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Abstract

In this work, we present an automatic code generation process from conceptual models. This process
incorporates the use of design patterns in OO-Method, an automated software production method, which is
built on a formal object-oriented model called OASIS. Our approach defines a precise mapping between
conceptual patterns, design patterns and their implementation. Design patterns make the code generation
process easy because they provide methodological guidance to go from the problem space to the solution
space. In order to understand these ideas, we introduce a complete code generation process for conceptual
models that have dynamic specialization relationships. This proposal can be incorporated into CASE tools,
making the automation of the software production process feasible. � 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Interest in automatic software production is continuously increasing. Currently, most com-
mercial CASE tools offer some contribution in this area. In these tools, conceptual models are the
starting point of the code generation process. Generally speaking the elements used by these tools
in the Conceptual Modeling phase do not have a well-defined semantics. This lack of rigor makes
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it difficult to produce software which is functionally equivalent to the conceptual model in an
automated way. Thus, it may be of interest to pose new production processes which are oriented
towards automated software production.

In this work, we present a code generation process that obtains the representation in the solution
space of conceptual patterns 1 specified in the conceptual modeling phase (problem space). This
process is an essential part of an automatic software production method called the OO-Method
[23,24]. The OO-Method provides an object-oriented conceptual modeling environment that in-
cludes model-based code generation capabilities and integrates formal specification techniques
(the OASIS formal language) [18,25] and conventional notations like UML [12]. The process
incorporates the use of patterns (architectural [6] and design [10]) to obtain the application ar-
chitecture and its implementation. The use of patterns offers interesting benefits:
• It is useful for structuring the code generation process.
• It provides quality design solutions that are abstract enough to be used in any programming

language.
In order to understand these ideas, we introduce a complete code generation of conceptual

models that contain dynamic specialization relationships. The dynamic specialization conceptual
pattern can have several interpretations when it is used in the conceptual modeling phase. It can
be very difficult to implement if it does not have a precise semantics. There exist several ap-
proaches [7,14,33,40] that have accurately defined the semantics of dynamic specialization;
however, they have not implemented it. OO-Method dynamic specialization is based on the in-
heritance formal model defined in OASIS [18]. The OO-Method has been created on the formal
basis of OASIS. In fact, the OO-Method graphical notation is based on OASIS abstractions. Our
proposal deals with the dynamic specialization from its specification in the problem space to its
implementation in the solution space.

This paper is organized as follows: Section 2 presents a series of existing problems in current
software production and introduces a solution based on the OO-Method automated code gen-
eration process. This section shows the basic ideas of the OO-Method approach and explains the
Execution Model as an essential element in achieving complete code generation. It also details
the phases of the code generation process proposed by the Execution Model. Section 3 presents
the conceptual pattern dynamic specialization in the problem space. It explains its semantics
showing how it is specified in OASIS and presents how the conceptual pattern is modeled using
the OO-Method graphical notation. Section 4 shows the application of the code generation
process to translate the dynamic specialization concept to the corresponding software represen-
tation in the solution space. In this section, we explain how design patterns are incorporated into
the code generation process, and we explain how to define the mapping between the conceptual
pattern and a given set of design patterns (in this case State and Template Method patterns [10]).
These patterns allow us to implement the structure and behavior of dynamic specialization by
applying the Execution Model proposed by the OO-Method. To understand this proposal, we will
include an example of Java code generation that follows the code generation process shown in
Section 2. Section 5 analyzes related works and Section 6 presents conclusions and further work.

1 In our approach the term conceptual patterns is used to refer to the conceptual structures, concepts or abstractions

that are used to represent elements and their relations in an application domain. We apply this term in the conceptual

modeling context.
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2. From problem space to solution space. The OO-Method approach

In current software development proposals [37], design patterns act as a bridge between con-
ceptual patterns in the Domain Model and their implementation. Some problems are detected
when analyzing how to achieve the transition between domain models and their implementation
through design patterns:
• Industrial Object-Oriented (OO) Modeling Methods do not clearly describe domains because

the languages that they use are not rich enough.
• Design Patterns are too general and not formalized enough.
• There does not exist a precise mapping between domain models, design patterns and software

components.
• The transition between domain models, design patterns and software components is manually

achieved. The implementation of conceptual pattern behavior is left to the programmer.
These problems make it difficult to build tools that are capable of producing software systems

in an automatic way.

2.1. A possible solution

These problems can be solved by:
• Using Formal Languages (FL) or models based on FL to describe Conceptual Patterns in a

precise way. We will use the OASIS formal model to specify conceptual patterns such as static
and dynamic specializations, role classes, and several kinds of aggregation.

• Specializing Design Patterns (State, Role Object, Composite, Template Method, etc) to support
the Conceptual Patterns used in Domain Modeling.

• Defining precise mappings between Conceptual Patterns and Design Patterns. These mappings
must preserve the semantics of conceptual patterns.

• Defining an execution strategy to implement the behavior of Conceptual Patterns.

2.2. The OO-Method approach

The ideas presented above can be joined in a software production method that will give support
to an automatic code generation process from conceptual models. The OO-Method is an auto-
mated software production method based on a formal object-oriented model called OASIS. The
OO-Method provides a methodological approach that follows two phases (see Fig. 1):
1. The building of a Conceptual Model that collects the Information System’s relevant properties

(static and dynamic). To model system properties we provide to the modeler a well-known
graphical notation (UML compliant). A formal and OO OASIS specification is obtained from
the system description using a well-defined translation strategy. This translation process can be
done because there is a well-defined one to one mapping between the graphic modeling elements
and the concepts of the specification language. The Conceptual Model is placed in the problem
space.

2. The application of an Execution Model to the Conceptual Model obtained in the previous
phase. This Execution Model is a propietary strategy (introduced by our method) that accu-
rately states the implementation-dependent features in order to represent the Conceptual Model
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in a given development environment. This model proposes a code generation strategy, which
obtains the representation of the modeling elements in a selected programming language ac-
cording to a set of specific patterns. The Execution Model is placed in the solution space.

2.3. The execution model and the automated code generation

The Execution Model is essential to achieving a systematic and automated transition from
Problem Space to Solution Space. The OO-Method proposes an abstract execution model that
builds a representation of the conceptual model (including static and dynamic aspects) for any
target software development environment starting from the system specification.

The Execution Model provides:
• An architecture for the system by means of architectural patterns.
• A code generation strategy to obtain the software components of the architecture. It is based on

specialized design patterns and an execution strategy that objects must follow.

2.3.1. Application architecture
An important step in the application design process is the definition of the application archi-

tecture. For this purpose, we use architectural patterns which are adapted to the characteristics of
the target application. In the OO-Method, we apply the multitiered architecture for developing
business applications. This architectural pattern divides the application into three logical tiers: the
interface tier, the business tier and the persistence tier. The selection of this pattern is due to the

Fig. 1. Graphical representation of the OO-Method models.
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high degree of independence that exists between components at different tiers. It is a closed ar-
chitecture 2 [29] that reduces the dependencies between tiers, and it allows for making changes
easily. Architectures of this kind allow us to structure the code generation process by distributing
the application in three logical tiers in a suitable way.

Once the architecture has been defined, it is necessary to obtain the software components that
implement the functionality corresponding to the tiers. In this work, we are going to focus on the
code generation strategy that allows us to obtain the software components of the business 3 tier in
a systematic way. These components completely implement the structure and behavior of con-
ceptual patterns. In this proposal, the dependencies between tiers are not showed in order to
provide a more generic solution for conceptual pattern implementation. In this way this solution
can be applied to another software architectures.

2.3.2. The code generation strategy
The code generation strategy defines precise mappings between conceptual patterns (special-

ization, aggregation, role classes) and its representation in a software development environment.
The basic elements of this strategy are the use of design patterns and the application of an exe-
cution strategy.

The input to this process is a conceptual model (in graphical and textual mode). It is made up of
a set of conceptual patterns based in OASIS concepts. The code generation strategy follows the
steps below (see Fig. 2):
1. Design patterns selection and/or creation. Starting from the OASIS concepts, we have to look

for and/or build design patterns that allow us to face the problem of properly representing
the conceptual patterns in the solution space. In this step it is necessary to have a clear idea
of the possible mappings between conceptual and design patterns. Design patterns can be
adapted/specialized in order to support the modeled abstractions.

2. Representation of the structural relationships preserving the semantics of OASIS concepts. A set
of mappings between design patterns and conceptual patterns must be defined. In this step, we
determine the structure of classes in the solution space that implements the classes in the prob-
lem space in a way that preserves its semantics.

3. Implementation of the behavior associated to service execution. An execution strategy will be im-
plemented to assure that the implementation of a service accurately represents the effect spec-
ified in the conceptual model. The execution strategy is a key element in the code generation
process. It is a set of actions that implements the effect of a service execution. This strategy con-
stitutes the basis for generating the behavior of software components in the application tier.
Following the OO-Method approach, an object service execution is characterized by the occur-
rence of the following sequence of actions:
(a) Check state transition: verifies that a valid transition exists for the selected service in the

current object state of its State Transition Diagram (STD). 4 The STD specifies the process
that represents the valid object life cycle for each class.

2 One tier only uses services from the tier immediately below it.
3 The OO-Method provides a complete process of code generation that includes the User Interface generation. It is

generated using the information modeled in a Presentation Model placed at the Conceptual Level.
4 Similar to the step semantics of the Object Life Cycle Diagrams introduced in [30].
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(b) Precondition satisfaction: checks whether the precondition associated to the service holds.
If either (a) or (b) fails, an exception will arise informing that the service cannot be executed.

(c) Valuation fulfillment: the induced service modifications take place in the current object
state.

