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We present an iterative schedule optimisation for multi-rate system specifications, mapped onto

heterogeneous distributed architectures containing dynamic voltage scalable processing elements
(DVS-PEs). To achieve a high degree of energy reduction, we formulate a generalised DVS prob-

lem, taking into account the power variations among the executing tasks. An efficient heuristic is

presented that identifies optimised supply voltages by not only ”simply” exploiting slack time, but
under the additional consideration of the power profiles. Thereby, this algorithm minimises the

energy dissipation of heterogeneous architectures, including power managed processing elements,

effectively. Further, we address the simultaneous schedule optimisation towards timing behaviour
and DVS utilisation by integrating the proposed DVS heuristic into a genetic list scheduling ap-

proach. We investigate and analyse the possible energy reduction at both steps of the co-synthesis

(voltage scaling and scheduling), including the power variations effects. Extensive experiments
indicate that the presented work produces solutions with high quality.

Categories and Subject Descriptors: C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; J.6 [Computer-aided engineering]: Computer-aided design

General Terms: Algorithms, Design, Optimization

Additional Key Words and Phrases: Dynamic voltage scaling, Embedded systems, Energy min-
imisation, Scheduling, System synthesis, Heterogeneous distributed systems

1. INTRODUCTION AND RELATED WORK

The dramatically growing market segment for embedded computing systems is
driven by the ever increasing demand for new application specific devices, which
can be generally found in almost every application domain, such as consumer elec-
tronics, home appliances, automotive, and avionic devices. To help balancing the
production costs with development time and cost, these embedded systems are
commonly composed of several heterogeneous processing elements (PEs), which
are interconnected by communication links (CLs) [Wolf 1994]. For example, very
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often the combination of less powerful and cheap PEs leads to a more cost efficient
design implementation than the usage of a powerful single processor system. Typi-
cally, such embedded systems have to concurrently perform a multitude of complex
tasks under a strict timing behaviour, given in the system specification.

System-level co-design is a methodology aiming to aid the system designers at
solving the difficult problem of finding the ”best” suitable implementation for a
system specification. The traditional co-design flow for distributed systems involves
solving three subproblems, namely:

(1) Allocation: determining the numbers and types of PEs and CLs used to com-
pose the system architecture,

(2) Mapping: assignment of computational tasks to PEs and of data transfers
between different PEs to CLs,

(3) Scheduling: determining the execution order (sequencing) of tasks mapped to
a PE and communications mapped to a CL.

These problems (allocation/mapping and scheduling) are well-known to be NP-
complete [Garey and Johnson 1979], and therefore an optimal co-design of dis-
tributed systems is intractable. This justifies the usage of heuristic optimisation
algorithms of different types, e.g., simulated annealing [Henkel et al. 1993; Eles et al.
1997], tabu-search [Eles et al. 1997], genetic algorithm [Dick and Jha 1998; Teich
et al. 1997], or constructive techniques [Wolf 1997], to tackle the computational
complexity.

In the last decade power dissipation has become a mandatory issue of concern
in the design of embedded systems because of: (a) The popularity of mobile appli-
cations powered by batteries with limited capacity, (b) the operational costs and
environmental reasons affected by the high electrical power consumption of large
computing systems, and (c) the reliability and feasibility problems caused by exten-
sive heat production exceeding the physical substrate limitations, especially when
implementing systems on a single chip (SoCs). Several useful techniques have been
proposed to reduce the power dissipation of integrated circuits, targeted at differ-
ent levels of abstraction [Devadas and Malik 1995; Pedram 1996]. One approach
aiming to reduce the power dissipation at the system-level is recently receiving a
lot of attention from the research community and industry, namely, dynamic volt-
age scaling (DVS) [Weiser et al. 1994; Gutnik and Chandrakasan 1997; Hong et al.
1999; Ishihara and Yasuura 1998; Okuma et al. 1999; Quan and Hu 2001; Shin and
Choi 1999; Shin et al. 2000; Simunic et al. 2001]. The main idea behind DVS is
to conjointly scale the supply voltage Vdd and operational frequency f dynamically
during run-time in accordance to the temporal performance requirements of the
application. In this way the dynamic power dissipation Pdyn (disregarding short-
circuit power) is reduced in a near cubic manner, since it depends quadratically on
the supply voltage and linearly on the operational frequence. The exact relation is
expressed by the following two equations,

Pdyn = CL ·N0→1 · f · V 2
dd (1)

f = k · (Vdd − Vt)2

Vdd
(2)
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where CL denotes the load capacitance of the digital circuit, N0→1 represents the
zero to one switching activity, k is a circuit dependent constant, and Vt is the
threshold voltage. DVS is thereby able to exploit the idle and slack times (time
intervals where system components do not carry out any computations), given in the
system schedule, in order to lower the power dissipation. The occurrence of idle and
slack times has three reasons: (a) It is often the case for a given application to show
various degrees of parallelism, i.e., not all PEs will be utilised constantly during
run-time, (b) the performance of the allocated architecture cannot be adapted
perfectly to the application needs, since the allocation of ”performance” is not
given as continuous range, but is rather quantised, and (c) schedules for hard real-
time systems are constructed by considering worst case execution times (WCETs),
however, actual execution times of tasks during operation are, for most of their
activations, smaller than their WCETs. Several state-of-the-art implementations of
DVS enabled processors [Burd et al. 2000; Gutnik and Chandrakasan 1997; Klaiber
2000] have successfully shown that power consumption can be reduced significantly
(by up to 10 times compared to fixed voltage approaches) when running real world
applications. In order to achieve such a high level of power and energy efficiency,
it is essential to identify optimised scaling voltages for the task executions [Okuma
et al. 2001] to exploit the available idle and slack times efficiently. Such voltage
scheduling algorithms can be divided in two broad categories: on-line (dynamic)
[Lee and Sakurai 2000; Quan and Hu 2001; Shin and Choi 1999] and off-line (static)
approaches [Bambha et al. 2001; Gruian and Kuchcinski 2001; Ishihara and Yasuura
1998]. The first class dynamically re-calculates the priorities and scaling voltages
of tasks at run-time, i.e., the voltage schedule is changed during the execution of
the application. Obviously, such approaches consume additional power and time
during execution. On the other hand, they are able to make use of the dynamic
slack introduced by execution times smaller than the WCET. In the second class,
a static voltage schedule is calculated once before the application is executed, i.e.,
the voltage schedule is maintained unchanged during run-time. Hence, power and
time overheads are avoided. The technique proposed in this paper falls into the
class of static voltage schedulers.

