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Abstract—Although spreadsheets are often faulty, end-users
like them for their flexibility. Most existing approaches to
spreadsheet diagnosis are fully automated and use static analysis
techniques to find anomalies in formulas or methods to derive
test cases without user interaction. The few more interactive
approaches are based on values already present in spreadsheets
as well. In our work, we advance the idea of testing spreadsheets
with user-defined test scenarios but encourage visually aided
creation of independent test cases by separating the defini-
tion of test scenarios from the specific values present in the
spreadsheet—just like test code is separated from production
code in professional software. We combine the testing approach
with static analysis and integrate it into a common visual
spreadsheet environment named SIFEI. It supports users in
interactively creating, executing, and analyzing their own test
scenarios with a number of visual markers. Findings from two
qualitative studies indicate that the concept is suitable for casual
spreadsheet users.

I. INTRODUCTION

While end users love spreadsheets for their flexibility, sev-
eral studies indicate that faults in spreadsheets are common [1].
Many end users are overconfident about the correctness of their
spreadsheets and do not examine the output values calculated
in spreadsheets sufficiently, even when using them for mission-
critical decisions [1], [2]. The European Spreadsheet Risks
Interest Group has collected dozens of cases1 where this chain
of circumstances has led to severe financial and reputational
losses.

Although there are several promising suggestions for pre-
venting spreadsheet faults in the first place (i.e., by reducing
overconfidence), diagnostic approaches for identifying faults in
existing spreadsheets are needed to check existing spreadsheets
and because not all faults can be prevented. Most diagnostic
approaches can be divided into three categories (they will be
discussed in more detail in Section VI):

• Fully automated (e.g., [3], [4]): These tool-based ap-
proaches require only low user interaction. Typically,
they rely on generic specifications or derive specifica-
tions themselves without asking users. They are able to
indicate only “likely” faults or “smells”. Approaches that
automatically generate test cases produce lower numbers
of false positives than approaches that check spreadsheets
using fault patterns.

1http://www.eusprig.org/horror-stories.htm

• Partially automated (e.g., [5]): These tool-based ap-
proaches require considerable amounts of interaction
because they rely on user-defined specifications. But
typically, they have a higher chance of detecting semantic
errors than fully automated approaches.

• Manual (e.g., [6]): These approaches can be executed
even without tools and are comparable to design and code
inspections in professional software development [7].
They are executed manually by experts. Formal inspec-
tion process definitions accompanied by checklists are
typical representatives of such approaches. The efficiency
of manual approaches can be boosted by tools that aid in
(structure) comprehension or identify ‘high-risk areas’ to
narrow the inspection scope.

In general, automated approaches tend to be the cheapest
but least effective ones. Manual approaches promise the best
results but are time-consuming and rely on experts who are
hard to find even in larger organizations. Partially automated
approaches provide a good compromise between the two ex-
tremes and offer the additional benefit of generating a valuable
by-product: specifications—an artifact hard to encounter in the
spreadsheet world.

Since all of these diagnostic approaches have their pros
and cons, it appears worthwhile to combine the approaches
in a beneficial way [8, pp. 48-49]. Considering that some
of the underlying techniques require software engineering
knowledge, the EUSES Consortium2 proposes to encapsulate
this knowledge into tools. The key challenge here is the
integration of several diagnostic approaches into a single
spreadsheet environment. We want to address this challenge
by introducing a tool called SIFEI which extends the popular
spreadsheet execution environment Microsoft Excel. Our main
contributions are the following:

• We integrate a variety of diagnosis techniques into a
spreadsheet environment and visualize combined findings
without interfering with the original layout of the spread-
sheet.

• We introduce an approach for the interactive creation
of test scenarios within a spreadsheet. In contrast to
previous approaches, it allows the unbiased specification

2http://www.eusesconsortium.org



of scenarios to be done independently of values present
in the spreadsheet.

In a user study, we investigated the usability of the approach
and particularly studied whether users not familiar with pro-
gramming understand our concept of spreadsheet testing. The
results indicate that participants were successful in applying
our approach, but they also show that there is room for
improvement in terms of motivating users to perceive the
benefits of the approach more quickly.

