



Abstract—In video gaming, time rewind is an engaging

feature that gives players the chance to recover from their

missteps. Manipulating the logical flow of events adds a

completely new dimension and unpredictability to gameplay.

Yet time rewind is rarely seen beyond single player games, due

to technical challenges and logical dilemmas that require

complex designs. In this paper, we propose a game engine

architecture that achieves the concept of time rewind for

networked multiplayer games, explaining our design choices

and showing with a proof-of-concept game that our approach

works over various network latencies.

Index Terms—Computer games, multiplayer games, time

rewind.

I. INTRODUCTION

Manipulating the temporal dimension for a single player

has been done in games such as Prince of Persia: The Sands

of Time (time rewind and slowdown) [1], Max Payne (time

slowdown) [2], and Braid (time rewind, warp, and relative

time progression) [3]. However, combining time rewind with

multiplayer gaming is a new and underexplored concept in

game engineering. Certain logistic and engineering

challenges arise when considering time rewind in a

multiplayer setting, as multiple players have the ability to

initiate time rewind simultaneously. In order to execute

comprehensible time manipulation, an effect delineation

mechanism is required to determine where players' individual

time rewind influence occurs. Due to the complexity of this,

never have we seen support for environment-wide time

rewind in multiplayer gaming, because of many challenges:

what happens to entities once their histories are rewound?

How do entities affected by time rewind interact with each

other? What happens when a time-rewound entity physically

collides with a non-rewound entity and they both occupy the

same physical space? How do we mitigate network latency

and its effect on time rewind synchronization among players?

This article explains how our system addresses these

challenges and how we translate the concept of time rewind

and playability in that setting into design modules to build a

game allowing networked players to experience time rewind.

Manuscript received May 16, 2013; revised July 22, 2013.

H. Rahimi was with the Distributed and Collaborative Virtual

Environment Research (DISCOVER) Lab, University of Ottawa, Canada.

He is now with the University of Toronto, Canada (e-mail:

hrahimi@discover.uottawa.ca).

S. Ratti was with the DISCOVER Lab, University of Ottawa, Canada. He

is now with the Government of Canada (e-mail: sratti@discover.uottawa.ca).

A. A. Nazari Shirehjini and S. Shirmohammadi are with the DISCOVER

Lab, University of Ottawa, Canada (e-mail: anazari@discover.uottawa.ca;

shervin@discover.uottawa.ca).

II. RELATED WORK

Many studies have been performed to determine the effect

of network latency on multiplayer games offering traditional

gameplay. [4] found that, in a collaborative virtual

environment, jitter has a greater effect on player performance

than latency. [5] has looked at latency in relation to the

player’s perspective: avatar games with first person

perspective show a decline in player performance with

latency greater than 100 milliseconds (msec), whereas

third-person perspective games can potentially tolerate 500

msec lag. Omnipresent perspective games such as real-time

strategy (RTS) games are more resilient to latency and jitter

and work up to 1 second latency, as focus is on long term

planning rather than reaction time [5], [6]. Player

performance and gameplay is also affected by frame rate, and

performance can benefit from frame rates of up to 60 frames

per second (fps) in a First-Person Shooter (FPS) game [7].

While the above research works present very valuable

information, they all study “normal” game-play. No work has

studied the effects of latency on games with time rewind.

Combining the networked multiplayer aspect of a game

with time travel capabilities is a new and underexplored field

of research and development. Braid [3] is an innovative 2D

platform and puzzle game with various types of time

manipulations, such as rewind, warp and pause. These

manipulations form the basis of puzzles within the game, in

addition to being used to solve the puzzles. Braid’s gameplay

however, is strictly single player with no multiplayer.

TimeShift [8] is a 3D FPS game that includes time

manipulation abilities in a networked multiplayer mode.

Rather than accomplishing environment-wide time

manipulation by multiple players in parallel however,

TimeShift makes use of “time bubbles” as a mechanism to

limit the area of effect that time manipulation is carried out in.

Achron [9] is an RTS game that features time as a traversable

dimension, similar to a map’s limited span of x/y/z directions.

The player is able to go back and forward within a limited

time window and carry out actions in the past. Effects from

past actions ripple forward to the future, possibly creating

time paradoxes. But emphasis is placed on managing

multiple timelines per unit and resolving the associated

paradoxes in their convergence, and Achron is still subject to

the established thresholds of the genre. In summary, we are

unaware of any work that investigates this concept beyond

our initial work in [10].