Voltage selection is already a complex problem when only single DVS proces-
sor systems, executing independent tasks, are considered [Hong et al. 1999]. The
problem is further complicated in the presence of distributed systems specified by
dependent tasks where the allocation, mapping, and scheduling influence the possi-
bility to exploit DVS [Bambha et al. 2001; Gruian 2000; Luo and Jha 2000; Schmitz
and Al-Hashimi 2001]. Most previous DVS approaches [Hong et al. 1999; Lee and
Sakurai 2000; Quan and Hu 2001; 2002; Shin and Choi 1999] concentrate on sin-
gle processor systems executing independent task sets and, hence, are not directly
applicable to the problem addressed here. Nevertheless, we need to consider DVS
at all these optimisation steps during co-synthesis, in order to find high quality
system implementations. In this paper, we will concentrate on the scheduling and
voltage scaling aspects of such systems. Further details concerning the mapping
and allocation steps can be found in [Schmitz et al. 2002; Schmitz 2003].

Previous research in system-level co-synthesis is extensive but has mainly focused
on traditional architectures excluding issues related to power consumption [Ernst
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et al. 1993; Henkel and Ernst 2001; Micheli and Gupta 1997; Prakash and Parker
1992; Wolf 1997; Xie and Wolf 2001] or considering energy optimisation with com-
ponents that are not DVS enabled [Dick and Jha 1998; Kirovski and Potkonjak
1997]. A system-level scheduling technique for power-aware systems in mission-
critical applications was presented in [Liu et al. 2001]. This approach satisfies
min/max timing constraints as well as max power constraints taking into account
not only processor power consumption but additionally the power dissipated by
peripheral system components. All this research provides a valuable basis for the
work presented here. However, three research groups recently proposed approaches
for the voltage scaling problem in distributed systems that have close relationship
to the problems we address in this paper. Bambha [Bambha et al. 2001] presented
a hybrid search strategy based on simulated heating. This method uses a global ge-
netic algorithm to find appropriate parameter settings for a local search algorithm.
The local search algorithms are based on hill climbing and Monte Carlo techniques.

In [Luo and Jha 2000], a power conscious joint scheduling of aperiodic and pe-
riodic tasks is introduced, which reserves execution slots for aperiodically arriving
tasks within a static schedule of a task graph. Their algorithm aims for energy min-
imisation through DVS by distributing the available deadline slack evenly among
all tasks. They further extend their approach towards a battery-aware scheduling
with the aim to improve the battery discharge profile [Luo and Jha 2001]. Gruian
and Kuchcinski [Gruian and Kuchcinski 2001] extend a dynamic list based schedul-
ing heuristic to support DVS by making the priority function energy aware. In each
scheduling step the energy sensitive task priorities are re-calculated. If a schedul-
ing attempt fails (exceeded hard deadline), the priority function is adjusted and
the application is re-scheduled. Despite their power reduction efficiency, all these
DVS approaches [Bambha et al. 2001; Gruian and Kuchcinski 2001; Luo and Jha
2000] do not consider and target heterogenous distributed architectures contain-
ing power managed DVS-PEs in which the dissipated power for each task execu-
tion might vary. It was shown in [Ishihara and Yasuura 1998] and [Manzak and
Chakrabarti 2000] that the variations in the average switching activity (equivalent
to variations in power) influence the optimal voltage schedule and hence need to be
considered during the voltage selection. However, both approaches do not target
distributed systems with multiple PEs executing tasks with dependencies. Thus,
new system-level co-synthesis approaches for DVS-enabled architectures, which take
into account that power varies among the executed tasks, are needed. Recently,
an approach to solve this problem has been presented in [Zhang et al. 2002]. The
scheduling optimisation towards DVS utilisation in this approach is based on a
constructive technique, as opposed to our iterative scheduling optimisation which
allows a thorough search to find schedules of high quality.

In this paper, we formulate a generalised DVS problem that considers power
variation effects and is based on an iterative scheduling optimisation. We assume
that typical embedded architecture employ gate level power reduction techniques,
such as gated clocks, to switch off un-utilised blocks in the circuit [Devadas and
Malik 1995; Tiwari et al. 1994]. It is therefore necessary to take into account
that power varies considerably among the tasks carried out by the system. This
holds also for DVS-PEs [Burd 2001]. For example, in the case of a general purpose
ACM Journal Name, Vol. V, No. N, May 2003.
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processor (GPP) including an integer and a floating point unit, it is not desirable to
keep the floating point unit active if only integer instructions are executed. Thereby,
different tasks (different use of instructions) dissipate different amounts of power on
the same PE. In the case of an ARM7TDMI processor the current varies between
5.7 and 18.3mA, depending on the functionality which is carried out [Brandolese
et al. 2000]. Taking this into account, the assumptions to Lemma 1 and Lemma
2 in [Ishihara and Yasuura 1998], stating that energy consumption is independent
from the type of operations and input data and depends only on the supply voltage,
have to be rejected. In addition to this, our problem formulation also takes into
consideration the different power dissipations among different processing elements.
This is important since high power consuming PEs are likely to have a greater
impact on the energy saving (when scaled to lower performance) than low power
consuming PEs.

The aim of this paper is twofold: Firstly, we are formulating and examining a
generalised DVS problem which allows power variations, in the following also called
PV-DVS problem. We introduce a new, generalised DVS heuristic for distributed
systems containing heterogenous and power managed PEs. Secondly, we illustrate
the incorporation of this scaling technique into a genetic list scheduling approach,
which optimises the system schedule simultaneously towards timing feasibility and
DVS exploitability. This incorporation necessitates a careful adaption of the em-
ployed list scheduler to ensure its suitability for both optimisation goals. We provide
a detailed analysis of the DVS and scheduling approach revealing how scheduling
influences the DVS utilisation. This analysis is carried out on several benchmark
examples from literature [Bambha et al. 2001; Gruian and Kuchcinski 2001] and
generated for experimental purposes, as well as on an optical flow detection real-life
examples.

The remainder of the paper is organised in the following way. In Section 2, we
formulate the system-level synthesis problem and give a general and brief overview
of genetic algorithms, since they are used for the schedule optimisation. Section 3
describes in detail our approach to the system-level scheduling problem for architec-
tures including DVS components. In Section 4 numerous benchmark examples are
evaluated and compared with approaches that neglect power profile information.
Finally, in Section 5 we give some conclusions drawn from the presented work.