In the following, we first briefly discuss terminology (Sec-
tion II) and the technical back-end of our approach (Sec-
tion III). Then, we describe our contributions in detail (Sec-
tion IV), present results from a user study (Section V), and
finally discuss contributions and results in the light of related
work (Section VI).

II. TERMINOLOGY

Often, spreadsheet-related terms are used ambiguously by
people in research and practice. Therefore, we want to clarify
what we mean when we use such common terms.

A spreadsheet is a program that is contained in a spreadsheet
file document (e.g., in Office Open XML which uses the
“xlsx” ending for spreadsheets) and executed in a spreadsheet
execution environment (e.g., Microsoft Excel). A spreadsheet
is composed of cells which can contain values and formulas.
One spreadsheet may be composed of several worksheets. A
spreadsheet is executed each time formula recalculation is
issued.

From a domain perspective, the spreadsheet cells can be
divided into input cells (data and so-called “decision vari-
ables”), intermediate calculation cells and output cells. In most
cases, output cells are numeric. However, there are exceptions:
For instance, in spreadsheets that heavily use conditional
formating, users might just interpret the colors of certain cells
as relevant output.

When working with spreadsheets, end users can commit
errors by accidentally taking an unwanted action like mistyp-
ing a number or linking a wrong cell when constructing
a formula. Unless detected and corrected, committed errors
manifest themselves as faults in the spreadsheet. In cases of
fraud, we do not regard the user actions as “errors”, since
they were taken on purpose, but the result is the same: the
spreadsheet is faulty. The spreadsheet can also get faulty in
cases of misconception where users do not understand the
domain and, therefore, execute the wrong actions.

Apart from faults, spreadsheets may also contain qualitative
defects such as high formula complexity or other types of
“bad formula style”. Such defects can promote faults later
on (e.g., during maintenance), but we do not regard them
as faults unless they directly result in wrong output values.
Output values are results that are interpreted by end users.
Thus, even correct output values can be misinterpreted.

The effects of faults can sometimes be hidden and lead
to visible malfunction regarding the output values only under
certain conditions (e.g., only when the input values are within
a certain range). In such cases of visible malfunction, we say

that we observe a failure of a spreadsheet. Failures may—but
do not necessarily have to—cause a real-world impact (e.g.,
wrong decision made).

Therefore, to detect errors, an analyst must observe a
spreadsheet user working with the spreadsheet (live or by
means of a recording). By issuing manual or automated
inspections that do not execute the examined spreadsheet, an
analyst can only find signs for faults or defects. Only when
the spreadsheet is executed during the inspection, we call this
“testing”: it can result in observable failures, but it cannot
directly point to faults. We refer to the process of trying to
locate a fault after observing a failure as “debugging”.

Just like doctors in the field of medicine, we use the notion
of “diagnosis” to describe any activity that involves actions
connected with the goal to detect any anomalies such as
errors, defects, faults, failures, or problems. A diagnosis can
be issued without the presence of any prior symptoms and is
not guaranteed to find any anomalies.

III. SPREADSHEET INSPECTION FRAMEWORK

The front-end for spreadsheet diagnosis that we present
in this paper is based on a technical framework called
Spreadsheet Inspection Framework (SIF)3. SIF provides an
implementation of various spreadsheet diagnosis techniques
but does not contain a front-end for user interaction. SIF is
written in Java and uses the Apache POI library to examine
the spreadsheets. SIF supports, among others, the following
types of diagnosis techniques which we will use later for the
integration into a spreadsheet environment:

• a fully-automated static analysis technique and
• a partially-automated testing approach.
Currently, three fully automated static analysis techniques

that can detect qualitative defects are implemented in SIF.
These techniques indicate (i) formulas that have a high com-
plexity, (ii) formulas that violate the reading direction (i.e. they
refer to cells that are not left or above them), and (iii) formulas
that contain hard-coded constants. The testing approach is
based on user-defined test scenarios that are executed on
the spreadsheet, comparable to regression tests in software
engineering: given a set of input values, output values are
computed and checked whether they conform to the output
values or ranges specified in the test scenarios.