III. PROPOSED ARCHITECTURE

Our proposed architecture and its subcomponents are

shown in Fig. 1. The Game class updates, coordinates, and

dispatches system state information to various

A Time Rewind System for Multiplayer Games

Hesam Rahimi, Saurabh Ratti, Ali Asghar Nazari Shirehjini, and Shervin Shirmohammadi

Lecture Notes on Software Engineering, Vol. 1, No. 4, November 2013

381DOI: 10.7763/LNSE.2013.V1.81

subcomponents. It also manages and tracks all active in-game

entities, such as characters and enemies. The primary

components are:

1) Physics Engine (PE)

A custom frame-based, fixed-step, 2D physics engine

tasked with processing entities for collisions, between both

static and dynamic entities. We have used simple 2D graphics

since our main challenge is the distributed multiplayer

time-travel aspect, which can of course later be applied to a

more visually pleasing and realistic 3D graphics engine as

well.

2) Time Manipulation Module (TMM)

A logical module consisting of the Time Recorder and

state related classes, highlighted in Fig. 1, for time recording

and rewinding. The TMM is invoked by the PE to save and

restore entities’ states in order to rewind and replay their

timelines independently. An entity’s "state" is the minimum

necessary information to replicate its location, behaviour and

appearance at a given time. While TMM has been previously

described in [10], a relevant summary is provided to make

this article self-contained.

3) Networked Multiplayer Support

Distributed network play allows multiple remote players to

play together, both in synchronized and unsynchronized

modes.

Other components of our system include a video renderer,

an animation processor for custom XML animations, and

stubs for entity AI and game levels.

*

*

*

*

Program

StartMenu

Game

AudioRenderer VideoRenderer PhysicsEngine InputHandler GlobalAI Level

Matter

Sprite « interface »

Animation

SpriteAnimation « interface »

Collidable

CollidableAnimation

BindingShape

BindingCircle BindingRectangle

IntelligentSprite

1

TimeRecorder

« interface »

Saveable
SavedState

AnimationState

SpriteState

MatterState

**

1

InputSource

InputSourceKeyboardInputSourceRemote

InputSourceBuffer

InputStates KeyStates

KeyMap

*

1

*

TimeTracker

Timeable

TimeCounter TimeIntervalCounter

*

GameSession

RemoteDataSource RemoteDataDispatcher

* *

* *

Fig. 1. UML diagram of class design, dependencies, and inheritance. Classes associated with TMM are dotted and tinted blue. Greyed classes represent stubs

for components not implemented in the current incarnation.

A. Physics Engine

Given the action based style of game-play, PE has a

substantial role within the game engine. It has the

responsibility of applying a set of mechanical or traditional

physics laws to game entities. This includes gravity, friction,

and elastic collisions with conservation of energy and

momentum. The engine’s updating procedure is based on a

stepping system in which the Game class simply instructs the

engine to advance the physical simulation state of entities by

a specified amount of time, the latter used in all displacement

calculations. Often, the game advances the physics state by

the number of elapsed milliseconds between general game

updates and, as a result, closely follows the system clock. The

physics engine has two major facets: collision detection and

the collision handling systems it employs.

Collision detection (CD) and its handling plays an

important role when manipulating time and potentially

displacing objects, hence it is important to understand how

our system addresses CD. For the purposes of implementing

our game, we have simplified collision detection by

approximating game entities with simple geometrical shapes

as bounding boxes. Mathematical formulas with the radius

and side lengths are then used to calculate intersections of

these shapes for each different case at every update cycle.

This allows us to focus on time manipulation, but more

complex CD algorithms can be used too.

The displacement formula for entities used throughout the

engine is the product of an entity’s velocity and the elapsed

time since the last update. As such, the displacement

experienced by an entity between subsequent game updates

has the potential to be very large if the entity has a very high

Lecture Notes on Software Engineering, Vol. 1, No. 4, November 2013

382

velocity or the elapsed time between updates is lengthy.

Large elapsed time values can occur during system

slowdowns, where game updates become less frequent and

the time between them increases. High velocities are more

frequent due to the fast-paced, real-time nature of the game.