(d) Integrity constraint checking in the new state: the integrity constraints are verified in the
final state to assure that the service execution leads the object to a valid state. If the
constraint does not hold, an exception will arise and the previous change of state is
ignored.

(e) Trigger relationships test: the set of condition-action rules that represents the internal sys-
tem activity is verified after a valid change of state. If any of them hold, the specified ser-
vice will be triggered.

The previous steps guide the implementation of any program to assure the functional equiv-
alence between the object system specification collected in the conceptual model and its reification
in a programming environment. This strategy will be implemented using an algorithm based on
the Template Method design pattern.

The process of searching and specialization of design patterns (step 1), the definition of the
mappings (step 2), and the definition of the execution strategy (step 3) is defined (manually) by our
approach for every kind of conceptual pattern. The code generation strategy constitutes the basis
for the building of code generators that automate the software production process. The code
generators take a conceptual model as a source specification and generate code for this model
which is consistent with its semantics. This code is obtained by automatically applying the

Fig. 2. Code generation strategy.
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specialized design patterns and the defined mappings to the conceptual patterns included in the
conceptual model.

We will choose a basic conceptual pattern (present in OO-Method/OASIS) on which to apply
the code generation strategy defined by the Execution Model. The selected conceptual pattern is
the dynamic specialization. In the following section, we are going to show (step by step) how to
cover the distance between the dynamic specialization in the problem space and the solution
space.

3. Dynamic specialization in the problem space

The input to the code generation process will be the conceptual pattern specification. In this
section, we are going to introduce how the dynamic specialization is specified in the problem space
in an intuitive way. We will present its properties, its semantics, its specification in OASIS, and
how it is modeled using the graphical notation that the OO-Method provides.

3.1. Formal semantics

The OASIS formal model defines the conceptual patterns used by the OO-Method in the
conceptual modeling phase. In this section, we are going to show the properties of the OASIS
dynamic specialization.

3.1.1. OASIS basic concepts
Open and Active Specification of Information Systems (OASIS) is a formal approach for

object-oriented conceptual specification of information systems. An OASIS specification is a
presentation of a theory in the formal system used and is expressed as a structured set of class
definitions. Classes can be simple or complex. A complex class is defined in terms of other classes
(simple or complex) by establishing relationships among classes. These relationships provide
aggregation or specialization mechanisms. A class has a name, one or more identification mech-
anisms for its instances (objects) and a type or template that is shared by every instance belonging
to the class. Each object has a unique identifier (oid) set by the system; however, objects are re-
ferred by their identification mechanisms which belong to the problem space. A function estab-
lishes a mapping between the identification mechanisms and the oid. The type or template
describes the structure and behavior of every object.

Thus, each object encapsulates its own state and behavior rules. As is usual in object-oriented
environments, objects can be seen from two points of view: static and dynamic. From the static
perspective, the attributes are properties describing the object structure. The object state at a given
instant is the set of structural property values. From the dynamic perspective, the evolution of
objects is characterized by the ‘‘change of state’’ notion. The occurrence of actions implies
changes (by means of valuations and derivations) in the values of the attributes. Object activity is
determined by a set of rules: a process, preconditions, triggers, and transactions.

The OASIS semantics can be found in [18], where the formulas and process specifications that
are used to specify the sections of an OASIS class template are introduced. The complete class
template is a set of formulas that belongs to a Dynamic Logic variant formalized in [20].
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3.1.2. Specialization in OASIS
In OASIS , IsA relationships are basically expressed by means of two types of relations between

classes: specialization (with static and dynamic partitions) and player/role. They establish an in-
cremental specialization mechanism for class properties and a pre-order relation between class
templates. In OASIS, specializing a class means to create one or more partitions of it. A partition
is a set of subclasses that specializes the superclass taking into account some criterion. A super-
class can be partitioned into one or more partitions. An object, at a given instant, is an instance of
one subclass in every partition. In this paper, we are going to focus on dynamic partitions. Next,
we give the characteristics of dynamic partitions.

3.1.3. Dynamic partitions and dynamic specialization
Instances in a dynamic partition can migrate between subclasses during their lifetime. This

feature is called dynamic specialization. Object migration between subclasses is produced by the
occurrence of actions (transition between subclasses is specified in OASIS by means of a migration
process, see Example 1) or by attribute values (specified in OASIS by means of conditions over a
variable attribute, see Example 2).

Example 1. A dynamic specialization of class car produced by the occurrence of the actions
new_car, and repair_car in OASIS:

working, broken_down dynamic specialization of car

migration relation is

car¼new_car.working;
working¼break_down.broken_down;
broken_down¼repair_car.working;

The syntax of the migration process uses process terms of a process algebra which is based on
the approach introduced by Wieringa [39]. In this example car, working and broken_down
are process variables that represent a state in a process. The name of these variables is the name of
the classes involved in the partition. The migration process specifies the sequence (using the se-
quence operator (.)) in which an object migrates from one subclass to another subclass in the
partition due to an action ocurrence. The interpretation of the migration process of the example is
that the creation of a car instance (new_car action) implies that it starts belonging to the
working class. The action break_down implies leaving the subclass working and migrating
towards broken_down class. The action repair_car implies leaving the subclass bro-

ken_down and migrating towards working class. As an instance of the working class, actions
from car and working templates can be recognized.

From a theoretical point of view, the process representing the life of a car instance is the union
of the processes defined in every subclass. The connections among subclasses are given by the
actions included in the migration process.

Example 2. A dynamic partition of the class person defined over the age attribute:

child where {age<13}
teenager where {13<¼ age and age<¼ 19}
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adult where {19<age}
dynamic specialization of person;

In this example, when the attribute age changes, the instance of person could migrate be-
tween subclasses child, teenager and adult, depending on the specified conditions.

In this model a partition is always a disjoint cover of a set of subclasses. In order to assure that
these properties always hold in a dynamic partition defined over a variable attribute, we require to
the modeler that: (1) the rank of values that the attribute can take in a specialization condition
must be disjoint with respect to the values that it can take in the other specialization conditions
(those specified for the other subclasses of the partition); (2) specialization conditions must cover
every possible value that the attribute can take in the system.

3.1.4. Characteristics of a subclass in a dynamic partition
Given a dynamic partition fS1; . . . ; Sng of the class P:

• The set of properties of any subclass Si is given as follows:
� AtrSi ¼ AtrP (attributes of P)[AtrSi (emerging attributes of Si).
� EvSi ¼ EvP (events of P)[EvSi (emerging events of Si).

• We have behavioral compatibility 5 between P and fS1; . . . ; Sng. Thus, the set of properties of
any subclass Si in the partition must fulfil the following constraints to maintain the behavioral
compatibility:
� Valuation formulae in Si can only modify emergent attributes, and also inherited attributes

without valuation in P. The set of valuation formulae of Si is the union of valuations of P
and Si.

� If a precondition (or prohibition formulae) is redefined, then the new condition must imply the
P condition. The set of preconditions of Si is the union of preconditions of P and Si, over-
writing the redefined preconditions.

� Triggers and integrity constraints are established in the same way as preconditions.
� The process that represents the life of an object of the parent class is the union of the pro-

cesses defined in each subclass. Because of this, if an object behaves following the STD of
the subclass, it also will behave like the STD of the parent class since the subclass STD is
a subset of the STD of the parent class.

3.2. Graphical modeling

In this section we are going to introduce how the OASIS dynamic specialization is modeled by
using the OO-Method graphical notation.

3.2.1. Modeling in the OO-Method
Firstly we introduce the notation that OO-Method provides for the conceptual modeling step.

The concepts attached to the OASIS formal model determine the relevant information that is

5 The term behavioral compatibility was introduced by Wegner and Zdonik [38] and means that instances of

subclasses behave like instances of the parent class when operations defined in parent class are executed.
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necessary to detect in the conceptual modeling phase for building the conceptual schema of an
information system. For this purpose, the OO-Method provides a graphical notation that is
constituted by three models. The diagrams which are associated to these three models respect and
extend the UML notation; however, their semantics are conceived to properly represent only the
set of information that is really necessary to describe the information system. The three models
that the OO-Method provides are the following:
• Object Model. A graphical model where system classes including attributes, services and rela-

tionships (aggregation and specialization) are defined. Additionally, agent relationships are in-
troduced to specify who can activate each class service (client/server relationship). The
corresponding UML base diagram is the class diagram, where the additional expressiveness
could be introduced by using the needed stereotypes which is a useful UML facility.

• Dynamic Model. A graphical model used to specify valid object life cycles and interobject inter-
action. We use two kinds of diagrams:
� State Transition Diagram (STD) to describe correct behavior by establishing valid object life

cycles for every class. By valid life, we mean a correct sequence of states that characterizes
the correct behavior of the objects. Transitions represent valid changes of state that can
be constrained by introducing preconditions and control conditions. Preconditions are those
conditions defined on the object attributes that must hold for a service to occur. Control con-
ditions are conditions defined on object attributes to avoid the possible non-determinism for
a given service activation. The corresponding UML base diagram is the state transition dia-
gram.

� Object Interaction Diagram represents interobject interactions. In this diagram, we define two
basic interactions: triggers, which are object services that are activated in an automated way
when a condition is satisfied, and global interactions, which are transactions involving ser-
vices of different objects. The corresponding UML base diagram is the collaboration dia-
gram.