IV. SPREADSHEET ENVIRONMENT INTEGRATION

The main contribution of this paper is the consistent visual
integration of the heterogeneous diagnosis techniques in a
spreadsheet environment. In particular, we implemented this
integration for Microsoft Excel in a tool called Spreadsheet
Inspection Framework Excel Integration (SIFEI)4. From a
technical perspective, it is a layer that integrates SIF with
Microsoft Excel and provides a front-end. SIFEI is written
in C# and uses the Windows Presentation Foundation. SIFEI
and SIF exchange XML-formated data over a TCP socket

3https://github.com/kuleszdl/Spreadsheet-Inspection-Framework
4https://github.com/kuleszdl/SIFEI



connection. This makes the overall system architecture exten-
sible regarding the support of other document formats or the
integration into other spreadsheet execution environments like
LibreOffice.

This section presents the visual user interface of SIFEI. We
first demonstrate how findings of the static analysis are visu-
alized in the spreadsheet in a lean fashion without destroying
the original layout and coloring of the spreadsheet. Then, the
integration of the testing approach in the form of user-defined
testing scenarios is discussed.

A. Visual Indication of Findings

We illustrate the capabilities of SIFEI for visualizing find-
ings detected by the static analysis techniques SIF using a
very simple example spreadsheet, a calculator for the volume
of a smartphone. SIF reports two qualitative defects for this
spreadsheet.

SIFEI adds a ribbon bar (Figure 1, A) and three components
for communicating findings to the user in a comprehensible
way: An overview with a list of findings in our side pane (Fig-
ure 1, B), markers highlighting cells with findings (Figure 1,
C) and tooltip dialogs with further explanations of findings
(Figure 1, D). Since SIFEI just adds a layer of icons to the
spreadsheet, the user is able to return to the original view of
the spreadsheet by turning off the additional layer at any time.

1) List of Findings: The list of findings is aggregated by
type of finding and sorted by severity. Different groups of
findings from static analysis techniques are discerned as well
as findings from the testing approach (Section III). The first are
divided by the cells they are referring to, the latter are divided
by scenario; each scenario might refer to multiple cells that
deviate from the specified behavior. Each group in the list
consists of a headline, a description of the group, and a list
of aggregated findings that can be expanded on demand. Each
individual finding in turn is described in further detail and
carries a severity value that is user-defined for each group. The
severity of the group of findings as displayed in the upper right
corner is the sum of the severity of the individual findings. A
bar at the side of each group in the list visually encodes the
summed severity using a color scale from yellow (low severity)
to red (high severity). Groups of findings as well as individual
findings can be activated and deactivated. Also, findings can
be marked as false positives and be hidden; this is important
for findings gathered using static analysis techniques as these
often overestimate defects but can be useful for temporarily
disabling test scenarios that need rework as well. When the
user clicks on an individual finding, the spreadsheet view
jumps to the respective cell.

2) Cell Markers: Each cell in the spreadsheet that is
affected by a finding is highlighted. Since coloring is often
already applied by the users to mark other things in the
spreadsheet, we decided to use small warning icons for this
purpose instead; these are also easy to detect by the user but
do not conflict with the original coloring of the spreadsheet.
Each icon is colored according to the severity of the group
of findings it belongs to. This color-coding already guides the

user to the more severe findings and visually connects the
findings in the list with those indicated in the spreadsheet.

3) Tooltip Dialogs: Hovering over a warning icon with
the mouse pointer shows a description of the finding in a
tooltip dialog. The dialog explains why the finding was raised
and how the actual behavior or value for the highlighted
cell deviates from the expected behavior. An alternative for
retrieving details is clicking on the icon—then, the finding is
highlighted in the side bar with a list of findings.

B. Testing Integration

In addition to providing a visualization for findings in
spreadsheets, we also designed an interactive testing approach
that allows for the specification of test scenarios. Next, we mo-
tivate the design decisions behind our approach and describe
the conducted user interface for editing test scenarios in detail.