2. PROBLEM FORMULATION AND PRELIMINARIES

In this work, we consider that a multi-rate application is specified as a set of
communicating tasks, represented by a task graph GS(T , C). This (hyper) task
graph might be the combination of several smaller task graphs, capturing all task
activations for the hyper-period (LCM of all graph periods). Figure 1(a) shows a
task graph example. Each node τ ∈ T in these acyclic directed graphs represents a
task, an atomic unit of functionality to be executed without preemption. Further,
each task might inherit a specific hard deadline θ. These deadlines must be met
to fulfil the feasibility requirements of the specified application. In addition, the
task graph inherits a period p which specifies the maximal allowed time between
two successive invocations of the initial task. The edges γ ∈ C, in the task graph,
denote precedence constraints and data dependencies between tasks. If two tasks,
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τi and τj , are connected by an edge then the execution of task τi must be finished
before task τj can be started. Data dependencies inherit a data value, reflecting the
quantity of information to be exchanged by two tasks. A feasible implementation
of an application must respect all timing constraints and precedence requirements
when executed on an underlying architecture. This type of specification model is
most suitable for data flow intensive application with a repetitive behaviour, as
they can be found in systems for image, speech, and video processing.

The architectures we consider here consist of heterogeneous PEs, like general pur-
pose processors (GPPs), ASIPs, FPGAs, and ASICs. These components include
state-of-the-art DVS-PEs. An infrastructure of communication links, like buses
and point-to-point connections, interconnects these PEs. Processors are capable
to execute software tasks, which are accommodated in local memory, in a sequen-
tial manner, while tasks implemented on FPGAs or ASICs can be performed in
parallel and occupy silicon area. Figure 1(b) shows an example architecture built
out of two DVS-PEs connected by a single bus. Such architectures can be found
in application domains which target multimedia and telecommunication systems.
The architecture is captured using a directed graph GA(P,L) where nodes π ∈ P
represent processing elements and edges λ ∈ L denote communication links.

Each task of the system specification might have multiple implementation alter-
natives and can therefore be potentially mapped to several PEs able to execute
this task. If two communicating tasks are accommodated on different PEs, πn and
πm with n 6= m, then the communication takes place over a CL, involving a com-
munication time overhead. For each possible task mapping certain implementation
properties, like e.g. execution time, dynamic power dissipation, memory, and area
requirements, are given in a technology library. These values are either based on
previous design experience or on estimation and measurement techniques [Bran-
dolese et al. 2000; Fornaciari et al. 1999; Li et al. 1995; Tiwari et al. 1994; Muresan
and Gebotys 2001]. The technology library further includes information about the
available PEs and CLs, such as price, DVS enable flag, etc.

The overall co-synthesis process includes three traditional co-design problems,
namely, allocation, mapping, and scheduling. These optimisation steps determine
ACM Journal Name, Vol. V, No. N, May 2003.
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Fig. 2. Design flow of our generalised PV-DVS co-synthesis methodology for heterogeneous and
power managed processing elements

an architecture, a possible mapping of the functionality over the components of
that architecture, and a feasible schedule, such that certain design objectives are
either minimised or maximised. However, the problem, as presented here, involves
an additional voltage scaling step, which identifies scaling voltages for the tasks
mapped to DVS-PEs, in order to minimise the energy dissipation. Obviously, due
to their interrelations these design decisions cannot be made independently of each
other. In this paper, we will particularly focus on the scheduling and voltage scaling
problem in such DVS enabled architectures.

3. SYSTEM SYNTHESIS APPROACH INCLUDING POWER MANAGED PES

In this section, we give an overview of the co-synthesis flow for distributed ar-
chitectures containing heterogeneous, power managed processing elements. The
presented approach is based on a generalised power model, which allows to capture
power variation effects among the tasks (the power profiles). The whole design
flow is illustrated in Figure 2. As mentioned earlier, this paper concentrates on the
DVS algorithm and the scheduling technique, indicated as Steps 1 and 2. How-
ever, we give a brief overview of our system-level synthesis approach. The input
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information consists of two main parts, a system specification and a component
library. The system specification is captured using the directed acyclic graph, as
outlined in Section 2, and includes the performance requirements. The properties
of processing elements and communication links (price, idle power dissipation, etc.)
are collected in the component library, which additionally includes estimated infor-
mation (i.e. execution time, dynamic power dissipation, etc.) about each task/PE
and communication/CL combination. The input to our co-design approach further
involves a knowledge-based pre-allocation of system components. Using the pre-
sented synthesis approach the designer evaluates the suitability of this allocation.
If an architecture proves to be unsuitable or of low quality the designer modifies the
allocation and re-evaluates the design. The presented co-synthesis system takes this
input information and establishes the necessary data structures. This is followed
by the allocation step (Step 4 in Figure 2) that determines the type and quantity
of PEs and CLs used to compose the architecture. An appropriate allocation min-
imises system cost while providing sufficient computational performance. In Step 3,
the task mapping is carried out. This step determines the mapping of tasks to PEs
and uses a GA-based iterative improvement technique. Task mapping optimises
the distribution of tasks towards energy savings, but additionally aims to satisfy
imposed area constraints on hardware components. After a mapping is established,
the next step involves the scheduling (Step 2) of the tasks and communications in
order to meet the hard time constraints of the application and to further minimise
the energy dissipation in the presence of DVS-PEs. This optimisation is based on a
list scheduling heuristic using a GA for the determination of priorities. At the core
of this co-synthesis approach, as shown in Figure 2, is the PV-DVS algorithm (Step
1). In this step the algorithm identifies scaling voltages for the task executions on
DVS-PEs under the consideration of power variations in order to efficiently reduce
the energy dissipation of the distributed system. The output of the proposed co-
design flow consists of three results: (a) an allocated architecture, (b) a mapping of
tasks and communications onto that architecture, and (c) a feasible schedule for the
task executions and the communication activities, such that no time constraints are
violated. In addition to these traditional aspects, the proposed technique further
outputs scaling voltages for the tasks executed by DVS-PEs. Note that the architec-
ture, the mapping, and the schedule are optimised for the exploitation of DVS and
therefore differ from the results obtained by traditional co-design approaches [Dick
and Jha 1998; Ernst et al. 1993; Kirovski and Potkonjak 1997; Micheli and Gupta
1997; Prakash and Parker 1992; Wolf 1997]. The outcome, which is of relevance to
the designer/architect, consists of the system cost (system price), the total system
energy dissipation, and the implementation quality (e.g. performance related to
soft deadlines). Using these values, the designer is able to judge the overall quality
of the implementation and can operate certain changes if necessary.

