I-. P : t
where P = defnl ,..., defn, t; y; ,..., t’& y,,, e

(ch.3s)
P, C kt tj for j E [l, n] P, C, {this : c<Q~TTI>} I-, methk for k E [l,p]

P t‘d class c<ti>{tl fd, . . . t, fd,, methl . . . met&}
where C = (0) U 7fi

(‘h-4
M, A? E C U {rep, norep}

P, c t--t c<Mpf>

(Method)

P,Cht P,Ck-ttjjE[l,n] P,Cl-tt;forIE[l,m] P,C,l?{Z:i,jj:i+}i--.e:t
P,C,rt-,tmdt121 ,..., tn5,){G Yl t

I
,‘a’> m ym e

(New) (Null) (Sequence)
P, c t-t t P,C t-t t P,C,rl--,el:tl P,C,rt-eez:tz

P,C,rl--,newt:t P, c, r I--e null : t P, C, r I-, el; e2 : t2

(Local Access) (Local Update)
x E dom(l?) P, C, r l-c e : I'(X) x E dom(I’)/{this}

P,z,r t-e z: r(x) P,C,rl--,x=e:r(c)

(Field Access)
P, C, I? l-c e : t u = $(t) d”(fd) = t’ SV(e, t’)

P, E, r’ i-e e.fd : u(t’)

(Field Update)
P, C, I’ I-, e : t 0 = $(t) dt(fd) = t’ P, C, I’ I-* e’ : a(t’) SV(e, t’)

P, C, r t--e e.fd = e’ : u(t’)

(Method Call)
P,C,r!--,e:t u = w
Mt(md) = ((f + t’), -, -, -)

P, C, r I-, ei : U(ti) i E [l, n] SV(e, t’) A r\iE,l n, SV(e, ti)
P, YE, r l--e e.md(el,. . . , e,) : a(t’)

Figure 4: The Type System

54

(Type) uses ownership schemes extracted from the pro-
gram P to build valid types by performing a substitution
where the target set consists of object contexts rep and
norep, plus the context parameters in scope (C).

(Method) checks the body of the method in the type
environment resulting from adding the argument and local
variable types to F. The rule also requires that the type of
each argument and local variable is well-formed with respect
to c.

(New) creates objects at an ownership type. Similarly,
we have a null at each type. This is a restriction because
a new object (and null) should be considered free [38], and
be subsequently coerced to another type. But the notion of
free requires a linearity restriction, that is, the new object
cannot be shared until we know its correct ownership type,
and its integration is a subject for future research. Note
that free is not the same as unique [23], because free only
applies to newly created objects (and null).

(Sequence) enforces that the type of two expressions in
sequence is the type of the latter expression. Local vari-
ables are given the type declared in the type environment
r (Local Access). Rule (Local Update) enforces that this is
not updatable, and requires the expression to have the same
type as the local variable.

In the rules for (Field Access), (Field Update), and
(Method Call), we initially extract from the type of the left
hand side expression a substitution, u. The type of the
field/method is extracted from the appropriate dictionary.
This type is the type declared in the program text. By ap-
plying the substitution to that type, we check the remainder
of the expression and give the type of the entire expression.
The step would be implicit in a standard formulation of a
type system. But, to properly check static visibility and
separate reps from different contexts, we need the declared
type to perform the SV() check.

Expressions of syntactically different type appearing in
the same context are incompatible. This is because there is
no subtyping between object contexts, nor at the type level.
Because type coercions lose information or require recovery
of unknown information, inheritance and subtyping are not
yet supported. These and other extensions are the focus of
active research.

4 Operational Semantics

This section presents a complete operational model for the
core language in terms of reduction rules. These rules de-
scribe expression evaluation with respect to a state consist-
ing of a stack and a store. The only surprising feature of
the operational semantics is that the object contexts play no
role, demonstrating that our type system imposes no run-
time overhead.

To demonstrate soundness of our type system, we prove
subject reduction. To do so we provide type rules specifing
valid execution environments, in a manner similar to [l]. We
also introduce a run-time interpretation of ownership types.
The context-dependent nature of the type system is clearly
apparent from this interpretation function.

A few technical lemmas help us to prove subject reduc-
tion. The subject reduction result takes the form of a gener-
alised subject reduction theorem, which applies to open ex-
pressions with a given state, rather than closed expressions.
From this we get the ordinary subject reduction theorem by
specifying an initial execution environment in which to ex-

ecute a program, P. This environment combined with the
generalised subject reduction theorem allows us to formulate
structural properties which are proven in the next section.

4.1 Stacks and Stores

The evaluation environment consists of a stack and a store.
These are defined as follows:

Definition 3 (The Store) The store, S, is a map from
object identifiers, o, to objects, 7. An object is a map from
field names to v&es (v ::= 0 1 null).

l S dgf {o I+ T}’ where .F dgf {fd ct wu)*, dam(r) =
dom(d’), and c is the class ofo.

We have the following operations on stores:

S U {o I+ .F} is the store obtained by adding to S a new
object o and its field map, where o e dam(S).

S[o ++ fi is the store obtained from S by updating ob-
ject o with field map F, where o E dam(S).

3Lfd c-) v] is the result of updating field fd of 7 with
value 2).