1) Testing Approach: As part of SIF, we developed an
approach that merges the black-box concept of system testing
with the automatic execution of unit tests. It views a spread-
sheet from a purely functional perspective based entirely on
test scenarios specified by the user. This is done using the
following interactive workflow:

1) The user marks cells as input, intermediate, and output
cells. Input cells are cells that the user expects to change
himself depending on the current use of the spreadsheet
while output cells are cells that the user expects to
contain results from calculations. More complex calcula-
tions are usually broken down using intermediate cells
and allow the user to understand how the calculation
arrived at the output. This cell classification is the user’s
pure domain view and completely decoupled from the
calculation chain in the spreadsheet.

2) The user specifies test scenarios by filling the previously
marked input cells with values and providing expected
values for intermediate and output cells. While input
values must be specified precisely, expected values for
output and intermediate cells can be defined as ranges
as well. However, the user can freely choose how
complete the specification of a test scenario shall be.
Even providing just one input and one expected value is
sufficient.

3) For each test scenario, a behind-the-scenes copy of the
spreadsheet is opened, populated with the input values,
and evaluated. The actual output values are compared
with the expected output values from the test scenarios.

4) The described visual presentation reports any deviation
in comparison between actual and expected output val-
ues to the user.

This workflow can be executed once or iterated multiple
times refining and extending test scenarios while fixing re-
ported deviations. However, just like in software engineering
for traditional software, a detected deviation does not neces-
sarily indicate a fault but can be a false positive due to the
misspecification of the test scenario. This case would require
fixing the specification of the test scenario. Nevertheless,
spreadsheets would not be very flexible if they were not



Fig. 1. SIFEI’s visualization of findings.

subject to frequent change. Many structural changes like the
insertion of new or the removal of old columns or rows
would certainly break all test scenarios if SIFEI stored cell
markings as absolute references (e.g., “F3” or “E15”). To avoid
this problem, SIFEI stores cell markings as hidden names.
Therefore, test scenarios can survive many “typical” changes
to a spreadsheet before having to be adapted.

2) Test Scenario Editor: The scenario editor being part of
SIFEI implements our testing approach. It requires classifying
important cells of the spreadsheet and filling these with input
and expected output values. To demonstrate the editor, we use
an example spreadsheet that calculates the amount of funds
to be repaid for a scholarship (Figure 2). The spreadsheet is
composed of 7 input cells, 3 intermediate calculation cells
and one output cell. The formulas are very simple, with
the exception of the formula in the output cell which uses
VLOOKUP against a 6x51 grid of data cells in the second
worksheet.

For classifying the cells, the user selects one or multiple
cells and hits a button for marking the cell type in the ribbon
bar of SIFEI (Figure 2, A). The button stays highlighted to
indicate the defined cell type. Optionally, the side pane lists all
cells that have already been marked (not shown in Figure 2).

The user enters the scenario creation mode by using a button
in the ribbon menu (Figure 2, A). In scenario creation mode,
all previously marked input cells are overlaid by a graphical
control hiding the value that the cell was previously holding
(Figure 2, B). The control consists of a symbol indicating the
type of cell and a text box allowing the user to enter the
values. For output cells, an additional context menu (Figure 2,
C) allows the user to enter upwards and downwards deviation
intervals as well. To provide a better overview, all created test
scenarios are also shown in the scenario pane (Figure 2, D).
Additionally, a detailed scenario view (Figure 2, E) allows the
user to edit all values of one scenario. (Please note that the
values for the scenario “well degree student” in Figure 2, E
do not match the values shown in Figure 2, B because the
latter values are part of a new and yet unnamed scenario that
has not been saved yet.) SIFEI uses a low-intrusive way to
keep scenarios in the spreadsheet files to enable the reuse of
scenarios in future sessions.

After the user hits the ‘scan’ button in the ribbon menu,
SIFEI passes all specified test scenarios to SIF. Then, for
each defined scenario, SIF instantiates a new copy of the
spreadsheet, fills the input cells with the data specified in the
scenarios, and calculates the output values. Next, for each



Fig. 2. The SIFEI scenario editor.

intermediate and result cell, it compares the actual output
values with the expected output values, taking into account
the acceptable ranges defined in the scenario. Finally, for all
deviations outside of acceptable ranges, SIF computes a report
with findings and sends it back to SIFEI. The findings are
visualized by SIFEI as described above.