• Functional Model. In this model, the semantics associated to any change of an object state is
captured as a consequence of a service occurrence. To do this, it is declaratively specified
how every service changes the object state depending on the arguments of the service involved
(if any), and the object’s current state. A clear and simple strategy is given for dealing with the
introduction of the necessary information. The relevant contribution of this functional model is
the concept of the categorization of attributes [23]. Three types are defined: push-pop, state-in-
dependent and discrete-domain based. Each type will fix the pattern of information required to
define its functionality. In short, Push-pop attributes are those whose relevant services increase,
decrease or reset their value. State-independent attributes are those having a value that depends
only on the latest service that has occurred. Discrete-domain valued attributes are those that
take their values from a limited domain. The object reaches a specific state, where the attribute
value can be specified, through the activation of carrier or liberator services. This categoriza-
tion of the attributes allows us to generate a complete OASIS specification in an automated
way, where a service functionality is completely captured.
From these three models, a corresponding formal and OO OASIS specification is obtained

using a well-defined translation strategy. The resultant OASIS specification acts as a complete
high-level system repository, where the relevant system information, coming from the conceptual
modeling step, is captured.
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3.2.2. Dynamic specialization modeling
The specialization is represented in the OO-Method Object Model adapting the notation that

the UML class diagram provides. We can see in Figs. 3 and 4 two alternative graphical notations
to model specialization relationships. These two types of representations do not force a particular
semantics; however, in the OO-Method notation we are going to give a different semantics to each
representation. Subclasses whose arrows are joined into one arrow, constitute one partition (see
Fig. 3), and a subclass that has its own arrow (arrow is not shared with other subclasses) con-
stitutes one partition on its own (see Fig. 4).

We use the type of class diagram shown in Fig. 3 to represent a dynamic partition. We will add
a discriminator label and a stereotype label (‘‘dynamic’’) to the proposed class diagram in order to
represent the specialization criterion and the type of specialization, respectively. Both labels are
attached to the specialization arrow. In addition to these labels, in the dynamic model it will be
necessary to specify a state transition diagram (called migration diagram) attached to each dy-
namic partition. This diagram will model the migration process. In this diagram, we will specify
any constraint that we want to impose with regard to the allowed transitions between subclasses
of the same partition. The allowed transitions between subclasses can be caused (as we have seen
previously) by the occurrence of events or by attribute values. The proposed notation for mod-
eling the migration constraints of a dynamic partition will be one of the following:
• By event occurrence. Events will label the transitions between the migration diagram states. The

states of the migration diagram will match each one of the partition subclasses (see Fig. 6 for
the migration diagram of the dynamic specialization shown in Fig. 5).

• By attribute value. We can use one or both of the following techniques:
� Migration constraints could be attached to each subclass in the class diagram. An object will

migrate to a subclass in the partition if the constraint attached to the target subclass holds
(see Fig. 7).

Fig. 3. Graphical representation of a partition.

Fig. 4. Graphical representation of three partitions.
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� Migration constraints could be defined in the migration diagram. The migration constraints
will act as guards (nothing happens if condition is false) on the transitions of those events
that modify the attributes included in the migration constraints. These events will label
the transition between the migration diagram states (see Fig. 8). This technique is more ex-
pressive than the specification of migration constraints. On the other hand, the use of the
migration constraints is easier.

In Figs. 5 and 7, there are two class diagrams (in OO-Method notation) modeling a dynamic
specialization of class Employee. Both examples are modeling that any Employee must be a

Fig. 6. STD representing the migration process of Employee class in Fig. 5.

Fig. 5. Dynamic specialization of employee based on migration events.

Fig. 7. Dynamic specialization of employee based on attribute values.
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Seller or a Manager. In Fig. 5, when an Employee is created, it starts by belonging to a
Seller subclass. The action promote implies leaving the subclass Seller and migrating to-
wards Manager subclass. A Manager can be demoted; this action migrates the object towards
Seller class. This semantics is specified by a STD in Fig. 6 that represents the migration dia-
gram. The class diagram of Fig. 7 is another example of dynamic specialization. This example
defines a different migration constraint based on variable attributes. Its corresponding migration
diagram is shown in Fig. 8. When an Employee is created, it starts by belonging to a Seller or
Manager subclass depending on the initial value given to the salary attribute. If a seller is paid
and the salary is greater or equal to $2000, then the Seller leaves the subclass Seller and mi-
grates towards the Manager subclass. If a manager is paid and the salary is less than $2000, then
the manager migrates towards the Seller class. These examples will be used to illustrate the
code generation process.

4. Dynamic specialization in the solution space

In this section, we are going to present how the code generation strategy is applied to a dynamic
specialization which is specified in the problem space. Firstly, the process of choosing a design
pattern that fits easily into the dynamic specialization will be introduced. In the second subsection,
the mappings that define how to represent the structure of a dynamic specialization by means of
the selected design pattern are introduced. In the third subsection, how to implement the object
behavior following the execution strategy will be presented. Finally, the implementation of the
constructors, the destructors, and the migration events will be introduced.

4.1. Choosing a design pattern. The State pattern

The implementation of the dynamic specialization requires great effort because mainstream OO
programming languages only support single static classification. Currently, there are several
techniques that are used to implement dynamic specialization: flags, delegation to a hidden class,
replacement and the State design pattern [9]. Among them, the State pattern solution fits very well
with the semantics of the dynamic specialization in OASIS.

The State pattern is a behavioral pattern [10] that allows an object to alter its behavior when its
internal state changes. The object will appear to change its class. This solution is based on the
delegation to a hidden class technique. This delegation is possible because all the subclass methods

Fig. 8. STD representing the migration process of employee using attributes.
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are moved to the superclass interface, and an instance variable is defined in the superclass to
reference an object of one of the subclasses. The State pattern is characterized by three kinds of
participant classes: ConcreteState, State and Context. The ConcreteState are subclasses of the class
State. Each subclass implements the state-dependent behavior of the Context class. The State class
is an abstract class 6 that defines an interface for encapsulating the behavior associated with any
particular state of the Context. The Context class interface has all the methods of the Concre-
teState subclasses. It maintains an object-valued attribute that will store an instance of a Con-
creteState subclass. This attribute defines the current state of the Context class and it is called
State Object. Context class will delegate state-specific behavior to the State Object.

4.2. Representation of a dynamic partition using the State pattern

The next step in the code generation process is the representation of the structural relationship
induced by the conceptual pattern on a design structure. This process will be carried out in such a
way that the final implementation must preserve the semantics of the conceptual pattern ac-
cording to the OASIS object model. In order to achieve this purpose, we will define a series of
mappings between the selected design pattern and the conceptual pattern. These mappings will
allow us to obtain a specialized design pattern with a precise semantics. The mappings will de-
termine:
• The structure of the classes in the solution space that implements the conceptual pattern in the

problem space. This step provides:
� The distribution of attributes in each class of the design structure.
� The methods that implement the events.
Next, we are going to introduce how to define the proposed mappings. We are going to use the

example of Fig. 5 to document the code generation process using Java as the programming
language.

4.2.1. Defining the structure of the classes
Given a dynamic partition fS1; . . . ; Sng of the class P, its representation (see Fig. 9) will be

determined by the classes CP (Context), CA (State) and fC1; . . . ;Cng (ConcreteState), such that:
• CP will have:

� A set of attributes AtrCP that are not modified by any class in the partition, and one attribute
ACA (called State Object) that will store an object of one of the subclasses in fC1; . . . ;Cng.

� A set of public methods MCP that implement the events EvP [ EvS1 [ � � � [ EvSn . EvP will be
completely implemented in class CP . EvS1 [ � � � [ EvSn will be implemented through delegation
to the object ACA .

• CA is an abstract class that will have:
� A set of attributes AtrCA ¼ AtrS1 \ � � � \ AtrSn .
� A set of public abstract methodsMCA that defines the interface necessary to implement the set

of events EvCA ¼ EvS1 [ � � � [ EvSn . Each subclass in fC1; . . . ;Cng will redefine these methods.

6 In non-OO languages that support interfaces (like MS Visual Basic), we can substitute the term interface for abstract

class.
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• fC1; . . . ;Cng are subclasses of CA and each Ci will have:
� A set of attributes AtrCi to store AtrSi (emergent attributes of Si).
� A set of public methodsMCi that implement EvSi (emergent events of Si) through redefinition.
We have adopted the Data Members pattern [8], a variation of State, to know the attributes

that each class will have in the pattern. It is important to note that, in the structure of the classes
CP and CA, we must define an additional attribute (which is not present in the signature of the
OASIS class) in order to store the current object state in the STD.

To illustrate the code generation process, we are going to use the example of Employee shown
in Fig. 5. Fig. 10 shows the design (in UML notation) after applying the mappings proposed. Its
implementation in Java is the following:

public class Employee

{
String name;

StateObject StateEmployee;

String StateSTD;

// current state in the STD
public Employee();

Fig. 9. Class structure of State pattern.

Fig. 10. Mapping the employee dynamic specialization into the State pattern.
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public create();

// constructor method
public void pay();

public void promote();

public void demote();

public void assign();

public void sell();

public String class_name();
// returns the class name of the current State Object

}
abstract public class StateEmployee

{
protected int salary;

protected String StateSTD;

� � �
public abstract void pay();

public abstract void promote();

public abstract void demote();

public abstract void sell();

public abstract void assign();

public abstract String class_name();
// returns the class name of the current State Object

}
private class Seller extends StateEmployee

{
protected int sales;

� � �
public void pay();

public void promote();

public void sell();

}
private class Manager extends StateEmployee

{
protected int n_projects;
� � �
public void pay();

public void demote();

public void assign();

}

Method implementation and delegation. The implementation of the methods included in the class
structure will be carried out in the following way:
• The state independent behavior (EvP events of the P class) will be implemented in CP class by the

MCP methods.
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• The implementation of the MCP methods that implement the effect of the state dependent events
EvS1 [ � � � [ EvSn (events which depend on the class of the dynamic partition) will be done
through delegation on the object stored in ACA .