Many applied forces are large and can be repeated in short

periods of time to move entities at high speeds, such as

multiple punches on an enemy. If two entities on a collision

course have overly large displacement values, the entities

simply “warp” past each other from one update to the next, as

they would collide in the time “between” updates. Since the

entities never intersect during an update, the collision goes

undetected and the entities essentially pass through each

other.

To maintain the simplicity of the system, “line of sight”

traversal algorithms are not used to solve the displacement

issue; instead, a two-faceted solution is used. First, the

physics system is kept on a fixed step interval, requiring the

game to call the physic engine’s update function every 16

msecs (approximately 60 fps). When a game update occurs

after this timeout, the physics engine is invoked multiple

times to match the real-time clock as closely as possible.

When game updates are less than this amount of time, the

physics advance is delayed and the elapsed time is carried

over to the game update iteration. These specific time and

frame rate values are chosen as they are well suited to the

in-game velocities, in the majority of cases preventing overly

large displacements. Second, a fixed speed limit is imposed

for all objects as a fail-safe mechanism. In theory this

contradicts the concept of elastic collisions as it results in a

net loss of energy in the system, but this is reasoned as air

friction imposing a maximum velocity, i.e. terminal velocity.

After collisions between entities are detected, this is followed

by the application of energy and momentum conservation to

the object, with modifications to their direction vectors.

Collision handling also has the responsibility of dealing

with illegal states. An illegal state is one where, in the context

of a 2D action game, two object’s physical bodies are

overlapping. The distributed multiplayer module with

parallel time manipulation creates a high potential for illegal

physics state occurrence. The ability of objects to enter and

leave the physical environment, required by the time

manipulator, can create illegal states whenever these objects

suddenly occlude with other entities upon re-entry. Our

initial exploration determined that a preventative algorithm,

which verifies the physics state for each object and can assure

that the system never ventures into an illegal state, requires a

large number of heuristics and highly taxed computational

resources. Alternatively, a best-effort corrective algorithm is

implemented successfully to handle collisions, permitting the

system to enter states considered illegal for short periods of

time. This technique allows entities to momentarily overlap,

correcting their positions once they do so. But, because the

application of elastic collisions has the effect of always

directing objects towards non-overlapping positions, the

number of heuristics and special cases to be treated by other

interlocking modules are minimized and result in a more

general and reusable system. When such momentary illegal

states do happen, they are not usually perceived by the

players. If they do happen to be perceived, we can justify

them within the game’s storyline as some sort of science

fiction “time-space continuum paradox”, which is not an

uncommon theme in time travel/manipulation scenarios in

games and movies.

B. Time Manipulation Module

TimeRecorder

Player1

Player2

Entity1

Entity2

state
1

State
…

state
4

state
3

state
2

state
1

State
…

state
4

state
3

state
2

state
1

State
…

state
4

state
3

state
2

state
1

State
…

state
4

state
3

state
2

P1

P1

P2

P2

a)

State...

State 1

State 2

State 3

State 4

State...

State... State...

b)

State 5

State 4

State 3

State 2State 1

c)

Fig. 2 a) Time Recorder structure with rewind initiated by Player 2 (P2). b)

The double-ended queue (deque) data structure used by Time Recorder. c)

The deque implementation internally uses a circular array.

TMM is at the heart of time rewind, and is integrated as a

subcomponent into the PE. The TMM’s primary function is

to store all entities’ past states and allow traversal of this

history. States are captured at each game update cycle,

another reason for the PE’s fixed time stepping design. The

history buffer is kept at a fixed size that limits the amount of

time that can be rewound. Within the engine, it is the Time

Recorder class that holds all the game entities' history buffer,

as illustrated in Fig. 2 a). During gameplay, the TMM records

an entity’s current states as a new state which in enqueued,

while old states at the end of the history buffer are dequeued.

When rewinding an entity through its past actions, the Time

Recorder iterates through states in reverse order like a stack.

To hold the entities' states and meet the insertion/removal

requirements of recording and rewinding history, each

entity's history buffer in the Time Recorder is a double-ended

queue (deque) data structure, as shown in Fig. 2 b). Our

deque data structure is a custom implementation because it

does not exist natively in the XNA framework, and it

Lecture Notes on Software Engineering, Vol. 1, No. 4, November 2013

383

internally uses a circular array as seen in Fig. 2 c). The

circular array implementation is chosen due to its constant

access time, a desirable quality since history buffers are

traversed sequentially. The static length of the array is

determined at creation time according to the rewind time

limit imposed by the TMM. If this list becomes full, the

oldest state is dequeued to maintain the preset maximum

rewind time.