V. EVALUATION

We conducted two user studies to investigate the usability
and usefulness of SIFEI. While the first study can be consid-
ered as a formative study to detect and fix usability issues of
the tool, the second study investigates the testing approach in
detail. Since issues raised in the first evaluation were fixed
in the tool and this paper already describes the improved
version of SIFEI, we concentrate on reporting findings of
the second user study. This study focuses on evaluating the
understandability of our testing approach and the applicability
of SIFEI to support it. It was piloted by two participants and

fine-tuned regarding phrasing and task design before running
the actual study.

A. Setup

The study was designed as a “learn–apply–reflect” exer-
cise: In the “learn part”, participants were given a textual
description that explained our cell terminology, the activities
of marking cells, defining scenarios, executing inspections,
and understanding findings by a tiny sandbox example. The
complete description was only four A4 pages long and did not
provide any direct help for interacting with SIFEI.

In the following “apply part”, our participants were asked
to carry out four tasks with SIFEI. For each task, participants
were provided with a task description on one page and a
simple spreadsheet in which they were supposed to carry out
their activities. Thus, the impact from solving previous tasks
correctly or incorrectly was limited for the subsequent tasks.
Very briefly, the tasks were:

Task 1: Mark cell types



Task 2: Create a new test scenario
Task 3: Execute an inspection and interpret the findings
Task 4: Find a failure and specify a test scenario for it
For each task the participants were also provided with “help

cards” (one single A4 paper each). These help cards were
provided turned over and the participants were asked to use
them only if they got stuck.

Finally, in the “reflect part” the participants were asked
questions about their perception of our approach, SIFEI and
their background regarding spreadsheets. After completing the
experiment (including filling out the questionnaire), we also
discussed our observations with the participants informally. In
these informal discussions, we asked the participants which
things seemed intuitive to them from the beginning and which
things confused them.

B. Environment and Participants

The experiments were held one-by-one and on-site in a
quiet room. We used a standard desktop computer for running
SIF/SIFEI. The machine was connected to a 24-inch WUXGA
display and standard input peripherals (keyboard and mouse).
We told every participant that the experiment will go for a
maximum of 50 minutes to provide enough time to complete
the questionnaire in the last part. We did this in order to stay
within the targeted one-hour time frame.

We observed the participants during the experiments by live-
streaming their desktops and took notes on how they interacted
with the tool. We paid special attention to how long they took
for solving which task, pitfalls they encountered when using
SIFEI, and when they used the provided help cards.

We only accepted participants with no profound knowledge
of information science or software technology. We excluded
computer scientists because they typically have a different
background than “casual” spreadsheet users, approach prob-
lems differently, and, thus, are not representative for the tar-
geted user group of our approach. We succeeded in attracting
eight participants: Three aeronautics students, two physics
students, one technician, one office secretary, one mechanical
engineer, and one building physics engineer.

C. Observations

The results from the questionnaire are provided in Table 1.
Below, we want to discuss them together with our observations
of the four tasks:

Task 1: The results from the questionnaire indicate that all
participants support the statement that they perceived marking
input, intermediate, and output cells as easy. Our observations
support these perceptions.

Task 2: The majority of our participants stated in the
questionnaire that they had problems fully understanding the
concept of test scenarios, although they perceived our solution
for creating new scenarios to be acceptable. But from the dis-
cussions in the informal interviews, we gained the impression
that most participants thought they understood the concept
before trying to apply it with SIFEI. Apart from several minor
usability issues, the problem we observed in almost every

Q1 Gender

female male
2 6

Q2 Age group

18-24 years 25-30 years 31-45 years >45 years
4 2 1 1

Q3 Education/studies completed

yes no
6 2

Q4 The phrasing of the tasks was understandable.

Fully agree Not agree at all
1 6 1 0

Q5 Marking cells as input cells or output cells was easy.