• The methods of the CA class will be abstract and will be redefined by each class in the partition
fC1; . . . ;Cng.
In the dynamic partition of the example, each subclass will earn a different salary; therefore,

the method that implements the event pay in class Employee will behave depending on the
active subclass. Thus, the implementation of the pay method will delegate to the State Object.

public void pay()

{
StateObject.pay();//delegates on StateObject

};

4.3. The execution strategy and the Template Method pattern

The last step in the code generation process is the implementation of the behavior which is as-
sociated to the service execution. This behavior is based on the execution strategy introduced
previously. We apply the Template Method pattern to implement the behavior of object services
that follow the execution strategy. The Template Method defines the skeleton of a generic algo-
rithm. Subclasses can redefine some steps without changing their structure.

The execution strategy defines the following sequence of actions in detail:
• Checking state transition correctness.
• Checking precondition satisfaction.
• Valuation fulfillment.
• Integrity constraints checking in the new state.
• Testing trigger relationships.

This set of actions constitutes a generic algorithm that has to be applied to any service execution
in order to guarantee that objects behave according to the execution model of the OASIS formal
model. This algorithm will always be the same, only the implementation of actions can be re-
defined in the subclasses.

We will apply the Template Method pattern to the State pattern in the following way:
• CP , CA and fC1; . . . ;Cng classes will declare the methods that implement the actions defined in

the execution strategy to be protected 7 (only visible to subclasses).
� CP will implement the actions that do not depend on the active subclass of the partition.
� CA will define the execution model actions as abstract methods.
� Each class in fC1; . . . ;Cng will redefine the corresponding method in CA if any precondition,

valuation, integrity constraint or trigger has been added or redefined. 8 Following the guide-
lines defined to respect the behavioral compatibility we have that:

7 It should be abstract in CA.
8 If no formula has been added or redefined the method will be implemented as a blank method. It is not necessary to

include any exception handling in the method implementation because the code generation process proposed guarantees

that this code will not be accessible in this situation.
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– valuations will be the union of the valuations defined for the subclass and its superclass;
– preconditions, integrity constraints, triggers and processes will be those defined for the sub-

class if it has redefined them (redefinitions are expected to respect the behavioral compat-
ibility so that the most restrictive will prevail). Otherwise, they will be those defined in the
superclass.

• Events specified in the conceptual model will be implemented by means of public methods.
These methods will implement the execution strategy algorithm.
As an example, we can see the declaration of the Seller class and the implementation of its

pay event following the execution strategy:

public class Seller extends StateEmployee

{
� � �
// methods that implement the actions of the execution strategy

protected void check_state_transition(String Service);

protected void check_preconditions(String service);

protected void check_integrity_constraints();
protected void check_triggers();
protected void do_pay();
// valuation of pay event
protected void do_sell();
// valuation of sell event
// methods that implement events pay and sell
public void pay();

public void sell();

};

For instance the pay method declared in the Seller class will have the following body:

public void pay()

{
check_state_transition(‘‘pay’’);
check_preconditions(‘‘pay’’);
do_pay();
check_integrity_constraints();
check_triggers();

};

Having presented the design pattern that implements the algorithm to activate a service, the
next step is to describe how the primitive operations (steps in the execution strategy) proposed in
the algorithm that has been presented above are implemented.

4.3.1. Checking state transition correctness
The first step in the execution strategy is to check that a valid transition exists in the STD

specified in the conceptual modeling phase. There are basically three different ways to implement
the verification of a valid state transition; conditional logic, the State pattern or a state machine
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interpreter that runs against a set of state transition rules. It has been recognized that the ap-
plicability of the state pattern may not be suitable if there are many states in the system [10]. The
implementation of a state machine interpreter is beyond the scope of our proposal. Consequently,
we have chosen the use of conditional logic.

An STD belonging to a given class C could be seen as a directed graph G ¼ ðS; T Þ such
that:
• S is a set of possible object states that are represented by graph nodes, and
• T is a set of state transitions represented by labeled arrows.
A state transition t 2 T is a tuple ðsi; sj; e; p; ccÞ where
• si is the source state of t,
• sj is the destination state of t,
• e is a service of class C signature,
• p is an optional precondition attached to e, and
• cc is an optional control condition of transition t.

In order to generate the check_state_transition method that verifies whether a valid
transition exists for any service in the current object state, we define a method
check_state_transition with Service as an argument. The body of this method must be
generated according to the following steps.

For each state si=i¼0::n
2 S, we have to generate a conditional structure that checks whether the

current object state is equal to si.
For each service e such that 9t 2 T=t ¼ ðsi; sj; e; ; ccÞ and si is equal to the current object state,

we have to generate:
1. A conditional sentence that checks whether Service is equal to e and the control condition cc

of e holds.
2. An assignment sentence that assigns the sj value to the current object state if the conditional

sentence defined in step (1) holds.
3. An exception sentence to determine whether a valid transition exists in the STD, meaning by

valid that the conditions defined in step (1) hold. The generated error message is ‘‘state transi-
tion violation’’.
As we have mentioned above in the dynamic specialization section, the process (STD) of the

parent class is built through the union of the processes of the subclasses. Because of this, if an
object behaves following the STD of the subclass, it also will behave like the STD of the parent
class. In this way, each subclass of the dynamic partition will implement its own method
check_state_transition following the previous steps.

As an example, we can see the STD of the Seller subclass (see Fig. 11) and its corresponding
check_state_transition method implementation.

protected void check_state_transition(String Service)

throws ServiceNotAllowed

{
switch (stateSTD)//StateSTD is the current state of the STD

{
case ‘‘S_INI’’:
switch(Service)
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{
case ‘‘create’’:

stateDTD¼‘‘Seller1’’;

break;

default:throw new ServiceNotAllowed();

}
break;

case ‘‘Seller1’’:

switch(Service)

{
case ‘‘sell’’:

stateDTD¼‘‘Seller2’’;

break;

case ‘‘destroy’’:

stateDTD¼‘‘S_DESTROYED’’;
break;

case ‘‘promote’’:

stateDTD¼‘‘S_DESTROYED’’;
break;

default:throw new ServiceNotAllowed();

}
break;

case ‘‘Seller2’’:

switch(Service)

{
case ‘‘sell’’:

stateDTD¼‘‘Seller2’’;

break;

case ‘‘pay’’:

Fig. 11. STD of the Seller subclass.
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stateDTD¼‘‘Seller1’’;

break;

case ‘‘promote’’:

stateDTD¼‘‘S_DESTROYED’’;
break;

default:throw new ServiceNotAllowed();

}
break;

}
};

For each concrete state specified in the STD of Fig. 11 (in this example these states are non-
existence, Seller1, Seller2 and post-mortem), we have declared a conditional structure. This
structure ensures that a valid transition exists for the service that is being activated. If this process
succeeds, the corresponding change of state is carried out. Otherwise, an exception will arise. For
example, let us suppose that the current state of a Seller object is Seller1 and that the service that is
being activated is the service sell(). The checkStateTransition method presented above determines
that this is a valid transition and sets the new state of the reader object to Seller2.

4.3.2. Checking precondition satisfaction
Given a service e, a check_preconditions method has to verify whether its precondition

holds. The generation process defines a protected method check_preconditions with Ser-
vice as an argument. The body of this method must be generated according to the following steps:

For each class service e having a precondition pðeÞ we have to generate:
1. A conditional structure that checks whether pðeÞ holds.
2. An exception sentence for showing an error message when the precondition of service e has

been violated.
Event preconditions redefined in a subclass will be more constrained than those specified in the

parent class. This is due to the behavioral compatibility required by the dynamic partitions. Thus,
the check_preconditions method that has to be executed will be obtained according to the
following conditions:
• If an object of a subclass has to execute an inherited event of the superclass, then the method

that must be executed is:
� The check_preconditions method implemented in the subclass if the event has rede-

fined its preconditions.
� The check_preconditions method implemented in the superclass if the event has not

redefined its preconditions.
• If an object of a subclass has to execute an event specified in its own signature, then the method

that must be executed is the check_preconditions method implemented in the subclass.
Following with the example of Fig. 5, the precondition specified for the pay event in Fig. 11

will be implemented in the following way:
In the Employee class:

protected void check_preconditions(String Service)

throws PreconditionViolation
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{
switch(Service)

{
case ‘‘pay’’:

if (StateObject.class_name().equals(‘‘Seller’’))
// the object is specialized in the Seller subclass
StateObject.check_preconditions(Service);
// execute the subclass method because the pay event
// has a precondition defined in the Seller subclass
break;

case ‘‘sell’’:break;

// Other services having preconditions
default:

}
};

In the Seller class:

protected void check_preconditions(String Service)

throws PreconditionViolation

{
switch(Service)

{
case ‘‘pay’’:

if (!(sales>10)) throw new PreconditionViolation();

// checks the precondition of the pay event
break;

case ‘‘sell’’:break;

// Other services having preconditions
default:

}
};

4.3.3. Valuation fulfillment
A method must implement the change of the object attribute values according to their

categorization in the Functional Model (FM). Valuations in the FM are defined by using
formulas of the form U½a
U0, where U and U0 are wff 9 whose semantics is the following: if
service a is activated and the object is in the state U, the effect of a service execution will leave
the object in the state U0. The formula U must be true in the object state previous to the
occurrence of service a. The formula U0 specifies the effect that the service executed has over
object attribute values.