3.1 Generalised DVS Approach for Distributed Systems containing Power Managed
PEs

In this section, which is concerned with the identification of scaling voltages, we first
motivate the consideration of power variation effects using an illustrative example.
This is followed (Subsection 3.1.1) by the formulation of a generalised DVS problem
for distributed systems. In Subsection 3.1.2, we introduce an heuristic algorithm
ACM Journal Name, Vol. V, No. N, May 2003.
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to solve the formulated problem.
The aim of the generalised DVS approach is to identify scaling voltages under the

consideration of power variation effect. This is done for the scheduled and mapped
system specification such that the total dynamic energy dissipation is minimised.
The presented approach assumes that no restrictions are placed on the scaling volt-
ages, i.e., our technique targets variable-voltage systems (nearly continuous range
of possible supply voltages) rather than multi-voltage systems (small and limited
number of potential supply voltages). However, we will explain in Section 3.1.2 how
the obtained scaling voltages can be easily adapted to suit multi-voltage systems.
The term generalised DVS refers to the key observation that the power dissipation
varies considerably upon the PE types and the instructions executed by the PEs.
This is not new and well known [Burd and Brodersen 1996; Tiwari et al. 1994].
However, unlike previous approach to DVS for distributed systems [Bambha et al.
2001; Gruian and Kuchcinski 2001; Luo and Jha 2000], the presented technique
takes these power variation effects into account and is sufficiently fast to be used in
the inner optimisation loop of a co-synthesis tool. The following example is used to
motivate the necessity of considering power variations during the voltage selection,
in order to minimise the dynamic energy dissipated by the system. Before we start
with the example, it is necessary to define the term energy difference, which will be
used throughout this section.

Definition 1. We define an energy difference ∆Eτ as the difference between the
energy dissipation of task τ with the execution time t and the reduced energy
dissipation (due to voltage and clock scaling) of the same task when extended by a
time quantum ∆t. Formally:

∆Eτ = Eτ (t)− Eτ (t + ∆t) (3)

where Eτ (t) and Eτ (t + ∆t) are calculated using Equations (1) and (2). �

Motivational Example 1: Considering Power Variations during Voltage Scaling

The intention with this illustrative example is to motivate the consideration of
power variation effects during the voltage scaling of heterogeneous distributed sys-
tems. This is done by using two different models during the voltage scaling: (a) a
fixed power model which does not allow power variations and (b) a variable power
model which takes power variation into account (as used in the proposed approach).

The starting point for the DVS technique is a system specification scheduled (at
nominal voltage) and mapped onto an allocated architecture which includes power
managed DVS components. In this simple example, we consider an architecture
composed of two hypothetical, heterogeneous DVS-PEs connected through a single
bus as illustrated in Figure 1(b). The system is specified by the task graph shown
in Figure 1(a).

Nominal supply voltage Vmax and threshold voltage Vt for the two PEs are given
in Table II(a). This table further shows the nominal execution times and dy-
namic power dissipations of tasks, according to their mapping. Furthermore, the
transfer times and power dissipations of the communication activities are shown in
Table II(b), reflecting the inter PE communications through the bus. Communi-
cations between tasks on the same PE are assumed to be instantaneous, and their

ACM Journal Name, Vol. V, No. N, May 2003.
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Table I. Execution times and power dissipations for the motivational example

PE0 (Vmax = 5V , Vt = 1.2V ) PE1 (Vmax = 3.3V , Vt = 0.8V )
task exe. time power dis. exe. time power dis.

(ms) (mW) (ms) (mW)

τ0 0.15 85 0.70 30

τ1 0.40 90 0.30 20

τ2 0.10 75 0.75 15

τ3 0.10 50 0.15 80

τ4 0.15 100 0.20 60

(a) Task execution times and power dissipations at nominal supply voltage

comm. comm. power
time (µs) dis. (mW )

γ0→1 0.05 5

γ1→2 0.05 5

γ1→3 0.15 5

γ2→4 0.10 5

(b) Communication times and

power dissipations of communi-
cation activities mapped to the
bus

power dissipation is neglected, as in most co-synthesis approaches.
A possible mapping and scheduling of the system tasks onto the underlying ar-

chitecture is shown in Figure 3, which describes the power dissipation over time,
hence, the power profile of PEs and CLs. It can be observed that PE0 accommo-
dates tasks τ0 and τ4, while the remaining tasks are mapped to PE1. The com-
munication link, connecting both PEs, shows two communications, γ0→1 = (τ0, τ1)
and γ2→4 = (τ2, τ4). The dynamic system energy dissipation of this configuration
at nominal supply voltage can be calculated as 57.75µJ , using the dynamic power
values and execution times given in Tables II(a) and II(b). Obviously, since the
execution of task τ3 finishes at 1.4ms and the task deadline is at 1.5ms, a slack
of 0.1ms is available, as indicated in Figure 3. The same holds for task τ4, which
finishes its execution after 1.5ms, leaving a slack of 0.1ms until the deadline is
reached. These slacks can be used to extend the task execution times. Thus, the
DVS-PEs can be slowed down by scaling the supply voltage and accordingly the
clock frequency, following the relation given in Equation (2). Let us consider two
cases for the identification of scaling voltages: (a) When a fixed power model is
used (power variations are neglected), i.e., all tasks mapped to the same PE are as-
sumed to consume the same constant amount of power, and (b) a more generalised
and more realistic power model allowing for power variations among the tasks (as
proposed in this work).

One approach to optimise the energy dissipation, which neglects the power pro-
ACM Journal Name, Vol. V, No. N, May 2003.
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file, is to distribute the slack time evenly among the tasks. This is illustrated in
Figure 4(a) where each task execution is extended using a factor of e = 1.45/1.35 =
1.074, since the total computation time (not including communications) accounts
for 1.35ms and the available time (given the slack of 0.1ms) is 1.45ms. Thereby,
the extended task executions can be calculated as the following: t0 = 0.161ms,
t1 = 0.322ms, t2 = 0.856ms, t3 = 0.161ms, and t4 = 0.161ms. This allows to lower
the supply voltages of PE0 and PE1 to 4.79V and 3.16V , respectively, according
to following equation (derived from Equation (2)).