Fully agree Not agree at all
6 2 0 0

Q6 The concept of test scenarios was easy to understand.

Fully agree Not agree at all
1 4 3 0

Q7 The creation of test scenarios is solved well.

Fully agree Not agree at all
0 7 1 0

Q8 I believe that failures can be detected easier with SIFEI.

Fully agree Not agree at all
2 6 0 0

Q9 I would use SIFEI to inspect other spreadsheets as well.

Fully agree Not agree at all
1 3 3 1

TABLE I
RESULTS OF THE QUESTIONNAIRE (TRANSLATED FROM GERMAN).

experiment was that, when trying to create a new scenario,
the participants directly started entering data in the input cells
and assumed that the ‘new’ button would create a new scenario
using these values—but to their surprise, the values were gone
(hidden) when entering the scenario editor, so they had to re-
enter them.

Task 3: We did not ask for feedback on this task in the
questionnaire, but observed that most participants had no prob-
lems in executing the inspection and interpreting the results
correctly. The few problems detected were either related to
bugs in the implementation of SIFEI or the participants not
hitting the ‘scan’ button. The latter issue could be remedied
in all cases by instructing our participants to make use of the
provided help cards (some participants seemed to be a bit too
shy to do that).

Task 4: The approaches that the participants took for solving
this task were of particular interest to us, as we wanted to
see whether they learned the lessons taught in the previous
tasks. As we expected, the majority of participants (6 of 8)
solved the task as follows: they tried various combinations for
values in the input cells, changing them until they observed a
failure. Then, they correctly defined the cell types, created a



new scenario, executed it and received a finding. Two of our
participants tried to find the failure by directly specifying test
scenarios and executing them until they got a finding. Interest-
ingly, most of our participants stated in the questionnaire that
they believed that finding failures with SIFEI is easier than
trying without.

D. Lessons Learned

After reflecting on the observations from Task 2, we consid-
ered planning the implementation of a feature that allows users
to import data present in the input cells of the spreadsheet
to a new test scenario—but the downside would be that
the specification of expected results could be biased because
users could have already seen the computed results in the
spreadsheet and simply put them in as expected values.

Especially from the observations of our participants during
Task 4, we learned that the approach intuitively taken by the
majority of our participants indicates that our testing approach
is probably better suited for documenting known failures than
for finding new ones—at least for very simple spreadsheets
like the ones we used in our evaluation.

Yet, the participants principally understood our approach
after practicing it for less than fifty minutes. This is consistent
with the insights gained from the informal discussions: Seven
participants stated that they were confident to have understood
our approach, but they were not yet convinced of its benefits.
In all of these informal discussions, we explained that our
approach provides a regression testing capability that might
come in handy when spreadsheets are shared between users.
After listening to these explanations, all of our participants
stated that they now recognized the major benefit of our
approach. However, please note that this is not reflected in
the results of Q9 of the questionnaire because the interviews
were held after the experiment.

E. Threats to Validity

From our controlled experiment with the small sample
of eight participants, it is not sound to derive quantitative
statements about the actual feasibility of both our testing
approach and the tool support provided by SIFEI.

Certainly, the combined evaluation of both the approach and
the tool in one experiment poses additional threats regarding
the conclusions that can be drawn about the single parts—
but since the proposed approach is not verifiable without tool
support, an isolated evaluation seems even more challenging.

VI. RELATED WORK

We did not find related work that consistently integrates
multiple diagnosis techniques into one spreadsheet environ-
ment, but there are publications concerning visualization of
findings and partially automated testing approaches for spread-
sheets. In the following we describe these works and show how
they compare with our contributions.

Jannach et al. reviewed the literature on diagnosis tech-
niques for spreadsheets [8] and propose a slightly different
classification than the one we proposed in the introduction.

Apart from the different terminology, they also mention
“visualization-based approaches” (e.g., Breviz [9]) that visu-
alize spreadsheets in a different way (e.g., using arrows that
indicate cell dependencies) to aid users in detecting anomalies
more easily. We accounted them as manual approaches and did
not take them into closer consideration because they do not
detect anomalies themselves and, thus, do not visualize any
findings. However, some of the visualization techniques they
employ might be regarded as interesting starting points for
visualizing the context for particular findings (which SIFEI
currently lacks).