9 Quantification is not allowed. U0 is a wff which is built using atoms with the relational operator ‘¼ ’ and the ‘‘and’’

connective.
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The generation process defines a protected method do_ServiceName with Parameters

(that are the arguments of ServiceName) as argument. The body of this method must be
generated according to the following steps:

For each class service e, we have to generate a protected method that implements the semantics
of the valuation formulas for service e. The body of this method has to be built generating the
following:
1. A conditional sentence that checks whether the object is in the state U.
2. A set of assignment sentences that changes the object attributes in the way that the formula U0

specifies.
The valuations 10 specified in the FM for the classes Seller and Manager of the example of

Fig. 5 are the following (OASIS notation):

valuations {Seller class}
[pay]salary:¼1000;

{the Seller earns 1000}
[sell]sales :¼ salesþ 1;
{when sell occurs, sales is incremented of 1 unit}

valuations {Manager class}
[pay]salary:¼3000;

{the Manager earns 3000}
[assign]n_projects :¼n_projects+1;
{when assign occurs, n_projects is incremented of 1 unit}

The implementation of the valuations specified above will be the following:
For the Seller class:

protected void do_pay()
{

salary¼1000;

};
protected void do_sell()
{

sales¼sales+1;

};

For the Manager class:

protected void do_pay()
{

salary¼3000;

};
protected void do_assign()
{

10 The ‘‘:¼’’ operator is used in formulas U0 instead of ‘‘¼ ’’ in order to provide a more intuitive interpretation of its

semantics. If a U is not specified it is assumed that U is true.
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n_projects¼n_projects+1;
};

The implementation of the corresponding service (pay, sell or assign) is generated according to the
effect specified in the FM. Let us suppose that the service sell() has been activated for a Manager
object. The effect of this service activation in the attribute sales will be an increment of 1 unit.

4.3.4. Integrity constraints checking in the new state
A check_integrity_constraints method has to verify whether the valuation fulfillment

leads the object to a valid state. The generation process defines a protected method
check_integrity _constraints with no arguments. The body of this method must be
generated according to the following steps:

For each integrity constraint formula U, we have to generate the following:
1. A conditional structure that checks whether U holds.
2. An exception sentence for showing an error message when the integrity constraint has been vi-

olated.
Integrity constraints redefined in a dynamic subclass will be more constrained than those

specified in the parent class. So the check_integrity_constraints method that has to be
executed will be obtained according to the following conditions:
• If the superclass has specified integrity constraints and the subclass also has specified new emer-

gent integrity constraints, then the check_integrity_constraints method of the super-
class must be executed. Next, the check_integrity_constraints method of the subclass
must be executed through delegation to the State Object.

• If the subclass has redefined the integrity constraints of the superclass then the check_integ-
rity_constraints method of the subclass must be executed.

• If the subclass has not redefined the integrity constraints of the superclass then the check_in-
tegrity_constraints method of the superclass must be executed.
In the example of Fig. 5, we have specified the integrity constraint: salary>500 in the

Employee class. This constraint has been inherited by the Seller class, but the Manager class
has redefined it (the second case) in the following way: salary>2000. There exists behavioral
compatibility because the fulfillment of the constraint in the subclass logically implies the ful-
fillment of the constraint in the superclass. Let us see how the check_integrity_con-
straints method is implemented in both classes (Employee and Manager).

In the Employee class:

protected void check_integrity_constraints()
throws IntegrityViolation {
{
if (StateObject.class_name().equals(‘‘Manager’’))
// the object is specialized in the Manager subclass

StateObject.check_integrity_constraints();
else if (!(StateObject.get_salary()>500))
// the object is specialized in the Seller subclass

throw new IntegrityViolation();

};
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In the Manager class:

protected void check_integrity_constraints()
throws IntegrityViolation {
{
if (!(salary>2000)) throw new IntegrityViolation();

// check the integrity constraint in the subclass
};

4.3.5. Testing trigger relationships
The effect of a triggered action has traditionally been a singular research topic in the database

community, specially in the context of active DBMS. A common proposal of a knowledge model
for active systems has been the event–condition–action (ECA) rules mechanism. These rules are
composed of an event that triggers the rule, a condition that describes a specific situation, and an
action to be performed if the condition is satisfied. In this context, various proposals have been
presented to include this rule mechanism in active systems.

For our purposes, we only consider a subset of ECA rules. We define an OASIS trigger as an
active rule whose dynamic logic representation is specified as U½:a
false. This formula means that
if U holds then the activation of service a is mandatory. If U holds and a service other than a
occurs, the system remains in a blocked state (this forces a to occur). Thus, triggers are services
which are activated when the condition stated in U holds. In the OASIS approach, there is an
active rule where the event is the current service that is being activated (the one that has produced
the change of the object state which makes the formula U true), the condition is the wff ðUÞ that
must be evaluated, and the action is the OASIS service that must be activated if the condition is
satisfied.

Taking into account these limitations, we propose a simple strategy of implementation. A
check_triggers method has to check whether the condition associated to the trigger holds; in
this case, the corresponding service is activated. The generation process defines a protected
method check_triggers with no arguments. The body of this method must be generated
according to the following steps.

For each trigger formula we have to generate:
1. A conditional structure that checks whether U (triggering condition) holds.
2. A sentence that calls service a when U holds. This sentence has to be prepared to throw an ex-

ception if the service a is not available (because the object server does not exist, or the precon-
dition attached to a does not hold).
Subclasses in the partition could redefine the triggers declared in the parent class. Thus, the

check_triggers method that has to be executed will be obtained according to the following
conditions:
• If the superclass has specified triggers and the subclass also has specified new emergent triggers,

then the check_triggers method of the superclass must be executed. Next, the
check_triggers method of the subclass must be executed through delegation to the State
Object.

• If the subclass has redefined the triggers of the superclass, then the check_triggers method
of the subclass must be executed.
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• If the subclass has not redefined the integrity constraints of the superclass, then the
check_triggers method of the superclass must be executed.
In the example introduced in Fig. 5, we have specified the following trigger condition (a new

one, not redefined) for the Seller class: promote if sales>100. Let us see how the
check_triggers method will be implemented in the Seller class:

protected void check_triggers()
{
if (sales>100) promote();

// if the trigger condition holds
// the promote event must be activated

};

4.4. Instance creation and destruction. The migration process

Instance creation and destruction in a dynamic partition will be determined by the migration
process defined on the migration actions or by attribute values.

4.4.1. Instance creation and destruction based on migration events
The implementation of the migration process will be done by adapting a variation of the State

pattern called Owner-Driven Transitions [8]. This variation is used to implement a finite state
machine through state objects. The Owner-Driven Transitions pattern proposes that the Context
class must be the one that starts and controls the transition between states. Thus, the class CP will
have a set of migration methods Mmig that will implement the migration events. The information
specified in the migration process will be used by the migration methods to create and destroy the
appropriate state objects for simulating the migration between subclasses. Below, we can see the
migration process (in OASIS) obtained from the migration diagram in Fig. 6.

Seller, Manager

dynamic specialization of Employee

migration relation is

Employee ¼ create.Seller;

Seller ¼ promote.Manager;

Manager ¼ demote.Seller;

Semantics of the migration events. There exist two types of migration events in the migration
process:
• Creation. It is the initial event of the migration process. This event will create an object belong-

ing to the initial subclass of the dynamic partition, and it will initialize its constant attributes.
At the OASIS specification level, it will be a constructor event of the superclass. In the example
of Fig. 5 create will be the creation event of the Employee class.

• Liberators/Carriers. Events that cause the migration between two subclasses of the dynamic
partition. At the specification level these events are declared in the subclass that is the origin
of the migration due to event activation. Events of this will change the state of the active object
and then they will liberate the part of its state that belongs to the active subclass in the parti-
tion. These events act as carriers (or special constructors) that ‘‘carry’’ the object to the target
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subclass in the migration process. They will create the part of the object state that belongs to
the new active subclass in the partition (initializing its constant attributes). In the example of
Fig. 6, promote and demote are liberators/carriers events that have been specified in the
Seller and Manager classes, respectively.
Implementing the migration events. Migration events specified in the migration process are a

subset of class events. In this way, they must also be implemented by methods (called migration
methods) that follow the execution strategy presented above (like the other specified class events).
Moreover, due to their migrational semantics, migration methods will be responsible for imple-
menting the migration between subclasses. In order to implement the migrational semantics of
migration methods, a special kind of private method (one for each dynamic partition) will be
included in the implementation of CP class. This method will be a specializer method that will
create and destroy the appropriate state objects to simulate the migration between subclasses. The
specializer method will have the name of the event as an argument in order to properly determine
the migration between subclasses.