Vdd = Vt +
V0

2d∗
+

√(
Vt +

V0

2d∗

)2

− V 2
t (4)

where d∗ denotes the normalised delay, which, in this example, is equal to the
extension factor e. The constant V0 is given by:

V0 =
(Vmax − Vt)2

Vmax
(5)

Thus, the reduced voltages of PE0 is calculated as:

Vdd = 1.2V +
(5V − 1.2V )2/5V

2 · 1.074
+

√(
1.2V +

(5V − 1.2V )2/5V

2 · 1.074

)2

− (1.2V )2

Vdd = 4.788V

using the nominal supply voltage Vmax = 5V and the threshold voltage Vt = 1.2V
as given in Table II(a). In the same way, the scaled supply voltage for PE1 can
be calculated as Vdd = 3.161V , using Vmax = 3.3V and Vt = 0.8V . Adjusting the
supply voltages of the PEs to theses levels, the task deadlines are still satisfied, and
the power dissipations are reduced. According to Equation 1, the power dissipation
of each task can be calculated using the following relation:

PVdd

PVmax

=
α · CL · fVdd

· V 2
dd

α · CL · fVmax
· V 2

max

=
1
e
· V 2

dd

V 2
max

=
1
d∗
· V 2

dd

V 2
max

(6)
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proposed energy difference approach;
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Fig. 4. Power profiles of the schedules when DVS is applied, resulting in reduced energy dissipa-
tions

considering that α · CL is constant for a given task and that relation between
reduced operational frequency fVdd

and maximal operational frequency fVmax
is

equivalent to the inverse of the extension factor 1/e = fVdd
/fVmax

. Thereby, the
power dissipations are reduced to P0 = 72.57mW , P1 = 17.08mW , P2 = 12.81mW ,
P3 = 68.33mW , and P4 = 85.38mW . This results in a total energy dissipation
E = 53.03µJ , a reduction of 8.2%.

Now consider the case when the generalised power model (allowing power varia-
tions) is employed during the identification of scaling voltages for the task execu-
tions. This optimisation is based on an energy difference as defined in Equation
(3). For a simpler illustration of the method, the available deadline slack is di-
vided into 10 time quanta with the size of 0.01ms each. Having defined the time
quantum size ∆t, we can now calculate an energy difference ∆Eτ for each task,
using Equations (1), (2), and (3). For instance, the energy dissipation of task τ0 at
nominal supply voltage can be calculate as E0(0.15) = 0.15ms · 85mW = 12.75µJ ,
using the values given in Table II(a). An extension of 0.01ms leads to an dissi-
pated energy of E0(0.16) = 0.16ms · 73.69mW = 11.79µJ and thereby results in
an energy difference ∆E0 = 12.75µJ − 11.79µJ = 0.96µJ . In the same way, the
energy differences can be calculated for the remaining task as ∆E1 = 0.234µJ ,
∆E2 = 0.156µJ , ∆E3 = 0.899µJ , and ∆E4 = 1.130µJ . Certainly, the task with
the highest energy difference (task τ4) will improve the energy dissipation by the
highest amount when extended by ∆t. Based on this observation, all remaining
time quanta are iteratively distributed among the tasks and the energy difference
of extended tasks are recalculated since the energy versus execution time function is
non-linear (see Equations (1), (2) and (3)). This optimisation process is illustrated
through Table II. Each line in this table corresponds to an iteration and shows
ACM Journal Name, Vol. V, No. N, May 2003.
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Table II. Energy differences during the execution of the PV-DVS algorithm

Energy difference ∆E (µJ)

iteration τ0 τ1 τ2 τ3 τ4

1 0.960 0.234 0.156 0.899 1.130

2 0.960 0.234 0.156 0.899 0.965

3 0.960 0.234 0.156 0.899 0.833

4 0.820 0.234 0.156 0.899 0.833

5 0.820 0.234 0.156 0.768 0.833

6 0.820 0.234 0.156 0.768 0.725

7 0.708 0.234 0.156 0.768 0.725

8 0.708 0.234 0.156 0.663 0.725

9 0.708 0.234 0.156 0.663 0.636

10 0.616 0.234 0.156 0.663 0.636

11 0.616 0.234 0.156 0.578 0.636

12 0.616 0.234 0.156 0.578 0.562

13 0.541 0.234 0.156 0.578 0.562

14 0.541 0.234 0.156 0.507 0.562

15 - - - 0.507 -

16 - - - 0.451 -

extension 4 0 0 6 6

the extendable tasks and their potential energy gain. The bold numbers indicate
which task is extended in each iteration, and in this simple example task τ4 is the
first task to be extended (iteration 1). Observing iteration 2, the energy difference
of task τ4 has changed to ∆E4 = 0.965µJ , however, τ4 is still the task which will
gain most from an extension. This iterative extension of tasks is repeated until no
slack is left. The last row of Table II shows how many extensions are distributed
to each task. Accordingly, the new execution times are as follows: t0 = 0.19ms,
t1 = 0.3ms, t2 = 0.75ms, t3 = 0.21ms, and t4 = 0.21ms. These extended execu-
tion times allow to lower the supply voltages, which results in the following power
dissipations: P0 = 50.77mW , P1 = 20mW , P2 = 15mW , P3 = 38.74mW , and
P4 = 48.33mW . The total energy dissipation is E = 45.93µJ . This means an
energy reduction of 20.5% compared to a reduction of 8.2% obtained with a power
profile neglecting approach. �

3.1.1 Generalised DVS Problem Formulation. The DVS problem, including power
variation effects, can be stated as follows:

Find for all DVS-PE mapped tasks τ ∈ TDVS of the system specification
a single scaling voltage Vdd(τ) (between the threshold voltage Vt and the
nominal supply voltage Vmax) under consideration of individual power
dissipations Pmax(τ) such that the dynamic energy dissipation EΣ is
minimised and no deadline and precedence constraints are violated.

The problem can be mathematically expressed using the following definitions, where
R+

0 = {x |x ∈ R, 0 ≤ x < +∞} and R+ = R+
0 \ 0:

—GS(T , C) is the system specification graph, where T is the set of tasks and C is
the set of communications, as defined in Section 2
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—GA(P,L) is a directed architecture graph, where P is the set of PEs and L is the
set of CLs, as defined in Section 2

—PDV S ⊆ P denotes the set of all DVS-enabled processing elements
—A = T ∪ C defines the set of all activities
—K = P ∪ L defines the set of all allocated components
—TDVS ⊆ T denotes the set of all tasks mapped to DVS-PEs PDV S

—Pmax : T 7→ R+ is a function returning the power dissipation of task τ executed
at maximal PE supply voltage Vmax

—tmin : T 7→ R+ is a function returning the minimal execution time of task τ ∈ T
at maximal PE supply voltage Vmax

—Vt : P 7→ R+ is defined as a function which returns the threshold voltage of the
PE to which task τ ∈ T is mapped

—Vmax : T 7→ R+ is a function returning the maximal supply voltage of the PE
to which task τ ∈ T is mapped

—Td ⊆ T denotes the set of all tasks having a hard deadline
—texe : A 7→ R+ is a function defined by:

texe =

{
tmin(ε) · Vdd(ε)