Method arguments and local variables are stored on a
stack, along with the object whose method is invoked (as
variable this). Because stack contents depend on the invoked
object, stacks are grouped into stack frames, built from left
to right, so that the stack’s top is the rightmost stack frame.

Definition 4 (The Stack) A stack frame, 6 dgf {z I-) v}*
is a map from variables to values. It has the following oper-
ations:

l 6(x) dAf v, where z H w E 6 (F’rame Lookup)

l 6[x I+ u] is the stack frame formed by replacing the
value that x maps to by v (Frame Update)

A stack, A d~f&e.-e6,, is a list of stack frames. 6,
is the top of the stack. A stack has the following operations:

a A 8 6 is the stack constructed by pushing 6 onto A

l A(z) dgf a(z) (Lookup)

l A[x c) w] dgf A’ 8 6[z c) V] (Update)

where A E A’ 6 d in the last two operations.

For well-typed programs, all lookups and updates per-
formed in the operational semantics will be on valid vari-
able names. In particular, the variable this exists for all
stack frames.

4.2 Reduction Rules

The operational semantics are given in Figure 5. They are
expressed in terms of a reduction relation which associates
a store S, a stack A and a term e with a value v, another
store S’, and another stack A’. The relation is written:

S.Al-euv/S’.A’

55

(Red New)
E+S.(A:D) o $Z dam(S)

S~A~newt~o/S~{o~{fd~null~fd~dom(dt)}}~A

(Red Local Access)
EbS.(A:D)

S,AI-x-v S.A
where A(x) = v

(Red Local Update)
S.Al-e-v S’.A’

S. A I- x = e u v/S’ A’ x I+ v]

(Red Field Access)
S.At-e--+o/S’.A’
. I-e.fd-v , ,

there S’(o)(fd) = v ’

(Red Field Update)
S.Al-euo/S’.A’ S’~A’ke’--+v’/S2~A2

S . A I- e.fd = e’ - v’/S’[o I-+ Fvd I+ v’]] . A’
where S’(o) = F

(Red Sequence)
s. A I- el -A m/S1 . A’ S’ . A’ I- es u vzlS2. A2

S~Al-e~;ez-v2/S2.AL

(Red Method Call)
S.Abe-o/S’.A’
S’ .A’l-e 1-=+vl/S2.A2

S” . A” I- e, u v,,/S”+’ . An+’

S n+l . A”+’ 8 {this C) o, I I+ V, $ C) “71) t- e’ u v’/S’ . An+’ 8 6
S . A k e.md(el, . . . , e,) - v’/S’ . A”+’
where o has type CC . 1. >, M”(md) = (-, f, e’, Z),
jj = dam(l) and dam(6) = {this} U Z U G

Figure 5: Reduction Rules

56

and means that with store S and stack A, the term e reduces
to value v yielding an updated store S’ and updated stack
A’. Reductions are in a natural or big-step reduction style
semantics [36].

The reduction rules are standard, unsurprising, and cap-
ture the behaviour of a simple object-based language. The
assumptions for rules (Red New) and (Red Local Access) are
well-typedness of the store and stack. These are defined in
Section 4.4. (Red Method Call) requires some explanation:
to evaluate the expression e.md(el, . , e,), first evaluate e
to some value w; if ‘u is an object o (that is, not null), then
each argument e, is evaluated to some value v; in the re-
sulting context; a new stack frame is built with this mapped
to o, each argument z; mapped to the appropriate value
vi and each local yj mapped to null; and then the body of
the method is evaluated to v’ with the new stack and store.
After this evaluation has finished, the top stack frame is
discarded. The whole expression evaluates to 21’. Note that
stack frames lower in the stack are not touched. This last
fact can be verified by induction on the rules using the def-
inition of stack.

Note that the rules ignore dereferencing of expressions
which evaluate to null. Technically, this would evaluate to
some error configuration and additional rules would pro-
pogate thisthrough other expressions. Handling null is omit-
ted because it does not change the results and its omission
simplifies the presentation.

4.3 Ownership Structures

Ownership structures provide the basis for a semantic in-
terpretation of ownership types. They are used in proving
soundness of the type system. The interpretation is novel,
but to a certain extent, natural. An object context denotes
an owner which is another object, so when interpreting an
ownership type, we replace each object context and context
parameter by the owner it denotes. This gives an ownership
structure, defined as follows:

Definition 5 (Ownership Structure) Let CJ be a set of
object identifiers and c<O/7Fz> an ownership scheme, then
r = c<oJO>, where {o} U 0 2 0, is an ownership structure.

If p is an object whose ownership type is interpreted as
cco]O>, then the owner of p is o. The objects 6 constitute
the owners of objects used by p.

The semantic interpretation, I[$,, is defined for each ob-
ject, o, and takes ownership types to ownership structures.
It uses the ownership structure of o in its definition. This
is because any ownership type which [-I0 interprets appears
in the body of o’s class, c, and is defined in terms of rep,
norep, 0 and the context parameters from the class c. An
interpretation gives values to each object context and con-
text parameter in scope in class c. The function I[$, uses the
ownership information in o to interpret the types of objects
used by o. This provides a way of propogating ownership
information from one context to another, which is what the
context parameters do statically.