The type of the migration method will determine the implementation of the specializer method
and its application in the execution strategy. Let us see the two kinds of migration methods de-
tected in the previous section:
• Creation methods. The first time an object of class CP is created, an object of a class

Ci i 2 f1; . . . ; ng must be created, such that Si is the initial class in the migration process.
The object of subclass Si (StateObject) is assigned to attribute ACA . This is the semantics that
the specializer method must implement when it receives a creation event as an input. In the im-
plementation of the State pattern, the Context class CP will have a constructor that implements
the execution strategy initializing CP attributes. At the end of the execution strategy algorithm
we will place a call to the specializer method with the creation event as an argument. Let us
look at the implementation of the Employee create method and the application of the spe-
cializer method specialize_by_action:

public void create(String var_name)
{
check_state_transition(‘‘create’’);
check_preconditions(‘‘create’’);
do_create(var_name);
// valuation that initializes Employee attributes
check_integrity_constraints();
check_triggers();
specialize_by_action(‘‘create’’);
//specializer method

};

• Liberators/Carriers methods. These methods will have the responsibility of destroying 11 the ac-
tive State Object. Next, they have to create a new object of the target subclass in the migration

11 In the Java language there is no need to define a destructor method. In our approach, we need a special kind of

destructor to release any used resources (for example in a three-tier implementation, the application has to delete the

object in the database).
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process.This object will be assigned to attribute ACA (the State Object). This is the semantics
that the specializer method must implement when it receives a liberator/carrier event as an in-
put. In the implementation of the State pattern, the Context class CP will have a method that
delegates its execution to an active subclass method because this kind of methods belong to one
of the subclasses in the partition. We will place a call to the specializer method with the liber-
ator/carrier event as an argument after the delegated method calling. Let us look at the imple-
mentation of the Employee promote and demote methods, and the application of the
specializer method specialize_by_action:

public void promote()throws EventNotAllowed

{
if (StateObject.class_name.equals(‘‘Seller’’)
{
// if the active object is a Seller
StateObject.promote();

// delegates the execution of promote event
// in subclass (following the execution strategy)
specialize_by_action(‘‘promote’’);
// specializer method
}
else throw new EventNotAllowed();

// promote event belongs to subclass Seller
};
public void demote() throws EventNotAllowed

{
if (StateObject.class_name.equals(‘‘Manager’’))
{
// if the active object is a Manager
StateObject.demote();

// delegates the execution of demote event
// in subclass (following the execution strategy)
specialize_by_action(‘‘demote’’);
// specializer method
}
else throw new EventNotAllowed();

// demote event belongs to subclass Manager
};

Taking into account the semantics defined by creation and liberator/carrier methods, the im-
plementation of the specializer method of the example shown in Fig. 5 will be as follows:

private specialize_by_action(String Action)

{
if (StateObject.class_name.equals(NO_CLASS)
{
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// there is no active object because
// we are in the creation process of an Employee
if (Action.equals(‘‘create’’))

{
// if create event occurs
StateObject ¼ new Seller();

// creates a Seller amd assigns it to StateObject
return;

}
return;

}
if (StateObject.class_name.equals(‘‘Seller’’)
{
if (Action.equals(‘‘promote’’))

{
// if promote event occurs
StateObject.free();

// destroys active Object
StateObject¼ new Manager();

// creates an object of Manager subclass
return;

}
return;

}
if (StateObject.class_name.equals(‘‘Manager’’)
{
if (Action.equals(‘‘demote’’))

{
// if demote event occurs
StateObject.free();

// destroys active Object
StateObject ¼ new Seller();

// creates an object of Seller subclass
return;

}
return;

}
};

In this implementation of the specializer method, there is no need to include the sentences
that check the class of the State Object because, in the example of Fig. 6, only one possible
transition and one target subclass for that transition exist. However, these sentences will be
necessary when exist two or more transitions labeled with different events that have two or more
target subclasses.
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4.4.2. Instance creation and destruction based on attribute values
The implementation of the migration process based on attribute values is achieved in a similar

way to the proposed in the previous section. A specializer method has to be introduced in order to
implement the migrational semantics of migration conditions defined on variable attributes. This
method will be implemented in CP class as a private method. It will create and destroy the ap-
propriate state objects depending on the class of the active State Object and its attribute values.
The specializer method has to be placed at the end of the execution strategy algorithm of the
following methods:
• the constructor method of CP class and
• those methods of CP that can modify the value of the attributes that take part in the migration

conditions. These are what we call possible migration methods.
Below, we can see the specification in OASIS of the migration conditions obtained from the

class diagram in Fig. 7.

Seller where {salary<2000}
Manager where {salary>¼ 2000}
dynamic specialization of Employee;

Taking into account this specification, the implementation of the specializer method of the
example shown in Fig. 7 will be as follows:

private specialize_by_attribute()
{
if (StateObject.class_name.equals(‘‘Seller’’)
{

// the active object is a Seller
if (salary>¼ 2000)

{
StateObject.free();

// destroys active Object (a Seller)
StateObject¼ new Manager();

// creates an object of Manager subclass
return;

}
return;

}
if (StateObject.class_name.equals(‘‘Manager’’)
{

// the active object is a Manager
if (salary<2000)
{
StateObject.free();

// destroys active Object (a Manager)
StateObject ¼ new Seller();

//creates an object of Seller class
return;
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}
return;

}
if (StateObject.class_name.equals(NO_CLASS)
{

// there is no active object because
// we are in the creation process of an Employee
if (salary>¼ 2000)

{
StateObject¼ new Manager();

// creates an object of Manager subclass
return;

}
StateObject ¼ new Seller();

// creates an object of Seller subclass
return;

}
};

Let us look at the implementation of the Employee create method and the application of
the specializer method specialize_by_attribute:

public void create(String var_name)
{
check_state_transition(‘‘create’’);
check_preconditions(‘‘create’’);
do_create(var_name);
// valuation that initializes Employee attributes
check_integrity_constraints();
check_triggers();
specialize_by_attribute();
// specializer method

};

The method pay of Employee class changes the value of the salary attribute. This a pos-
sible migration method. Let us look at its implementation and the application of the specializer
method specialize_by_attribute:

public void pay()

{
StateObject.pay();

// delegates on StateObject
specialize_by_attribute();
// specializer method

};
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5. Related work

This section has been divided in two subsections according to the nature of the work pre-
sented in this paper. Our approach provides a solution in two research areas (model-based code
generation and dynamic specialization modeling) presenting a code generation process for dy-
namic specialization models. Firstly, some of the existing proposals on model-based code gen-
eration are reviewed, including those based on design patterns. The approaches introduced in
this subsection provide solutions that do not use expressive and precise specialization models.
Most of them present solutions that generate code for static specializations which are not rich
enough to tackle certain modeling situations. In the second subsection several modeling ap-
proaches that include the dynamic specialization abstraction are analyzed. These approaches
provide partial solutions because some of them introduce solutions in the conceptual modeling
phase (providing methodological support and/or precisely defining the semantics of the dynamic
specialization abstraction using formal techniques) and others at the programming level (in-
troducing new contructs into programming languages) without giving support to the conceptual
modeling phase. The approach presented in this paper improves both approaches because it
provides a complete automated development process that deals with dynamic specialization at
the conceptual level (providing a precise conceptual construct), at design level (providing a set
of quality design structures that represent the dynamic specialization) and at implementation
level (completely generating code in industrial programming languages, including structure and
behavior).

5.1. Model-based code generation

There exist three approaches in the model-based code generation area [4]: structural (generates
code from structural models), behavioral (generates code from dynamic models) and translational
(generates complete code from conceptual models). Our proposal can be placed in the transla-
tional category.

An interesting approach in this area is OBLOG CASE [21], a tool based on the OBLOG [21]
formal specification language. Its code generation process is based on rule rewriting. The rules are
written in a scripting language that the designer must be expert in. Apart from the difference in
expressiveness between OBLOG and OASIS languages, the use of rules makes the OBLOG ap-
proach distinct to ours. The designers develop their own code generation process using rules. An
additional problem is that those rules embed architectural and implementation aspects jointly.
Another translational approach is the Recursive Design proposed by Shlaer and Mellor [32]. It is
supported by the BridgePoint tool. It does not use a formal specification language. This method
models the domain and the architecture of the application using the same notation. The domain
and the architecture models are used to develop patterns of a special kind called ‘‘archetypes’’ (a
kind of macro) that the designer must specify by using a scripting language (it could be the target
programming language). As we have seen in OBLOG, the code generation process has to be
written by the designers using scripting rules. In order to generate code, these rules will apply the
archetypes to conceptual schemes stored in a repository.

Both approaches are opened to the designer, and due to this feature, the quality of the code
generated depends on the designer. Both are flexible approaches. However, the tools cannot
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guarantee that the software solution appropriately represents the Conceptual Model. The OO-
Method approach is closer to the idea of a universal code generator that has a closed code
generation process. The key feature of the OO-Method is the well-defined software representation
of a predefined, finite catalog of conceptual modeling constructs that assures a software repre-
sentation which is functionally equivalent to the conceptual schema (as we have seen in detail in
the case of dynamic specialization). These two approaches provide solutions that do not use
expressive and precise specialization models (mainly static specialization models). In our ap-
proach, we only have to focus on the Conceptual Modeling phase because the other phases of the
software production process are achieved automatically.

5.1.1. Code generation based on design patterns
There are some approaches to automatic code generation that are based on design patterns.

The Model Based Object Oriented Software generation Environment (MOOSE) environment [2]
and its component Pattern Based Simulator Generator (PSiGene) [13] generate code in narrow
and well-defined domains. The MOOSE approach proposes a domain-specific software devel-
opment method based on generators that gives support to reuse. This method uses different
models (base, component, glue, application and features models) and notations in the conceptual
modeling phase. It uses a library of primitives that depends on the domain problem, an archi-
tecture model, and a set of heuristics for selecting the appropriate design structures. This ap-
proach automatically generates class templates with constructors, destructors and access methods.
In order to obtain a completely functional application, the code generated has to be manually
modified to include part of the application behavior. MOOSE improves structural approaches but
does not provide 100% code generation. In PSiGene, the designer must specify domain-specific
patterns in a formal language. These patterns are stored in a pattern repository, and they are used
to generate code. During the code generation process, these patterns are instantiated using the
information included in the conceptual model. This approach can generate 100% code in very
limited domains. MOOSE generates C++ and Visual Works code, and PSiGene only generates
Visual Works. There are some differences with our approach: (1) the patterns used in PSiGene are
not standard patterns (we use standard patterns) and they are completely domain-dependent (our
patterns are domain independent), (2) they provide component generators in very specific domains,
and our approach can be seen as a universal code generator which is oriented towards producing
business applications.

Budinsky et al. [5] presents an automatic code generation process from design patterns. This
approach helps the designer to instantiate design patterns with application domain specific in-
formation, but it does not provide a complete code generation because the resulting code frag-
ments have to be manually adapted to the software system.