Entities in the game can be in one of three time modes:

Normal, Rewinding or Replaying. In the Normal mode, an

entity’s actions are stored in its history buffer. When a player

initiates time rewind, the mode of the entity is set to

Rewinding, and its past states are reinstated in reverse. This

mode is maintained until the command is halted or the TMM

arrives at the beginning of its history buffer. The entity then

goes into the Replaying mode, and the history buffer is now

traversed forward so that the previously “rewound” actions

are executed as they were during previous gameplay. This

mode is maintained until the end of the history buffer is

reached, or a new event occurs on the entity. Fig. 3 depicts

the state diagram of an entity's progression through its time

modes. Every update cycle, the PE invokes the TMM to

determine how each game entity is analyzed for collision

detection. The interactions between entities are determined

by the time mode collision matrix, with the matrix used in our

proof-of-concept game given in Table I. The entries within

the collision matrix identifies when an entity in a given mode

(a row lookup) should be compared against other entities in

their specified mode (a column lookup for the current row).

Fig. 3. Entity time mode state diagram.

TABLE I: TIME MODE COLLISION MATRIX

Time Mode of

Current Entity

Time Mode of Comparison Entity

Normal Rewinding Replaying

Normal × ×

Rewinding

Replaying ×

In our collision matrix, Rewinding game entities are

completely omitted from collision detection in order to allow

their rewinding animations to be drawn. Replaying objects

are compared exclusively with the Normal objects, to

determine if collisions have occurred. If so, the Replaying

objects return to a Normal state, effectively having their

timelines broken from the previous history, and both game

entities are processed normally by the PE. Finally, Normal

entities are processed for collisions between themselves.

Once collisions have been detected and then handled, the

TMM records the entities’ states into the history buffer, as all

game entities are in valid and legal states.

C. Networked Multiplayer Support

Multiplayer support over the network is a huge topic of its

own and beyond the scope of this article. We refer the reader

to ‎[11] for a comprehensive explanation and analysis of the

networking aspect of current games. In our system,

networked multiplayer support is provided in either

synchronized or unsynchronized modes. Synchronized

gameplay is achieved by time stamping player input and

ensuring that game clocks remain within temporal proximity

of each other. Unsynchronized gameplay is possible because

game instances are independently calculated simulations; i.e.

game state is derived by applying local and remote input data

to the simulation. Obviously inconsistencies are introduced

when input data from a remote player is delayed due to

latency, and the resulting simulation calculations differ on

the screen of each player. However, our game design is such

that players do not know about these inconsistencies and

gameplay continues in spite of latency being present [12].

IV. IMPLEMENTATION

Fig. 4. Game screenshot.

We implemented our proposed engine and a specific game,

collectively named FizzX [10], on top of Microsoft’s XNA

framework using the C# programming language for

Microsoft’s X-Box 360 and Windows-based PCs. As shown

in Fig. 4, players represented by panda avatars cooperatively

beat up enemy “slimes” and attempt to achieve a high score

of the number of slimes killed. In such a setting, time rewind

allows players to recover from mistakes that result in loss of

health, allowing them to fight longer. As seen in the Fig, the

reddish panda player on the left side has activated time

rewind, indicated visually by the circular ripples in the

background and arrowed sprites. To encourage players to use

time rewind cooperatively and aid each other, we designed

the game to have environment-wide time rewind, instead of

restricting the ability to localized "bubbles". To accomplish

this, we use the concept of "entity owners" as our

effect-delineation mechanism, where the player to last hit an

entity owns it. Owning an entity is visually representing by

changing the entity's colour to match the player's colour,

hence the game's association with red/blue slimes and

reddish/bluish pandas, respectively. When a player initiates

time rewind, only those entities owned by the player rewind

through their previous states. Players work together because

Lecture Notes on Software Engineering, Vol. 1, No. 4, November 2013

384

both players can kill any entity whether they own it or not.

They can also rewind entities they own to help both

themselves and their partner, because the rewind is

environment-wide.