Definition 6 (Semantic Interpretation Function)
Let object o have ownership structure T, with CCC~~TFO the
ownership scheme for T and u = $(r). Define [&,, the
semantic interpretation function for 0, as follows

6% d2f u(Q)

lrn& tZf u(m)

[norep], ef root

Translating rep to o confirms the fact that o own’s its
representation. norep is consistently mapped to root, an
object representing the root of the system, which is defined
precisely when we specify the initial configuration. The sub-
stitution D allows propogation of the bindings in the context
in which o is defined to objects used by o. It must be stressed
that rep is interpreted differently for different interpretation
functions. Thus, two ownership types containing rep are in-
compatible precisely when they come from different objects.

It should be clear that not all ownership structures can be
built using a given interpretation function. This means that
types are not visible in all contexts. In particular, types with
rep will not be visible outside of their owner. The subject
reduction theorem amounts to saying that at no point in a
program’s execution will an object be in a context where
its type is not visible. This notion of visibility is used in
defining valid execution environments.

4.4 Valid Execution Environment

We can now precisely define valid stacks and stores, a deli-
cate but essential task for proving subject reduction for im-
perative languages. This is further complicated by our def-
inition of ownership structures which introduce additional
circularity into the definitions: objects are defined in terms
of types; types are defined in terms of objects. As we will see,
this causes no real difficulty because we can start the def-
initions using a collection of object identifiers about which
nothing is assumed.

Figure 6 provides the complete definition of stacks and
store typings. Types are ownership structures built from
a set of object identifiers by (Type Type). A store typ-
ing, which is a type environment for object identifiers, is a
mapping from object identifiers to ownership structures by
(Store Type). (Object Type) and (Null Type) correspond
to value typings: object types are given in the store typing
E, and null can have any available type. (Stack Frame) con-
strains the construction of valid stack frames so that 1) this
is always present, and 2) the type of the other elements in
the frame are interpreted correctly with respect to the ob-
ject whose method was invoked. (Empty Stack) and (Stack
Type) build stacks as lists of stack frames. (Store Compo-
nent) is similar to (Stack Frame); the ownership structure of
an object’s fields must have an interpretation within that ob-
ject, where the ownership types are taked from the class defi-
nition. (Empty Store) and (Store Construction) build stores
from objects. Finally, (Stack Store) defines valid stores and
stacks: for some store typing, we require that the store is
valid, the stack is valid and that every object assigned a
type in E appears in the store.

4.5 Subject Reduction

Soundness of the type system is based on a generalised sub-
ject reduction theorem which states that the semantic inter-
pretation of a term’s type is invariant under reduction. We
prove this theorem for terms which are not closed, having
free term variables and context parameters.

57

7 ::= {fd I-+ v}*
6 ::= {z I+ v>*
A::=&e...e&,
7- ::= C<OlOl,. . . ,Or>

Oi=T
El=0
Eb=V:7
EbafS:d
E +at A : D
EbotiF
Ei=S
E+S.(A:D)

an object identifier v ::= 0 1 null a value
a set of object identifiers
an object s ::= (0 c) F}’ the store
a stack frame d ::= {z : 7)’ stack frame typing
a stack D ::= dl 8 . . .8 d, stack typing
an ownership structure E ::= {o ti r}* store typing

well-formed type judgement
well-formed store judgement
valid typing judgement
valid stack frame judgement
valid stack judgement
valid store component judgement
valid store typing judgement
valid stack and store judgement

(Type Type) (Store Type)
(0) u 6 s 0 dam(E) + E(o) for each o E dam(E)
0 c<o 6> E+O

(Object Type)

El=0

(Null Type)

E /= o : E(o)
El=0 d;;C?l=’

(Stack Frame)
E k o : T E k vt : [t;jo for i E [l,n]

E b8f {this C) o, Z I-+ CJ} : {this : T, Z : [$}
where contexts(&) C_ contexts(0 U {rep, norep}
and i is the ownership scheme of T

(Empty Stack) (Stack Type)

El=0 E/==,tA:D Ebsf6:d
E l==st 0 : 0 E+,tAeh:Ded

(Store Component)
E k 0 : T E k TJ~ : [ti]o

E+oct{fdic,vi}
where r I CC.] . > and
fdi E dom(d’), d’(fdi) = ti

(Empty Store) (Store Construction)
E+S EbotiF oedom(S)

+ E~SU{OHF}

(Stack Store)
E /= S E bst A : D dam(E) = dam(S)

E + S. (A : D)

Figure 6: Valid Execution Environment

58

The full proof of subject reduction is straight-forward
but tedious, so has been omitted. Its only enlighting as-
pect is captured in the following visibility lemma, which is
the dynamic version of the static visibility constraint. For
a given object, we deem an ownership structure to be not
visible when the object’s interpretation function cannot pro-
duce the ownership structure. The visibility lemma captures
the notion that if one object, o’, has a reference to object,
o, then only those ownership types without rep in o can be
correctly interpreted by I[&+. So the fields and methods of o
that o’ can validly access, that is, the ones which are visible,
are those without rep in their type, and fields and methods
with rep in their type are invisible.

Lemma 1 (Visibility Lemma)
1) If E + o : T then 7 = I&,, where t^ is the ownership
scheme of r.
2) Let E /== o : r where t^ is the ownership scheme for 7. Let
o’ E dam(E). If 7 = I[&,# for some t, then for any owner-
ship type tt such that contexts C contexts(i) U {norep},
we have [o(tt)JJO, = I[t$, where o = $(t).