In the area of behavioral code generation, Statelator [3] combines the model transformation
discipline with the use of design patterns. This approach represents a UML statechart through a
microarchitecture based on the State design pattern. The authors introduce a generic algorithm to
transform a statechart into a design structure. This algorithm specifies the transformation rules
using OCL. 12 This proposal can be adapted to our approach in order to generate the STD of a

12 Object-Constraint Language in the UML notation.

V. Pelechano et al. / Data & Knowledge Engineering 40 (2002) 315–353 347



class. However, this is not a complete solution compared wtih our approach because it generates
only the class behavior based on its statechart.

5.2. Dynamic specialization

In this section, we are going to review some approaches that present dynamic specialization
models which are similar to the one presented in this work. These approaches are analyzed from
the modeling and implementation point of view.

Syntropy [7] is a semi-formal object-oriented method. It introduces the state-types concept to
model dynamic classifications as in our approach. A dynamic subclass will always contain objects of
the superclass that were in a specific state of the statechart which defines the behavior of the su-
perclass. In this way, a state of the behavior specification of the parent class (its statechart) rep-
resents the condition of belonging to one dynamic subclass. This approach is similar to ours because
we introduce a state transition diagram called migration diagram (one for each partition) to model
the dynamic subclasses and the possible transition between subclasses. The main difference is that
Syntropy does not provide any guides to automate the code generation from its models.

The Wieringa et al. [40] approach constitutes the basis of the taxonomic relationships that are
present in the OASIS formal model. The most remarkable aspect of this proposal is the distinction
between roles and dynamic subclasses. This difference is based on the counting problem (it arises
due to the necessity of modeling an object that can play several roles of the same role class). Roles
inherit from the player object through a delegation mechanism and dynamic subclasses inherit
from superclasses through a standard inheritance mechanism. This approach includes method-
ological and theoretical aspects, and it is considered to be one of most interesting approaches in
the formal study of the taxonomic relationships. It deals with the precise specification of sub-
classes in a order sorted dynamic logic, but does not propose any solution in the implementation
field as we present in our approach.

Snoeck and Dedene [33] distinguish between specializations and roles. This approach analyzes
some ways a class can be partitioned into subclasses (attribute-defined, existence-defined and
state-defined subclass). The state defined specialization is similar to our dynamic specialization.
The formal object model that introduces this proposal is based on the process algebra that uses
the MERODE formal language. This work treats the extension of subclass processes with a high
level of detail. It is mainly based on the formal characterization of subclass behavior by process
algebras and does not provide implementation techniques in imperative languages. This is once
again its weak point when compared to our work.

TROLL [14] is a formal specification language that introduces roles and specializations to
specify dynamic and static aspects of subclass objects. The role concept describes a dynamic
specialization but not in the sense of our proposal, because this approach does not introduce the
partition concept and does not provide any way to specify the migration between objects of the
role subclasses. TROLL introduces TBench, a prototyping environment that allows for generating
an independently executable prototype from a graphical conceptual specification called OM-
TROLL. The prototype generated is a C++ program that includes the static/dynamic aspects of
the system. The main difference is that TBench focuses on the validation of specifications and their
model checking, while the OO-Method provides an implementation that is centered on obtaining
a software product which is ready for execution.
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Oliv�ee et al. [22] define a temporal framework which allows for the categorization of the IsA
relationships depending on the nature of the class and its subclasses. The authors define three
evolution constraints on the specializations. These constraints permit us to determine the
possible evolution of the population of a subclass with respect to its superclass population.
The relative static constraint defines the object evolution constraints which are present in our
dynamic specialization approach. Dynamic constraints are less restrictive than static relative. It
is important to note at a methodological level that this proposal uses pure partitions (as in
our approach). Moreover, it introduces the concept of type transitions in the relative static and
dynamic partitions. This concept is used to specify the order in which objects change their
current subclass. The admissible transitions are defined using state transition diagrams like we
do in our migration diagram. Finally, this approach identifies the kind of transitions that can
exist between subclasses. Those transitions can be: reclassification, active continuation, sus-
pension, suspension continuation and reactivation. This work provides a methodological solution
to the modeling of dynamic specializations and could be incorporated to our approach as a
higher level guide to specify dynamic specialization. Our work improves this approach in-
cluding the treatment of the structural and behavioral relationships between a class and its
subclasses, and by providing a complete software generation process to implement dynamic
specializations.

Su [35] defines object migration constraints as sets of dynamic subclass sequences, where each
sequence represents a trace of an object through the subspaces of its state space defined by the
dynamic class partitions of the model. Su’s results can be applied to the study of migration di-
agrams for dynamic subclasses.

There exist some proposals that deal with the dynamic specialization at a lower level of ab-
straction. These proposals belong to the conceptual programming [16] area. Programming in this
area is seen ‘‘... as a modeling process where abstractions are expressed as programming language
constructs’’. There are two interesting proposals in this area that introduce the dynamic special-
ization concept: Albano et al. [1] introduce the dynamic class concept under the name of roles in
their language Fibonacci (a programming language for Object Databases), and Taivalsaari [36]
defines the mode concept. In this approach, each class can have several modes depending on
which it will react differently to incoming messages. A mode can provide mode-specific operations
which are not defined for the class whose mode it is. There are two ways to change mode: (1) one
is by means of explicit mode transition events (as in our approach) and (2) the other by means of
implicit mode transitions, which may be triggered as a side-effect of other operations (for instance
due to the change of attribute values). Modes are clearly equivalent to our dynamic subclasses.
Both approaches propose solutions at the programming level but do not provide methodological
guidance at the conceptual level.

Many times in the literature the dynamic specialization term is used as the term role and vice
versa. Besides the presented proposals, there exist other approaches that introduce the role
concept in a broader sense (giving to this term the semantics of the role and the dynamic sub-
classes). These approaches consider the dynamic specialization as a particular interpretation of
the role concept. In the formal modeling area, there exist several approaches such as Pernici [26],
LODWICK [34], ADOME [19], MOSES [27], DOOR [41], and Sciore [31]. In the conceptual
programming area Kristensen and Osterbye in [15,17] introduce the role concept as a new con-
struction of the BETA and SMALLTALK languages, Gottlob et al. [11] present the role concept

V. Pelechano et al. / Data & Knowledge Engineering 40 (2002) 315–353 349



as a SMALLTALK extension, and Richardson and Schwartz [28] introduce a new language
construct called aspect. In these approaches, the role concept is used to model behaviors (as-
pects) of an object in a separate way. The instances of a class can play multiple roles (and also
multiple roles of the same class at the same time). This feature implies the necessity of a special
treatment with regard to the identification problem and to the way a role inherits from its
player. Most approaches propose that the role object shares its identifier with the player object
(not in our approach, where the subclass object has the same identity as its parent class), and
that the object role inherits its properties from its player through delegation (we use standard
inheritance mechanisms at the specification level). This feature is not present in our dynamic
specialization model; however, in the OO-Method the role concept is included as a distinct
conceptual pattern.

6. Conclusions and further work

In this work, we have introduced a complete code generation process of conceptual patterns.
The dynamic specialization conceptual pattern of the OASIS formal object model has been used
to show this process.

We have incorporated design patterns into the OO-Method providing a framework which offers
methodological guidance to go from the problem space to the solution space. The methodological
framework developed in this paper is based on:
• The precise description of conceptual patterns by using formal languages.
• Design pattern specialization to properly represent the conceptual patterns used in the concep-

tual modeling phase.
• The definition of a set of precise mappings between specialized design patterns and conceptual

patterns. These mappings are defined in a way that preserves the semantics of conceptual pat-
terns.

• The introduction of an execution strategy that is used to implement the behavior of conceptual
patterns.
The ideas presented provide the basis for a code generation process which is capable of au-

tomating the conceptual pattern translation. It can be adopted by existing software production
methods in order to improve the quality and the correctness of the software produced. These ideas
are being applied in a CASE tool with full code generation capabilities [23] that gives support to
the OO-Method. In our approach, the developer only have to focus on the Conceptual Modeling
phase because the implementation is produced automatically. If developers need to extend any
application, they only have to modify the conceptual model instead of the code, and then
‘‘compile’’ that conceptual model with the code generator.

Research work is still underway to extend this approach to all the abstraction mechanisms that
take part in the OO-Method conceptual modeling phase. Design patterns are being studied and
specialized in order to implement conceptual patterns such as roles, static specializations, dynamic
and static aggregations, associations and other conceptual patterns which are present in the OO-
Method/OASIS approach. The work that is now being carried out on the graphical notation is
being developed in a way that could be considered as an extension of the UML notation. This
extension will enrich the UML notation with the conceptual patterns that OO-Method provides.
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In this way, analysts that use UML can be provided with a powerful notation that is expressive
enough to produce quality software in an automated way.

References

[1] A. Albano, R. Bergamini, G. Ghelli, R. Orsini, An object data model with roles, in: D. Bell, R. Agrawal, S. Baker

(Eds.), 19th International Conference on Very Large Databases, Morgan Kaufmann, Los Altos, CA, 1993, pp. 39–

51.

[2] J. Altmeyer, J.P. Riegel, B. Schuermann, M. Schuetze, G. Zimmermann, Application of a generator-based software

development method supporting model reuse, in: Proceedings of the 9th International Conference in Advanced

Information Systems Engineering, CaiSE97, Barcelona, Catalonia, Spain, Lecture Notes in Computer Science, vol.

1250, Springer, Berlin, June, 1997, pp. 159–171, ISBN 3-540-63107-0.

[3] T. Behrens, S. Richards, StateLator – behavioral code generation as an instance of a model transformation, in: L.