Diagnosed findings in spreadsheets need to be communi-
cated to the user. Only referencing the cell in a text output,
however, is not a user-friendly presentation. Instead, visualiz-
ing the finding at the affected cells within the spreadsheet
provides a better solution. A first step in this direction is
coloring defective cells [10] or using a color scale for encoding
severity [11], [12]. But since such colorings only act as
markers, additional information is necessary to understand a
finding. Users might retrieve it on demand using tooltip or
pop-up dialogs [13], [11], [14]. Lists attached to the spread-
sheet may provide an additional overview of all diagnosed
findings [15].

A number of commercial static analysis tools also pro-
vides integration in spreadsheet environments. Kulesz and
Ostberg [16] reviewed a number of practical challenges in
such static analysis tools for spreadsheets and compared them
to static analysis tools for traditional software. Some of these
challenges—especially non-intrusiveness, presentation of find-
ings, handling of false-positives, and the understandability of
the inspection carried out by the tool—can surely be beneficial
for tools that support partially automated detection approaches
as well. Our tool SIFEI tries to incorporate the insights from
the review into the design of its user interaction concept.

Apart from visualizing individual findings, Hermans et al.
promote the use of so-called “risk maps” to communicate the
severity of findings to users [11]. These risk maps are not to be
confused with risk matrices but behave rather like simple heat
maps. To draw them, Hermans et al. first remove all colors
from the spreadsheet and then color the background of cells
depending on the severity of the finding with three different
colors: red, orange, and yellow. Compared with our approach
to use an indicator icon, this is more intrusive because the
original colors are removed.

One of the probably most prominent partially automated
diagnostic approaches is WYSIWYT (What You See Is What
You Test). Initially proposed as a generic approach for test-
ing visual programs [17], it later was fine-tuned towards
the spreadsheet-like programming environment Forms/3 [18],
[5]. WYSIWYT is an incremental and interactive approach
which basically works as follows: Values in input cells are
populated by either the user or a random generator. Next, the
spreadsheet is executed and users are asked to mark the values
in intermediate and output cells as being correct or wrong,
getting feedback about the progress of “testedness” during
this activity. Our approach is different with respect to the



unprejudiced specification of expected output values: Unlike
WYSIWYT, we separate the specification of test scenarios
from the current state of the spreadsheet. We intentionally do
not present results to the users asking them to only check
them for correctness to avoid the problem of overconfidence:
Otherwise, users could tend to inspect the formulas and, e.g.,
assume that a result is correct if the cell only contains a sum
formula referring to the right cells—while, in fact, one of these
cells might be formated as text and not accounted into the sum.
Therefore, we find it worthwhile making users think about
expected output values without seeing the computed result
beforehand.

Ayalew [19], [20] proposes an approach called “interval
testing” where users specify plausible intervals for values in all
numeric cells (i.e., input cells, intermediate cells, and output
cells). Using symbolic execution based on the dependency
chain between these cells, an interval for the minimum and
maximum possible values for each intermediate and result cell
is computed. Then, these bounding intervals are compared with
the intervals specified by the user and mismatches reported
as findings that can be traced using the dataflow information
[21]. Compared with our approach which asks the user to
specify multiple test scenarios, the specification of global
boundaries is sufficient for interval testing. But this is a
trade-off as the chance to detect anomalies is smaller if only
boundaries of values are concerned. Ayalew argues that one of
the reasons that motivated him in choosing this trade-off was
the spreadsheet users’ lack of patience and expertise to run
a lengthy suite of test cases. We try to mitigate this issue by
providing the ability to run the test suite automatically once
the test scenarios are specified.