The first clause states that an object has the correct
ownership structure with respect to its interpretation
function. The second clause states that if the ownership
structure of an object can be interpreted with respect to
another object’s interpretation function, then the second
object’s interpretation function can interpret any type that
the first object’s function can, so long as the ownership
type does not contain rep. The lemma does not apply at
rep, because rep in two different objects is guaranteed to
have a different interpretation.

Proof. 1) Holds by definition of I[$,.
2) Let II = contexts(i) U {norep}. Note that both o and [&
are defined for II. Firstly, t = a(8) by the definition of +,
Given t^ s c<O(fi> from 1) and the definitions of ~7 and [[-I-,
we have

Thus, because II = (0, norep} U ti, we have that, for each
m E II, [u(m)]ol = [m]lO. (Because norep always maps to
root, the equation holds for norep.) Then, by definition of
I[-]-, if contexts C II, [u(t+)Jjo, = [t+Jo. 0

Because we are evaluating non-closed expressions, we re-
quire a condition relating free term variables I’, with the
stack A, and free context parameters C, with an appropri-
ate interpretation. The condition requires that the execu-
tion environment is well typed, that the free variables have
an appropriate ownership structure with respect to the cur-
rent object, A(this), and that the context parameters in the
ownership scheme of the current object’s type correspond
exactly to C.

Definition 7 (Valid)
The predicate valid@, r, E, A, D) is true if and only if

E /= A(this) : 7thil, for some ‘Tthis,’ c = contexts(&,;,) where
&his is the ownership scheme for Tthis; and dam(r) = dam(d)
and Vx E dam(r), d(z) = [r(z)J/a(this), where D = D’ 8 d.

This validity condition constrains only the top frame of
a stack. In the appropriate environment, all other stack
frames will be well defined via rules for a validly typed stack,
but their value is not used in reduction. This can be dexnon-
strated by an induction on the reduction rules.

The statement of the theorem requires store typing ex-
tension. For the full proof, appropriate extension and re-
placement lemmas hold (analogous to [l]).

Definition 8 (Extension) We say that E’ is an extension
of E (written E’ k E) if and only if dam(E) 2 dom(E’) and
Vo E dam(E), E’(o) = E(o).

Note that >_ is transitive.

Theorem 1 (Generalised Subject Reduction) If
P,C,l?!--,e:t, S.Ake~uls’.A’, E+S.(A:D),
and valid@, r, E, A, D), then there exists an ownership
structure T and a store typing E’ such that E’ >- E,
E’ k S’ . (A’ : D), E’ i-= IJ : 7, 7 = [t]&@hisj and
valid(C, I’, E’, A’, 0).

Proof. The proof is by induction on the derivation of
S. A k e 23 w/S’ . A’, following the style of [lJ. The only
enlighting aspects of it are captured in the visibility lemma.
The static visibility condition invalidates those expressions
for which the visibility lemma does not apply, where the
representation is accessed outside of its owner. •I

4.6 Initial Configuration

To obtain a subject reduction for programs, we need to de-
fine an initial configuration in which to begin execution.
This configuration is also used in the next section in proving
structural properties of object graphs.

Definition 9 (Initial Configuration) Given a program

P = drrefn f 5 e, we define the initial store as:

&it fEf {root ct 0).

The initial stack is the single stack frame:

binit dzf {this C) root, 5 ti n%l}.

For valid typing, we introduce a class Root which has no
context parameters. The initial store typing Ei,it = {root :
Root} gives Ei,i, /= root : Root. Also define [-],,,, as

[rep]lroot +Sf root

[norepjroot 5Sf root.

The object root and the class Root are purely semantic
artifacts, because we need an object corresponding to the
owner of values with norep as their owner, and for complete-
ness, we also give it a type.

Using the initial configuration above, we get the subject
reduction theorem:

Corollary 1 -
With P E defn i ij e, if l-P P, P, 8, {y : t) I- e : t and
Sinit 1 Ainit I- e * V/S . A, and Einit + yi : [tijroot for each
local variable yi, then there exists an ownership structure r
and a store typing E’ such that E’ k Einit, E’ k v : 7, and
i- = pnroot -

59

5 Structural Properties of Object Graphs

In this section we formulate three structural invariants which
hold for well-typed programs. These are role separation, re-
stricted visibility, and the representation containment. The
latter has interesting consequences with respect to alias pro-
tection and containment, so we devote an additional section
to discussing it.

5.1 Role Separation

Role separation is actually a property of the type system.
Because there are no coercion operations in the type system
and because type checking is modular, we have:

ROLE SEPARATION: Two different ownership
types appearing in the same context are not com-
patible, regardless of the ensuing bindings.

This means that the type rules are necessarily conser-
vative, but it does guarantee that a class will behave the
same way regardless of the bindings to its context param-
eters. Thus we have a static guarantee that values of two
ownership types will not be mixed within a class, regardless
of their bindings.

5.2 Restricted Visibility

Restricted visibility says dynamic aliasing of representation
is not allowed. A dynamic alias is an access which may
occur via field access, through the stack, or as the result of
a method call [23]. One could imagine such references were
valid, even though assignment was not. They aren’t.