V. EXPERIMENTS AND RESULTS

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 160 240 320 400 480

P
la

ye
rs

' %
 I

n
cr

e
as

e
 in

 R
e

ta
in

e
d

 H
e

al
th

w

it
h

R
e

w
in

d

Network Latency (msec)

Synchronized

Unsynchronized

a)

0

10

20

30

40

50

60

70

0 20 40 60 80 160 240 320 400 480

P
la

ye
rs

' %
 I

n
cr

e
as

e
 in

 #
 o

f
En

e
m

ie
s

K
ill

e
d

 w
it

h
 T

im
e

 R
e

w
in

d

Network Latency (msec)

Synchronized

Unsynchronized

b)

Fig. 5. Effect of rewind on players' percentage increase in a) retained health b)

enemies killed.

For both synchronized and unsynchronized networked

gameplay, we wanted to verify that the properties of time

rewind are retained; that players are able to retain a greater

amount of health and kill a greater number of enemies when

the time rewind ability is used. We carried out testing over a

range of latencies and captured players' health and enemies

killed in a cooperative fashion with and without rewind. Our

test results show that in both synchronized and

unsynchronized gameplay, the use of time rewind always has

a positive effect on players’ performance. Fig. 5 a) shows the

players' percentage increase in retained health when using

rewind, while Fig. 5 b) shows the players' percentage

increase in the number of enemies killed when using rewind.

Due to the cooperative nature of the game, players’ retained

health was calculated as the average retained health of both

players combined, and the number of enemies killed was the

sum of enemies killed by both players. In order to confirm

that the observed results are not due to chance, statistical

analysis was performed on the captured data to confirm the

statistical significance of the differences. Paired t-tests

confirmed that the difference in health retained with and

without time rewind usage is statistically significant, with a

p-value of 0.008 when the game is synchronized and 0.04 for

unsynchronized mode. Paired t-tests also confirmed the same

for enemies killed, with a p-value of 0.03 for synchronized

game and 0.00023 for unsynchronized game instances.

VI. CONCLUSIONS

The FizzX game engine architecture shows that a

networked game with distributed multiplayer time

manipulation over the network can be accomplished even in

the presence of high network latency. This requires a physics

engine that integrates with a time manipulation module

responsible for entity state recording and rewind capabilities

of the recorded states. The described proof-of-concept game

was used to drive certain gameplay decisions and engine

behaviours, but these can be changed and adapted to suit

other styles of gameplay. First, the 2D style of our game

could easily be changed to 3D and employ more

sophisticated rendering and physics algorithms. Also as

stated, the cooperative nature of the game was tied to the use

of entity owners as a time rewind effect delineation

mechanism. In a competitive game where players are pitted

against each other, the effect of time rewind could be

controlled in different ways. For example, a time rewind

weapons hit on another player could force that player to go

back in time, or time rewind would be limited to the physical

area around a player, allowing them to only help themselves.

Additionally, the time mode collision matrix can be changed

to provide an alternate interaction between entities in the

different time modes. Lastly, networked multiplayer

synchronicity can be enhanced to provide Synchronized

gameplay at greater latencies.

REFERENCES

Lecture Notes on Software Engineering, Vol. 1, No. 4, November 2013

385

We found that with network latencies greater than 80

milliseconds, game playability decreased sharply in

synchronized mode (see Fig. 5), but we were able to achieve

acceptable gameplay in unsynchronized mode with latencies

as high as 480 milliseconds. The results are shown in Fig. 5.

[1] Prince of Persia: The Sands of Time, Ubisoft. [Online]. Available:

http://www.ubi.com/US/Games/Info.aspx?pId=657

[2] Max Payne. Remedy Entertainment. [Online]. Available:

http://remedygames.com/games/#max-payne

[3] Braid. Microsoft Game Studios. [Online]. Available:

http://braid-game.com/

[4] K. S. Park and R. V. Kenyon, “Effects of network characteristics on

human performance in a collaborative virtual environment,” in Proc.

IEEE Virtual Reality, Houston, Texas, 1999, pp. 104-111.

[5] M. Claypool and K. Claypool, “Latency and player actions in online

games,” Communications of the ACM, vol. 49, no. 11, pp. 40–45,

November 2006.

[6] M. Claypool, “The effect of latency on user performance in real-time

strategy games,” Computer Networks, vol. 49, no. 1, pp. 52-70,

September 2005.