Regression testing is a standard diagnosis technique for
professional software engineers. Unit testing frameworks are
integral parts of many IDEs. For instance, JUnit as integrated
in Eclipse shows a list of defects and connects these to the test
cases that caused them. Pinpointing the defect location within
the productive code is more difficult than in spreadsheets but
can be estimated using, for instance, spectrum-based fault
localization [22], [19], [23]: a computed defect probability for
each statement is visualized in the background of the code.
Combining this approach with a back-in time debugger further
eases the fault localization process [24]. Other information
that might help debugging has also been visually integrated
into source code, such as software metrics [25] or runtime
consumption of methods [26].

Debugging is also the primary goal of the EXQUISITE
approach proposed by Jannach et al. [15]. At first glance,
EXQUISITE has several similarities with our approach
(e.g., they also visualize findings individually when the
user highlights them). However, its interaction design fol-
lows the WYSIWYT approach and allows users to flag the
(in)correctness of single values in cells independent of test
cases. They extend the WYSIWYT approach and allow users
to flag complete test cases (consisting of input and output val-
ues) as correct or incorrect. By providing values for incorrect
cells, the user can also quickly transform negative test cases

into positive ones. Although the specification of test cases in
EXQUISITE is also carried out in a different view (“debug
mode”), it does not hide the values in the spreadsheet and,
thus, might suffer from the overconfidence problem as well.

A fundamental difference between our approach and
EXQUISITE as well as of all the other approaches discussed
in this section is the way how the meaning of cells (input,
intermediate, and output cells) is retrieved. We have the only
approach that does not retrieve the meaning automatically
without the help of the user. Kulesz [27] argues that automatic
retrieval of cell meanings is problematic because there are
cases where automatic detection would fail. One example
is when spreadsheets contain so-called “test formulas” [28]
that are formulas meant to check output cells—automatic
approaches would regard them as output values, while in fact
the user would regard the intermediate cells they refer to as
output cells. Another example are input cells that the user
regards as constants and, thus, would never expect them to
change across different test cases. Thus, such misconceptions
about cell meanings might become apparent when explicitly
classifying cell meanings.

Hermans [28] evaluated 4000 spreadsheets from the EUSES
corpus [29] (a corpus of “random” spreadsheets which were
publicly accessible on the Internet in 2005). She found that
8.8% of all unique formulas in this spreadsheet sample were
actually unique test formulas. This means that a significant
number of cells that would be typically detected as output
cells actually contain formulas that only serve the purpose of
error handling. Hermans proposes to help users to increase
the quality of these formulas by increasing the test coverage
of these formulas and proposes the “Expector” approach to
achieve this goal. Although we see the benefits in increasing
test coverage, we do not want to support users in practicing this
style of defensive programming. Therefore, we do not store
our user-specified test scenarios in locations that are visible
during normal use. Instead, we clearly separate the production
code (formulas in the spreadsheet) from the testing code (cell
markings and test scenarios).

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a partially automated testing
approach for detecting failures in spreadsheets, where the
output of the spreadsheet does not match the user’s expec-
tations. The approach differs in a number of key concepts
from existing approaches. It propagates a new user interaction
design that allows users with no previous knowledge about
testing to create test scenarios and interpret findings from their
execution. Our tool SIFEI integrates the approach with the
popular spreadsheet execution environment Microsoft Excel.

The conducted qualitative evaluation indicates that the test-
ing approach is understandable in less than 50 minutes even
for casual spreadsheet users. Furthermore, the results show
that, with the help of SIFEI, our proposed testing approach
can be successfully applied in practice—at least in the tested
scenario for simple spreadsheets.



Nevertheless, one important question yet neglected is the
motivation of end-users to use our approach or spreadsheet
testing in general. Just because end users would succeed in test
case specification, it does not mean that they will also create
them from their own initiative. Good motivation strategies
(e.g., [30]) are needed to convince end-users to carry out
activities that should have positive long-term effects but do
not show immediate benefits for the tasks users are solving
using spreadsheets.

We learned from traditional software engineering that the
most effective strategy for detecting anomalies is the combi-
nation of different techniques (i.e., static analysis, unit testing,
system testing, manual reviews). We are convinced that this
holds true for spreadsheet as well and, thus, it is worthwhile
to further exploit the path of integrating multiple anomaly
diagnosis techniques for spreadsheets.
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