Recall that we say an object is visible in a context if
an interpretation exists for its ownership structure. The
required property is then:

RESTRICTED VISIBILITY: Objects assigned to
fields, passed as arguments to method calls, re-
turned from field access or method call must be
visible in both the context of the callee and the
caller.

In particular, one cannot access an object with rep in
its type from outside its owner. Restricted visibility follows
from subject reduction.

5.3 Representation Containment

Representation containment is our formulation of a no repre-
sentation exposure property. We characterise this property
in terms of paths from the root of the system as follows:

REPRESENTATION CONTAINMENT PROPERTY: All
paths from the root of the system must pass
through an object’s owner.

Alternatively, the only path from the root of the sys-
tem to an object’s representation is through that object.
In a sense, this means that an object is in control of its
representation because the rest of the system must use the
object’s interface to affect any changes upon the represen-
tation. And, in a strong sense, the representation can be
viewed as being inside its owner.

The remainder of this section is devoted to formalising
this in terms of articulation points [2]. The property we
prove is actually stronger.

Definition 10 (Articulation Point) For a graph cJ, node
k E 6 is an articulation point for paths from a to b, a, b E E,
if all such paths pass through k.

Next we define an object graph. This requires a simple
modification to a program so that newly created objects
appear in the object graph explicitly. This is done simply by
requiring that, at the point of creation, a new object is stored
in a new local variable of the correct type. It can be shown
that this transformation preserves program semantics. (This
trick is a simplified version of the A normal form [44]).

We use the notation o -+ o’ to indicate that o has a
reference to o’, where o,o’ E dam(S). Intuitively, these are
the edges of an object graph:

Definition 11 (Object Graph) Given a store typing E,
a store S and a stack A E 618.86, such that E k S.(A : D)
the object graph, GS.A, is the smallest graph satisfying the
following:

1. for o = &(this), i E [l, n], o E &.A
(method invocation target)

2. for non-nUll 0’ E rng(&), 0’ E 6s.~ and 0 -+ 0’ E ‘&.A,
where o = &(this), for i E [l, n]

(stack frame reachability)

3. if o E &?~.a, with F = S(o), then for each non-null
0’ E rng(F), 0’ E &.A and 0 -+ 0’ E &.A

(store reachability)

Furthermore, the root of the graph is 61 (this).

Finally, for an object o, define ap(o) dgf contexts(r),
where r is the ownership structure of o.

Definition 12 (Representation Containment)
The representation containment property, RC(-) for an ob-
ject graph, &.A is defined as follows:

RC(ES.A) dgf Vo E Gs.A, Vk E J/J(O), k is an
articulation point for paths from root to o.

This defines representation containment for a particular
snapshot of a program’s evolving object graph. It remains
to prove that it is invariant over the object graphs for the
entire program execution. The argument is inductive in the
size of the graph. It is easy to see that removing edges and
nodes, or adding nodes does not invalidate the graph, so we
just consider adding new edges.

The following lemma provides a necessary condition for
a reference to exist.

Lemma 2 If 7 is the derivation tree of the evaluation Sinit.
A;“i, k e X+ v/S’ . A’ and S A is any store and stack pair
appearing in 7 (on either side of the evaluation relation),
then for all o + o’ E &.A, ap(o’) g ap(o) U (0, root}.

Proof. Each o -+ o’ E &.A exists due to a store or stack
reference. Let r and 7’ be the types of o and 0’. To be a valid
store reference, 7’ = [t'lo for some t' by (Store Component).
Similary, for stack references by (Stack Frame). By the def-
inition of [-IO, contexts(+) c rng([&) = ap(0) U (0, root}.
ap(o’) = contexts(#), by definition, thus we have ap(o’) E
ap(0) U (0, root}. 0

The following lemma is standard for articulation points.

60

Lemma 3 Let k be an articulation point on paths from r to
both p and q in graph G. Adding p + q to B preserves the
articulation point for both p and q.

And now the proof that the representation containment
property is invariant over the execution of a program:

Theorem 2 (Representation Containment Invariance)
If 7 is the derivation tree of the reduction S;,;r . Ai”;, I- e ti
vfS’ . A’ and S. A is any store and stack pair appearing in
7 (on either sa’de of the reduction relation), then RC(GS.A).

Proof. 1) Clearly RC(Gs,,;, A,.,~). 2) (Inductive step). As-
sume that for some well formed S. A, with 6 = GS.A, that
RC(S). It is sufficient to consider the effect of adding an
edge p -+ n (via a valid field update or stack frame con-
struction) to produce a new graph 6’. For a contradiction,
assume that the representation containment property fails
for n in 6’.

By Lemma 2, ap(n) 2 ap(p) U {p, root}. Otherwise, the
assignment would create an invalid store or stack.

Therefore k E ap(p) or k = p or k = root.

k E ap(p). Then k is an articulation point for p in E.
By lemma 3, k is also an articulation point for p and n
in the Q’. A contradiction.

k = p. Removing k from G’ breaks paths from the
root containing edge p -+ n. By assumption, any other
path from the root to n had k as an articulation point.
Therefore, k remains an articulation point for n. A
contradiction.

k = root. By removing the root node from G, the artic-
ulation property is vacuously true. Again, a contradic-
tion. Cl

6 Discussion

We now discuss the consequences of basing representation
containment on articulation points; we compare this work
with flexible alias protection; and we point out some of the
limitations.