Bergman, B. Wangler (Eds.), International Conference on Advanced Information Systems Engineering, CAiSE

2000, Lecture Notes in Computer Science, vol. 1789, Springer, Berlin, 2000, pp. 401–416.

[4] R. Bell, Code Generation from Object Models, Embedded Systems Programming, March 1998. Available from:

http://www.embedded.com/98/9803fe3.html.

[5] F.J. Budinsky, M.A. Finnie, J.M. Vlissides, P.S. Yu, Automatic code generation from design patterns, IBM Syst. J.

35 (2) (1996).

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software Architecture. A

System of Patterns, Wiley, New York, 1996.

[7] S. Cook, J. Daniels, Designing Objects Systems. Object-Oriented Modelling with Syntropy, Prentice-Hall, New

York, 1994.

[8] P. Dyson, B. Anderson, Pattern Languages of Program Design 3, Chapter State Patterns, Software Patterns,

Addison-Wesley, Reading, MA, 1998, pp. 125–142 (Robert Martin, Dirk Riehle and Frank Buschmann edition).

[9] M. Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, Reading, MA, 1997.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, in: Design Patterns: Elements of Reusable Object-oriented Software,

Professional Computing Series, Addison-Wesley, Reading, MA, 1994.

[11] G. Gottlob, M. Schrefl, B. R€oock, Extending object-oriented systems with roles, ACM Trans. Inf. Syst. 14 (3) (1996)

268–296.

[12] Object Management Group, Unified Modeling Language Specification Version 1.4 draft, Technical Report,

February 2001 (Version 1.3, June, 1999).

[13] F. Heister, J.P. Riegel, M. Schuetze, S. Schultz, G. Zimmermann, Pattern-based code generation for well-defined

application domains, Technical Report, Computer Science Department, University of Kaiserslautern, 1998.

[14] R. Jungclaus, G. Saake, T. Hartmann, C. Sernadas, TROLL – A language for object-oriented specification of

information systems, ACM Trans. Inf. Syst. 14 (2) (1996) 175–211.

[15] B.B. Kristensen, Object-oriented modeling with roles, in: B. Stone, J. Murphy (Eds.), OOIS’95: Proceedings of the

International Conference on Object-Oriented Information Systems, Springer, Berlin, 1995, pp. 57–71.

[16] B.B. Kristensen, K. Osterbye, Conceptual modeling and programming languages, SIGPLAN Notices 29 (9) (1994).

[17] B.B. Kristensen, K. Osterbye, Roles: Conceptual abstraction theory and practical language issues, Theory Practice

Object Syst. 2 (3) (1996) 143–160.

[18] P. Letelier, P. S�aanchez, I. Ramos, O. Pastor, OASIS 3.0: Un enfoque formal para el modelado conceptual

orientado a objetos, Servicio de Publicaciones, Universidad Polit�eecnica de Valencia, Valencia, Espa~nna, 1998,

SPUPV-98.4011, ISBN 84-7721-663-0.

[19] Q. Li, F.H. Lochovsky, ADOME: An advanced object modeling environment, IEEE Trans. Knowledge Data Eng.

10 (2) (1998) 255–276.

[20] J.J.Ch. Meyer, A different approach to deontic logic: Deontic logic viewed as a variant of dynamic logic, Notre

Dame J. Formal Logic 29 (1998) 109–136.

[21] OBLOG Software S.A. The OBLOG software development approach, Technical Report, OBLOG Software S.A.,

1999.

V. Pelechano et al. / Data & Knowledge Engineering 40 (2002) 315–353 351



[22] A. Oliv�ee, M.R. Sancho, D. Costal, Entity evolution in IsA hierarchies, in: 18th International Conference on

Conceptual Modeling, Lecture Notes in Computer Science, Springer, Berlin, 1999, pp. 62–80.

[23] O. Pastor, E. Insfr�aan, V. Pelechano, J. Romero, J. Merseguer, OO-Method: An OO software production

environment combining conventional and formal methods, in: 9th Conference on Advanced Information Systems

Engineering (CAiSE’97), Barcelona, Spain, Lecture Notes in Computer Science, vol. 1250, Springer, Berlin, June,

1997, pp. 149–159, ISBN 3-540-63107-0.

[24] O. Pastor, V. Pelechano, E. Insfr�aan, J. G�oomez, From object oriented conceptual modeling to automated

programming in Java, in: 17th International Conference on Conceptual Modeling (ER’98), Lecture Notes in

Computer Science, vol. 1507, Springer, Singapore, 1998, pp. 183–196, ISBN 3-540-65189-6.

[25] O. Pastor, I. Ramos, OASIS version 2 (2.2): A Class-Definition Language to Model Information Systems, Servicio

de Publicaciones, Universidad Polit�eecnica de Valencia, Valencia, Espa~nna, 1995, SPUPV-95.788.

[26] B. Pernici, Objects with roles, in: IEEE/ACM Conference on Office Information Systems, Cambridge, MA, 1990.

[27] D.W. Renouf, B. Henderson-Sellers, Incorporating roles into MOSES, TOOLS 15, Melbourne, Australia, 1996.

[28] J. Richardson, P. Schwartz, Aspects: Extending objects to support multiple, independent roles, SIGMOD Record

20 (2) (1991) 298–307.

[29] J. Rumbaugh, M. Blaha, W. Permerlani, F. Eddy, W. Lorensen, Object Oriented Modeling and Design, Prentice-

Hall, Englewood Cliffs, NJ, 1991.

[30] G. Saake, P. Hartel, R. Jungclaus, R. Wieringa, R. Feenstra, Inheritance Conditions for Object Life Cycle

Diagrams, EMISA Workshop, 1994.

[31] E. Sciore, Object specialization, ACM Trans. Inf. Syst. 7 (2) (1989) 103–122.

[32] S. Shlaer, S.J. Mellor, Recursive design of an application-independent architecture, IEEE Software (January)

(1997).

[33] M. Snoeck, G. Dedene, Generalization/specialization and role in object oriented conceptual modeling, Data

Knowledge Eng. 12 (2) (1996) 171–195.

[34] F. Steimann, On the representation of roles in object-oriented and conceptual modeling, Data Knowledge Eng. 35

(October) (2000) 83–106.

[35] J. Su, Dynamic constraints and object migration, in: G.M. Lohman, A. Sernadas, R. Camps (Eds.), Proceedings of

the 17th International Conference on Very Large Databases, VLDB Endowment Press, 1991, pp. 233–242.

[36] A. Taivalsaari, Object-oriented programming with modes, J. Object-Oriented Programming 6 (3) (1993) 25–32.

[37] W. Tepfenhart, J. Cusick, A unified object topology, IEEE Software (May/June) (1997) 31–35.

[38] P. Wegner, B. Zdonik, Inheritance as an incremental modification mechanism or what like is and isn’t like, in: S.

Gjessing (Ed.), ECOOP’88: European Conference on Object-Oriented Programming, Lecture Notes in Computer

Science, vol. 276, Springer, Berlin, 1988, pp. 55–77.

[39] R. Wieringa, Algebraic foundations for dynamic conceptual models, Ph.D. thesis, Department of Mathematics and

Computer Science, Vrije Universiteit, Amsterdam, May 1990.

[40] R. Wieringa, W. Jonge, P. Spruit, Using dynamic classes and role classes to model object migration, Theory

Practice Object Syst. 1 (1) (1995) 61–83.

[41] R.K. Wong, H.L. Chau, F.H. Lochovsky, Dynamic knowledge representation in DOOR, in: N. Pissinou, K.

Makki, X. Wu, J. Tsai (Eds.), Proceedings of the 1997 IEEE Knowledge and Data Engineering Exchange

Workshop, Los Alamitos, IEEE Computer Society, Silver Spring, MD, 1997, pp. 89–96.

Vicente Pelechano is an Associate Professor in the Department of Information Systems and Computation
(DISC) at the Valencia University of Technology, Spain. His research interests are object orientation, con-
ceptual modeling, requirements engineering, software patterns and model-based code generation. He received
his Ph.D. degree from the Valencia University of Technology in 2001. He is currently teaching software
engineering and component-based software development in the Valencia University of Technology. He is a
member of the Logic Programming and Software Engineering Research Group at the DISC, member of the
ACM and of the IEEE Computer Society.

352 V. Pelechano et al. / Data & Knowledge Engineering 40 (2002) 315–353



Oscar Pastor is currently the Head of the Computation and Information Systems Department at the Valencia
University of Technology (Spain), and the leader of the Research Group on Object-Oriented Methods for
Software Production in the same department. He received his Ph.D. degree from the Valencia University of
Technology in 1992, after a research stay in HP Labs, Bristol, UK. He is currently Professor of Software
Engineering at the Valencia University of Technology. His research activities has been involved with object-
oriented conceptual modelling, requirements engineering, information systems, web-oriented software tech-
nology and model-based code generation. Author of over 100 research papers in conference proceedings,
journals and books, he has received numerous research grants from public institutions and private industry,
and devoted considerable effort to issues of technology transfer from academia to industry.

Emilio Insfr�aan is an Assistant Professor in the Department of Information Systems and Computation (DISC)
at the Valencia University of Technology, Spain. His research interests are OO methodologies, conceptual
modeling, requirements engineering, specification languages and databases. He received a degree in Computer
Science from the National University of Asunci�oon, Paraguay, a MS degree in Computer Science from the
Cantabria University, Spain, and spent 1999 as a visiting research scientist at University of Twente, the
Netherlands. He is a member of the Logic Programming and Software Engineering Research Group at DISC
and of IEEE Computer Society.

V. Pelechano et al. / Data & Knowledge Engineering 40 (2002) 315–353 353