(Vdd(ε)−Vt(ε))2
· (Vmax(ε)−Vt(ε))

2

Vmax(ε) if ε ∈ T
tC if ε ∈ C

where tC is the communication time for the communication activity γ ∈ C
—td : Td 7→ R+

0 is a function returning the deadline of task τ ∈ Td

—Cin : T 7→ 2C returns the set of all ingoing edges of task τ ∈ T
—tS : A 7→ R+

0 is a function which returns the start time of an activity ε ∈ A
(i.e., the time when the activity begins execution)

—A : K 7→ 2A defines a function, returning the set of all activities mapped to a
component κ ∈ K

—I = [tS(ε), (tS(ε) + texe(ε))] is the execution interval of activity ε ∈ A
—i : A 7→ R+

0 × R+
0 is a function returning the execution interval of an activity

ε ∈ A

Using this definitions it is possible to formalise the problem mathematically as the
minimisation of

EΣ =
∑

τ∈TDVS

Pmax(τ) · tmin(τ) · V 2
dd(τ)

V 2
max(τ)

subject to

Vt(τ) < Vdd(τ) ≤ Vmax(τ), ∀τ ∈ TDVS

tS(τ) + texe(τ) ≤ td(τ), ∀τ ∈ Td

tS(γ) + texe(γ) ≤ tS(τ), ∀τ ∈ T , γ ∈ Cin(τ)

i(εn) ∩ i(εm) = ∅, ∀ (εn, εm) so that εn ∈ A(κ1), εm ∈ A(κ2) ⇒ κ1 = κ2

Please note that a single scaling voltage for each task executing on a DVS-PE has
to be calculated for the statically scheduled application. However, in dynamically
ACM Journal Name, Vol. V, No. N, May 2003.
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Algorithm: PV DVS OPTIMISATION

Input: - task graph GS(T , C), mapping, schedule, architectural information,

minimum extension time ∆tmin

Output: - energy optimised voltages Vdd(τ), dissipated dynamic energy E

01: Generate MSTG from GS

02: QE ← ∅
03: for all (τ ∈ Td) {∆td(τ) := td(τ)− (tS(τ) + texe(τ))}
04: for all (τ ∈ T ) {calculate tε}
05: for all (τ ∈ T ) {if tε ≥ ∆tmin then QE := QE + τ}
06: ∆t = min tε

|QE |
, if ∆t < ∆tmin then ∆t = ∆tmin

07: for all (τ ∈ QE) {calculate ∆E(τ)}
08: reorder QE in decreasing order of ∆E

09: while (QE 6= ∅) {
10: select first task τ∆Emax ∈ QE

11: tτ∆Emax := tτ∆Emax + ∆t
12: update Eτ∆Emax

13: for all (τ ∈ T ) {update tS , tE and tε}
14: for all (τ ∈ QE) {if (tε(τ) < ∆tmin) ∨ (Vdd(τ) ≤ Vt(τ))

then QE := QE − τ}
15: ∆t = min tε

|QE |
, if ∆t < ∆tmin then ∆t = ∆tmin

16: for all (τ ∈ QE) {update ∆E(τ)}
17: reorder QE in decreasing order of ∆E

18: }
19: delete MSTG
20: return EΣ, and Vdd(τ) for all (τ ∈ T )

Fig. 5. Pseudo code of the proposed heuristic (PV-DVS) for the generalised DVS problem

scheduled systems the voltage of a single task might not be restricted to one volt-
age in order to dynamically adapted the system performance to the performance
requirements.

3.1.2 Generalised DVS algorithm for heterogeneous distributed systems. Having
formalised the problem, described the effects of power variations on the voltage
selection and the necessity for their consideration in a generalised power model,
we introduce next our DVS algorithm. The algorithm, summarised in Figure 5,
is based on a constructive heuristic using the defined energy difference (Equation
(3)). The starting point of the presented algorithm is a mapped and scheduled task
graph (MSTG), i.e., it is known where and in which order the tasks are executed.
Execution times and power dissipations are part of the architectural information,
which also includes other necessary component properties, like the nominal supply
voltage Vmax, the threshold voltages Vt, etc. The minimal extension time ∆tmin

denotes the minimal time quantum to be distributed in each step of the algorithm.
It is defined in order to speed up the determination of the voltage selection by
preventing insignificant small extensions leading to trivial power reductions.

To allow for a fast and correct extension of task executions, which might influ-
ence other tasks and communications of the system, it is beneficial to capture the
schedule and mapping information into the task graph (line 01 in Figure 5). This
can be performed by generating a mapped and scheduled task graph, which is a
transformed copy of the initial task graph, as shown in Figure 6. The transforma-
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Fig. 6. Capturing the mapping and schedule information into the task graph by using pseudo

edges and communication task

tion consists of two steps. Firstly, all communications (edges) that are mapped to
communication links are replaced by the so called communication nodes and ap-
propriate edges, thereby preserving the specified functionality. Secondly, all nodes
mapped to a certain PE or CL are traversed in chronological order and linked by
pseudo-edges [Chretienne et al. 1995], if an edge does not already exist. In this
way, the scheduling and mapping are inherited into the task graph and the influ-
ence of a task extension can be easily propagated through the system schedule by
traversing the MSTG in a breadth-first order to update the start and end times of
the activities.

In order to identify all extendable tasks, the algorithm first calculates the avail-
able slack times of each hard deadline task (line 03). The algorithm then calculates
the slack time tε of all tasks, taken the interrelation between them into account
(line 04). For this purpose an inverse breadth-first search algorithm is used to visit
all nodes of the MSTG, in order to inherit the slack time of influenced tasks. If
a visited task influences more than a single successor task then the smallest slack
of the successor is inherited, in order to guarantee the satisfaction of deadlines. In
line 05 the algorithm includes tasks with an available slack time tε greater or equal
than the minimal extension time ∆tmin into the priority queue QE . In this way
tasks with negligible small or no extension possibility are excluded from the scaling
process. The initial extension time ∆t is calculated (line 06 of the algorithm) by
dividing the smallest slack time among the extendable tasks, min tε, by the num-
ber of extendable tasks |QE |. This time, however, should not be smaller than the
minimal extension time ∆tmin. It is now possible to calculate the energy difference
of all extendable tasks according to Equation (3), as shown in line 07. In line 08,
the priority queue QE is reordered in decreasing order of the energy differences.