6.1 Containment

Our model of alias protection is based on restricting the
scope of aliasing using containment, rather than linear-
ity constraints which are not entirely compatible with
object-oriented programming. By considering the following
interpretation of articulation point, we obtain a clear notion
of inside and outside. An articulation point partitions a
graph into two subgraphs: the inside: objects reachable
from the root only via paths through the articulation point;
and the outside: the remainder of the objects. We consider
the articulation point, or the owner, to be on the boundary.
The following diagram illustrates this idea.

Based on this idea, we can say that flexible alias pro-
tection prevents object access from outside its owner. Ref-
erences can go from the inside to the outside, but not vice
versa. Our model does not require objects to be referred
to by their owner. This allows arbitrary self-referencing
data structures to be inside another object. Furthermore,
articulation points form a tree (the dominator tree in [3])
which corresponds to having nested containment relation-
ships. Elsewhere [40] we have pursued this idea to recognise
the inherent containment relationships in evolving object
graphs.

Furthermore, the model based on articulation points is
faithful to the model of containment in object-oriented mod-
elling given by the part-of or has-a relationship [43].

6.2 Relationship with Flexible Alias Protection

This work is a formalisation of the core of flexible alias pro-
tection [38]. The precise correspondence is discussed in this
section.

Flexible alias protection annotated types with mode dec-
larations. These do more than our context declarations by
expressing restrictions on effects and dependence on muta-
ble state. Ownership types do not address these issues, as
outlined below.

We have introduced the context parameter owner, ab-
sent in [38], allowing us to type this. Doing so has also
increased our modelling power: we can build an arbitrary
self-referencing data structure and impose the restriction
that all of its nodes are owned by its handle object. We pre-
sented one such example, a stack implemented as a linked
list. The context parameter owner adds more flexibility to
flexible alias protection.

Flexible alias protection has an aliasing mode var which is
described as a “loophole” to obtain normal reference seman-
tics when required. It also has an optional role parameter,
which, when present, imposes the restriction that “each role
must be kept independent,” that we call role separation. In
our system, norep corresponds to var without a role param-
eter, and context parameters correspond to var with a role
parameter. The semantics of internal object context rep is
consistent with its use in [38].

Finally, our system lacks some elements of the flexible
alias protection model. The most significant is arg mode
which restricts object access to the interface which does not
depend on immutable state. Roughly, this corresponds to
parts of an object’s extended state which are fixed from the
moment the object is initialised. Mode free, omitted for sim-
plicity, represents newly created objects as not being owned
by anyone. The mode val for value objects was omitted
because we are not yet concerned with effects. Value ob-
jects can be given any object context, in particular norep,
if the values are to be shared arbitrarily. Furthermore, we
omitted parametric polymorphism, again for simplicity. Nor
do we include inheritance, but [38] makes no mention of it
either, due to the difficulty caused by loss of information.
Maintaining the representation containment invariant in the
presence of subtyping cannot be achieved by extending the
system here in the obvious way.

61

6.3 Limitations

Apart from the object-oriented features, inheritance in par-
ticular, not yet incorporated, there are some limitations in
the containment model based on articulation points.

Firstly, we cannot, for example, construct external itera-
tors over the representation of some object. An example in
[38] solves this by lifting the owner of the representation to
the highest context where both the iterator and the list are
used. This is clearly unsatisfactory, as it defeats the purpose
of containment. The path we intend to take in solving this
is by having multiple owners and by reformulating reference
containment in terms of cut sets. However, we are unsure of
how this affects static typing.

The second limitation is that we cannot support multiple
representations visible in the same context. An example
where this is required is for “friendly functions” such as plus
for objects representing money, for example. This seems
easy to resolve by relaxing the allowable forms of dynamic
aliasing.

Finally, change of ownership does not fit well in the
model, nor is it easily captured in a static type system.

7 Related Work

The problems engendered by reference semantics and alias-
ing are well known. These problems are particular severe
for object-oriented programming languages [4, 23, 241 where
aliasing is common-place.

To control aliasing, researchers have considered explicit
notions of aggregation, object containment, and ownership
(23, 4, 12, 26, 14, 191. Hogg’s Islands 1231 and Almeida’s
Balloons [4], have a similar aim called fuU alias encapsu-
lation which prohibits any references from crossing the en-
capsulation boundaries. Unfortunately, full encapsulation
of aliasing is too restrictive for many common design idioms
used in object-oriented programming, such as sharing data
between two collections. Both Islands and Balloons distin-
guish between static and dynamic aliases - a dynamic alias
is caused by a short-lived, stack allocated variable. To gain
flexibility, these systems permit various forms of dynamic
aliases with otherwise encapsulated objects. Unfortunately,
such flexibility often defeats their system’s safety. In our
system, we protect against both static and dynamic aliases.

The intuition underlying Kent and Maung [26] is at the
heart of our work. They proposed an informal extension
of the Eiffel programming language with ownership anno-
tations that are to be explicitly tracked and monitored at
run-time. Besides statically achieving the constraints their
run-time checks impose (apart from their extension for mul-
tiple ownership), our system also restricts object visibility
through dynamic aliases, something their system fails to do.

None of the above approaches have been completely for-
malised, despite considerable effort. We have a sound for-
malisation and proven alias protection guarantees.