[7] K. Claypool and M. Claypool, “On frame rate and player performance

in first person shooter games,” Multimedia Systems Journal, vol. 13, no.

1, pp. 3-17, September 2007.

[8] TimeShift. Sierra Entertainment. [Online]. Available:

http://www.gamerankings.com/xbox360/929531-timeshift/index.html

[9] Achron. Hazardous Software. [Online]. Available:

http://www.achrongame.com/

[10] S. Ratti, C. Towle, P. Proulx, and S. Shirmohammadi, “FizzX:

multiplayer time manipulation in networked games,” presented at

International Workshop on Network and Systems Support for Games,

Paris, France, 2009.

[11] S. Ratti, B. Hariri, and S. Shirmohammadi, “A survey of first-person

shooter gaming traffic on the internet,” IEEE Internet Computing, vol.

14, no. 5, pp. 60-69, September/October 2010.

[12] H. Rahimi, S. Ratti, A. A. Nazari, and S. Shirmohammadi,

“Unsynchronized networked games: feasibility with time rewind,”

presented at International Workshop on Network and Systems Supports

for Games, Taipei, Taiwan, 2010.

http://www.ubi.com/US/Games/Info.aspx?pId=657
http://remedygames.com/games/#max-payne
http://braid-game.com/
http://www.gamerankings.com/xbox360/929531-timeshift/index.html
http://www.achrongame.com/

Hesam Rahimi was a researcher with the University of

Ottawa’s Distributed and Collaborative Virtual

Environment Research (DISCOVER) Laboratory until

2012, where he performed research in networked games,

mobile games, and adaptive game streaming. He has a

Master’s of Applied Science degree in electrical and

computer engineering from the School of Electrical

Engineering and Computer Science at the University of

Ottawa, Canada, and is currently working at the University of Toronto,

Canada, in the Smart Applications over Virtual Infrastructure (SAVI)

research project.

Saurabh Ratti was a researcher with the University of

Ottawa’s Distributed and Collaborative Virtual

Environment Research (DISCOVER) Laboratory until

2010, where he performed research in massively

multiplayer online games (MMOGs), overlay

networking, networked games, and distributed systems.

He has a Master’s of Applied Science degree in

electrical and computer engineering from the School of

Electrical Engineering and Computer Science at the University of Ottawa,

Canada, and is currently working at the Government of Canada.

Ali Asghar Nazari Shirehjini received his Ph.D.

degree in computer science from the Technische

Universität Darmstadt, Germany in 2008, where he was

with the Fraunhofer Institute for Computer Graphics

from 2002 to 2008. He is currently a Visiting Research

Associate at the DISCOVER Lab, University of Ottawa,

Canada. Between April 2011 and October 2012 he was

a PostDoc at TU Berlin and Karlsruhe Institute of

Technology in Germany, and from December 2008 to April 2011 he was one

of the four Vision 2010 Postdoctoral Fellows at the University of Ottawa. His

research interests include ambient intelligence, context awareness,

interaction with smart spaces, mobile 3-D user interfaces, rapid prototyping,

context-aware systems, context-aware game streaming, and massively

multiplayer online gaming.

Shervin Shirmohammadi received his Ph.D. degree in

electrical engineering from the University of Ottawa,

Canada in 2000, where he is currently a Full Professor at

the School of Electrical Engineering and Computer

Science. He is Co-Director of both the Distributed and

Collaborative Virtual Environment Research Laboratory

(DISCOVER Lab), and Multimedia Communications

Research Laboratory (MCRLab), conducting research in

multimedia systems and networking, specifically in gaming systems and

virtual environments, video systems, and multimedia-assisted biomedical

engineering. The results of his research have led to more than 200

publications, over a dozen patents and technology transfers to the private

sector, and a number of awards and prizes. He is Associate Editor-in-Chief of

IEEE Transactions on Instrumentation and Measurement, Associate Editor

of ACM Transactions on Multimedia Computing, Communications, and

Applications, and was Associate Editor of Springer’s Journal of Multimedia

Tools and Applications, and chairs or serves on the program committee of a

number of conferences in multimedia, virtual environments, and games. Dr.

Shirmohammadi is a University of Ottawa Gold Medalist, a licensed

Professional Engineer in Ontario, a Senior Member of the IEEE, and a

Professional Member of the ACM.

Lecture Notes on Software Engineering, Vol. 1, No. 4, November 2013

386