The algorithm iterates the steps between line 09 and 18 until no extendable tasks
are left in the priority queue. In each of these iterations the algorithm picks the
first element from the priority queue, the task which leads to the highest energy
reduction (line 10). This task is then extended by ∆t and the energy dissipation
value is updated (lines 11 and 12) according to Equations (1) and (2). In line 13 the
extension is propagated through the MSTG, since successor tasks might have been
affected by the extension in terms of start time tS , end time tE = ts + texe, and
available slack time tε. In the next step (line 14) inextensible tasks are removed from
ACM Journal Name, Vol. V, No. N, May 2003.
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the extendable task queue QE , if their available slack tε is smaller than the minimal
extension time ∆tmin, or their scaled supply voltage Vdd is small or equal to the
threshold voltage Vt. Taking into account the tasks in the new extendable queue,
the time quantum ∆t is recalculated (line 15) to enable a potential distribution
of slack to all tasks in the queue. Based on this ∆t value, the energy differences
∆E are updated (line 16). The priority queue QE is reordered according to the
new energy differences (line 17). At this point, the algorithm either invokes a new
iteration or ends, based on the state of the extendable task queue. If it terminates,
the scaling voltages for each task execution and the total dynamic energy dissipation
are returned (lines 19 and 20).

The algorithm, as described above, produces scaling voltages under the assump-
tion that variable-voltage PEs are available that support continuous voltage scaling.
However, it is possible to adapt the generated scaling voltages towards multi-voltage
PEs, which are able to run at a restricted number of predefined voltages. It has
been shown in [Ishihara and Yasuura 1998] that the two discrete supply voltages
Vd1 and Vd2, Vd1 < Vdd < Vd2, around the continuous selected voltage Vdd are the
ones which minimise the energy dissipation, under the assumption that the time
overhead for switching between different voltages can be neglected. Thus, our ap-
proach can be used for voltage selection on multi-voltage PEs. Given a task τ with
execution time texe at the continuous selected voltage Vdd, then, in order to achieve
minimal energy consumption, the same task τ will execute on the multiple voltage
PE for tdis1 time units at the supply voltage Vdis1 and for tdis2 time units at supply
voltage Vdis2, where

texe = tdis1 + tdis2 (7)

tdis1 = texe ·
Vdis1 · (Vdd − Vt)2

(Vdis1 − Vt)2 · Vdd
·

Vdd

(Vdd−Vt)2
− Vdis2

(Vdis2−Vt)2

Vdis1
(Vdis1−Vt)2

− Vdis2
(Vdis2−Vt)2

. (8)

Complexity Analysis. The complexity of the proposed PV-DVS algorithm can be
calculated as follows: The while loop (line 09) is executed in the worst case n ·m
times, where n = |T | is the number of nodes in the graph, since all tasks might be
extendable. However, depending on ∆tmin and ∆t, tasks might be extended more
than once, and m, for the worst case, is the maximum number of such extensions.
The inner part of the while loop shows the following complexities: The propagation
of extensions takes n + c in the worst case (c = |C| is the number of edges in the
graph), since all nodes and edges might have to be visited by the breadth-first search
(line 13). Removing inextensible tasks, again, might take n steps. Determination
of the new extension time ∆t is done in most n steps. And finally, updating
the extendable queue takes n operations (the queue is implemented as Fibonacci
heap). All other calculations inside the while loop are executed in constant time.
Therefore, the final time complexity of the proposed PV-DVS algorithm is given
as O(n · m(4n + c)). Note that the extendable task queue QE is progressively
reduced from length n to zero. The reduction is not uniform since it might occur
that suddenly (at the same time) many tasks become inextensible and are excluded
from the queue. This, additionally, indicates that the complexity is valid for the
worst case. �

ACM Journal Name, Vol. V, No. N, May 2003.



18 · Marcus T. Schmitz et al.

τ0

τ

τ τ 4

τ1 2

3

τ

τ 5

6
θ

θ4,5

6=1.4ms

  =1.6ms

Fig. 7. Second task graph example

3.2 DVS optimised Scheduling

This section is concerned with the scheduling problem for heterogeneous distributed
systems containing power managed DVS-PEs. In Section 3.1, we have shown that
our generalised DVS algorithm is able to further improve the scaling voltages for the
already scheduled tasks, which are mapped to DVS-PEs. However, as mentioned
in Section 2, the task scheduling greatly influences how efficiently DVS can be
exploited. Simply put, the more slack is available in the schedule, the higher the
achieved energy savings by exploiting DVS will be. Again, this becomes more
complex and does not hold always for distributed systems under the proposed
generalised power model (considering the power profiles) when compared with a
fixed power model. In such a case, the available slack for high energy dissipating
tasks should be considered more important than the slack of tasks consuming a
minor amount of power.

Motivational Example 2: Energy Conscious Scheduling

The purpose of this motivational example is to illustrate the importance to take the
PE power profile into account while scheduling tasks and communications in the
presence of DVS-PEs. It highlights the importance to take into account the power
dissipations for different DVS-PEs, in order to make DVS conscious scheduling
decisions.

The specification task graph shown in Figure 7 is mapped to an architecture
consisting of three heterogeneous and power managed DVS-PEs, linked through
a single bus. Table IV(a) gives the execution time, power dissipation, and the
mapping of each task. Additionally, the values for the nominal supply voltage Vmax

and the threshold voltage Vt of each PE are given in Table IV(b). For the sake of
simplicity, in this example, the communications are considered to be instantaneous.
Figure 8(a) shows a feasible schedule for the mapped tasks, executing at nominal
supply voltage. This schedule results in an energy dissipation of 71µJ , according
to the values given in Table IV(a). It can be observed that task τ6 has a deadline at
1.4ms but it finishes its execution after 1.0ms, which results in an available deadline
slack of 0.4ms. This slack time can be used to extend the tasks and hence reduce
the supply voltage of the PE during the task execution. However, τ3 and τ6 are the
only extendable tasks, and any other extension of the remaining tasks cannot be
tolerated, since task τ5 finishes execution just on deadline and the tasks τ0, τ1, and
τ2 influence the start and end time of task τ5. Therefore, an optimal DVS schedule
ACM Journal Name, Vol. V, No. N, May 2003.
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Table III. Task and processing element information