Much work has been done in program language semantics
in proposing means for coping with pointers and references
including [27, 13, 41, 30, 21, 5, 8, 7, 461. Special reference
attachment mechanisms have been proposed for language
run-time systems to enforce unique or linear pointers [6,
11, 34, 20, 281. Unfortunately, these proposals forbid many
common uses of aliasing in object-oriented programs.

A common approach to preventing representation expo-
sure is by restricting the access to variable names. But the

private and protected modes of Java and C++, for exam-
ple, and related mechanisms [18, 15, 17, 321, or their formal
models [42, 11, fail to adequately constrain the sharing of
object references. Name protection does not enforce alias
protection, because, for example, an externally aliased ob-
ject can be assigned into a private field, or the contents of
a private field can be exported by another means. This is
more likely to happen when subclassing a class for which
the internal invariants are unknown. Creating external ref-
erences can break these invariants. Our type system can
prevent such external references, thus providing a stronger
form of protection than name protection.

In the r-calculus resources are protected by restricting
the scope of a name [33]. Other process calculi model capa-
bilities [lo], which control access to resources. Such notions
seem applicable to alias protection. But these calculi are
operational models which do not provide static protection.
One exception introduces location types [22] and provides a
static type system which prevents access control to resources
for which the capability is not held. But because there is
no concrete notion of an object, or object reference, it is
unclear how their system translates to object calculi.

The work on security calculi and their type systems are
certainly related to our work. Indeed, part of Leroy’s for-
malisation [29] of security properties of strongly-typed ap-
plets constrains references in one environment from being
accessible in another. To prevent references being leaked to
applets, the browsers API must not contain any references
types. We see this as a major limitation in his system which
the present system overcomes.

The work that most closely resembles ours on a purely
formal level is the work on regions [45]. Regions are aimed
at improving memory management for a functional lan-
guage @ML), with region information being inferred us-
ing Hindley-Milner-style type inference. On the other hand,
ownership types are declared and provide alias protection for
object-oriented languages. It is nonsensical to infer which
objects are representation; such information is part of the
programmer’s intention. Nevertheless, the underlying tech-
niques are similar, modulo encoding objects into a functional
language [9]. To be precise, rep corresponds to letregion, and
context parameters correspond to region variables. Regions
also include read and write effects, which we do not.

To our knowledge, no existing formal system statically
models object ownership and statically prevents object ac-
cess from outside an object’s owner as ours does.

8 Conclusion

Although necessary in object-oriented programming, unre-
stricted aliasing is problematic [24], and therefore must be
controlled. This paper presents a formalised system pro-
viding alias control, proves its soundness and the invariance
of specific aliasing properties, namely role separation, Te-
stricted visibility and representation containment for well-
typed programs. This is the first static type system for
an object-based language offering alias protection. Its key
mechanisms are limiting visibility of objects using the inter-
nal object context rep, and safely extending visibility using
context parameters.

We have implemented flexible alias protection by extend-
ing Pizza [39]. Our implementation statically validates own-
ership types according to the type system presented here.
With experience, this will allow us to gain a clearer picture

62

on the use and limitations of ownership types.
There are many directions for future research. Extending

the type system to include inheritance is our immediate goal.
The control of aliasing with respect to other programming
language constructs such as friendly functions and multi-
methods will subsequently be considered. Further work will
include developing a more thorough understanding of the re-
lationship between the static and dynamic semantics, study-
ing the properties induced by ownership structures, and ex-
tending the ideas to concurrent object systems.

Acknowledgements

We would like to thank our colleagues Ryan Shelswell, Geoff
Outhred, Ian Joyner, and the anonymous referees for their
insight and criticism which made this a better paper. This
work was supported by Microsoft Australia.

References

[l] Martin Abadi and Luca Cardelli. A Theory of Objects.
Springer-Verlag, 1996.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ull-
man. The design and analysis of computer algorithms.
Addison-Wesley, 1974.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[4] Paulo Sergio Almeida. Balloon Types: Controlling
sharing of state in data types. In ECOOP Proceedings,
June 1997.

[5] Pierre America and Frank de Boer. A sound and com-
plete proof system for SPOOL. Technical Report Tech-
nical Report 505, Philips Research Laboratories, 1990.

[6] Henry G. Baker. ‘Use-once variables and linear objects
- storage management, reflection and multi-threading.
ACM SIGPLAN Notices, 30(l), January 1995.

[7] Edwin Blake and Steve Cook. On including part hi-
erarchies in object-oriented languages, with an imple-
mentation in Smalltalk. In ECOOP Proceedings, 1987.

[8] Alan Borning. The programming language aspects
of ThingLab, a constraint-oriented simulation labora-
tory. ACM Transactions on Programming Languages
and Systems, 3(4), October 1981.

[9] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce.
Comparing Object Encodings. In Theoretical Aspects
of Computer Software (TAGS’S’);), LNCS 1281, pages
415-438, 1997.

[lo] Luca Cardelli and Andrew D. Gordon. Mobile Ambi-
ents. In Foundations of Software Science and Computa-
tion Structures, European Joint Conferences on Theory
and Practice of Software, March 1998.

[ll] Edwin C. Chan, John T. Boyland, and William L.
Scherlis. Promises: Limitied specifications for analysis
and manipulation. In IEEE International Conference
on Software Engineering (ICSE), 1998.

[12] Franc0 Civello. Roles for composite objects in object-
oriented analysis and design. In OOPSLA Proceedings,
1993.

113) Alain Deutsch. Interprocedural May-Alias Analysis for
Pointers: Beyond k-limiting. In Proceedigns of the
ACM SIGPLAN’94 Conference on Programming Lan-
guage Design and Implementation, June 1994.

[14] Jin Song Dong and Roger Duke. Exclusive control
within object oriented systems. In TOOLS Pacific 18,
1995.

[15] Margaret Ellis and Bjarne Stroustrup. The Annotated
C++ Reference Manual. Addison-Wesley, 1990.

[16] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and Mixins. In 25th ACM confer-
ence on Principles of Programming Languages, January
1998.

[17] A. Goldberg and D. Robson. Smalltalk-80: The Lan-
guage and its Implementation. Adison-Wesley, 1983.

[18] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison-Wesley, 1996.

[19] Peter Grogono and Patrice Chalin. Copying, sharing,
and aliasing. In Proceedings of the Colloquium on Ob-
ject Orientation in Databases and Software Engineering
(COODBSE’9.$), Montreal, Quebec, May 1994.

[20] Douglas E. Harms and Bruce W. Weide. Copying and
swapping: Influences on the design of reusable software
components. IEEE nansactions on Software Engineer-
ing, 17(5), May 1991.

[21] Laurie J. He&en and G. R. Gao. Designing pro-
gramming languages for analyzability: A fresh look at
pointer data structures. In Proceedings of the IEEE
1992 International Conference on Programming Lan-
guages, April 1992.

(221 Matthew Hennessy and James Riely. Resource Control
in Systems of Mobile Agents. Technical Report 2/98,
University of Sussex, February 1998.

[23] John Hogg. Islands: Aliasing protection in object-
oriented languages. In OOPSLA Proceedings, Novem-
ber 1991.

[24] John Hogg, Doug Lea, Alan Wills, Dennis de Cham-
peaux, and Richard Holt. The Geneva convention on
the treatment of object aliasing. OOPS Messenger,
3(2), April 1992.

[25] Stuart Kent and John Howse. Value types in Eiffel. In
TOOLS 19, Paris, 1996.

1261 Stuart Kent and Ian Maung. Encapsulation and aggre-
gation. In TOOLS Pacific 18, 1995.

[27] William Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems, l(4),
December 1992.

[28] K. Rustan M. Leino and Raymie Stata. Virginity: A
contribution to the specification of object-oriented soft-
ware. Technical Report SRC-TN-97-001, Digital Sys-
tems Research Center, April 1997.

63

[29] Xavier Leroy and Francois Rouaix. Security properies
of type applets. In 25th ACM conference on Principles
of Programming Languages, January 1998.

[30] John M. Lucassen and David K. Gifford. Polymorphic
effect systems. In Proceedings of the Eighteenth Annual
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, January 1988.

[31] B. J. MacLennan. Values and objects in programming
languages. ACM SIGPLAN Notices, 17(12), December
1982.

[32] Bertrand Meyer. Eiffel: The Language. Prentice Hall,
1992.

[33] Robin Milner, Joachim Parrow, and David Walker. A
calculus of mobile processes, Parts I and II. Information
and Computation, lOO:l-77, September 1992.

[34] Naftaly Minsky. Towards alias-free pointers. In
ECOOP Proceedings, July 1996.

[35] J. Gregory Morrisett. Refining First-Class Stores. In
ACM SIGPLAN Worshop on State in Programming
Languages, 1993.

[36] Hanne Riis Nielson and Flemming Nielson. Semantics
with Applications: a formal introduction. Wiley, 1992.

[37] James Noble and John Potter. Change detection for
aggregate objects with aliasing. In Australian Software
Engineering Conference, Sydney, Australia, 1997. IEEE
Press.

[38] James Noble, Jan Vitek, and John Potter. Flexible
alias protection. In ECOOP Proceedings, 1998.

[39] Martin Odersky and Philip Wadler. Pizza into Java:
Translating theory into practice. In Proc. 24th ACM
Symposium on Principles of Programming Languages,
January 1997.

[40] John Potter, James Noble, and David Clarke. The ins
and outs of objects. In Australian Software Engineering
Conference, Adelaide, Australia, November 1998. IEEE
Press. to appear.

[41] John C. Reynolds. Syntatic control of interference. In
5th ACM Symposium on Principles of Programming
Languages, January 1978.

[42] Jon G. Riecke and Chrisopher A. Stone. Privacy via
Subsumption. In Fifth Workshop on Foundations of
Object-Oriented Languages, 1998.

[43] James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen. Object-Oriented
Modeling and Design. Prentice Hall, 1991.

[44] Ann Sabry and Matthias Felleisen. Reasoning about
programs in continuation-passing style. In 1992 ACM
Conference on LISP and Functional Programming,
pages 288-298, San Francisco, CA, June 1992. ACM.

[45] Mads Tofte and Jean-Pierre Talpin. Region-Based
Memory Management. Information and Computation,
132(2):109-176, 1997.

[46] Mark Utting. Reasoning about aliasing. In The Fourth
Australasian Refinement Workshop, 1995.

64