Task exec. time (µs) power dis. (mW) mapping

τ0 0.30 10 PE1

τ1 0.30 20 PE1

τ2 0.40 15 PE1

τ3 0.10 40 PE0

τ4 0.40 70 PE2

τ5 0.20 90 PE2

τ6 0.30 20 PE0

(a) Execution times, power dissipations, and mapping for
the tasks of task graph 2, when running at nominal supply

voltage

PE Nominal supply Threshold
voltage Vmax Voltage Vt

0 3.3V 0.8V

1 2.5V 0.6V

2 3.3V 0.8V

(b) Nominal supply voltage and thresh-

old voltage of each DVS-PE
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(b) optimal voltage

schedule for the given
execution order

Fig. 8. A possible schedule, satisfying the given time constraints

for this configuration must only extend tasks τ3 and τ6. Taking the power profile
of PE2 into account the optimal supply voltages can be calculated as 2.08V and
2.34V for τ3 and τ6, respectively. This results in the reduced power dissipations
P3 = 6.63mW and P6 = 5.39mW . Using the optimised supply voltages, the total
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Fig. 9. Second schedule of the same task graph, satisfying the timing constraints and optimised

for PV-DVS

energy dissipation is reduced to 65.61µJ , which is a 7.6% reduction.
Now, consider the nominal supply voltage schedule given in Figure 9(a). It can

be observed that the energy dissipation is again 71µJ , since task mapping and
voltages are the same as in Figure 8(b). The given schedule also satisfies all timing
constraints. Unlike the previous schedule, in this sequencing of tasks, it is not pos-
sible to extend tasks τ3 and τ6, since task τ6 ends its execution just on deadline.
However, observing tasks τ4 and τ5 reveals an available slack of 0.3ms. It is impor-
tant to note that this available slack is smaller than the one given in Figure 8(a),
and therefore an energy optimisation neglecting the power variation among PEs
and tasks would prefer the solution in Figure 8. Nevertheless, the extensions of
task τ4 and τ5 allow to scale the PE speed down. The optimal voltages for this con-
figuration can be calculated as 2.74V and 2.41V , for τ4 and τ5, respectively. Using
this supply voltages allows to reduce the power dissipations to P4 = 34.93mW and
P5 = 27.29mW . In this way the dynamic energy dissipation is reduced to 53.89µJ ,
leading to a 24.1% improvement. This is a significant reduction compared to the
achieved 7.6% when the power variations between PEs and tasks are neglected. �

3.2.1 DVS Optimisation using Genetic List Scheduling. Our scheduling algo-
rithm for the generalised DVS problem uses a genetic list scheduling approach
(GLSA) to optimise the execution order of tasks towards energy reduction and
timing feasibility. Unlike previous scheduling approaches that try to improve DVS
utilisation using constructive heuristics, the presented algorithm is based on an
iterative optimisation which enables a thorough search through the solution space.

It has been shown in [Dhodhi et al. 1995; Grajcar 1999] that the combination of
genetic algorithm and list scheduling provides a powerful tool for the synthesis of
multiprocessor systems. The main advantages of GLSA approaches over traditional
constructive list scheduling methods are:
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—The objective, which needs to be optimised, can be based on an arbitrary complex
function.

—The enlarged search space (at most (|T | + |C|)! different schedules can be pro-
duced) provides the opportunity to find solutions of potentially higher quality.

—There is a large freedom to trade-off between acceptable synthesis time and so-
lution quality, as opposed to constructive techniques where only one solution is
produced.

—GAs with parallel populations and migration scheme provide a powerful approach
to leverage additional computational power of computer clusters, which are be-
coming more and more commonplace.

—Multi-objective optimisation is an important feature which is supported by ge-
netic algorithms. It provides the opportunity to simultaneously optimise the im-
plementation towards competing goals and allows the system designer to choose
among several suitable implementations with different properties.

A detailed functional description of genetic list scheduling approaches can be found
in [Dhodhi et al. 1995; Grajcar 1999]. Nevertheless, our implementation varies in
two fundamental issues from this previous research:

—Instead of optimising the schedule solely for timing behaviour (reducing the
makespan1), we consider additionally the issue of energy minimisation with re-
spect to DVS.

—The algorithms described in [Dhodhi et al. 1995] and [Grajcar 1999] employ a
list scheduler which determines not only the execution order of tasks but also
their mapping. We avoid this combination because of the greediness problems
described in [Kalavade 1995] which might lead to infeasible mappings due to
exceeded area constraints (memory and gates) of pre-allocated hardware compo-
nents. A list scheduling, including the mapping step, serially traverses all nodes
of the task graphs and maps them to allocated components based on local deci-
sions taken in each step. This might lead to low quality solutions, as opposed to
approaches in which mapping is decided in an external loop, based on iterative
improvement techniques. Another problem, which occurs when determining the
mapping during the list scheduling processes, is that the execution times and
power dissipations of the mapped tasks are influenced by the voltage scaling.
Therefore, the mapping decisions based on these values might prove to be wrong.
For example, mapping a task to a low power consuming ASIC might involve an
expensive development of hardware, while the mapping of the same task onto a
DVS-enabled ASIP might prove satisfactory when the task execution is scaled.

List scheduling algorithms make scheduling decisions based on task priorities and
determine static schedules. Unlike constructive list scheduling techniques that use
a sophisticated algorithm for the priority assignment, genetic list scheduling tech-
niques construct and evaluate many different schedules during an iterative priority
optimisation process. By encoding the task priorities into a priority string, it be-
comes possible to utilise genetic operators (crossover and mutation) to change task

1Makespan is duration from starting the first task until the last task finishes execution.
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Fig. 10. Task priority encoding into a priority string

priorities and hence generate new scheduling solutions using static list scheduling.
Figure 10 shows the encoding and the relations between priority string and tasks.
To preserve some string locality, important for an efficient search when using GAs
[Goldberg 1989], the priorities are ordered in the same way as visited by a breadth-
first search. Now we give an overview of our DVS optimised genetic list scheduling
algorithm, as shown in the optimisation Step 2 of Figure 2. The solution pool (25
individuals) of the first generation is initialised half by mobility-based [Wu and
Gajski 1990] and half by randomly generated priorities (with values between the
lowest and highest mobility), respectively. This initial population was empirically
found to be a good starting point, leading to fast convergence. The algorithm then
enters the main schedule optimisation loop, which is repeated until no improve-
ment of at least 1% (with respect to the best found feasible schedule) is made for
10 generations. Each iteration of the loop goes successively through the following
steps: All new priority candidate strings in the solution pool are used by the list
scheduling algorithm to generate schedules at nominal supply voltage. Our imple-
mented list scheduler relies solely on the task priorities to make schedule decisions,
i.e., no other techniques, like e.g. hole filling, are used to optimise the schedule.
Although such techniques can improve the timing behaviour by eliminating idle
periods in the schedule, we dissociate from them since the DVS technique exploits
exactly these idle times. The algorithm proceeds by passing the built schedules to
the previously presented PV-DVS algorithm (Section 3.1.2), which identifies scaling
voltages that minimise the energy dissipation. Note that schedules which exceed
hard deadline constraints are still scaled as much as possible and are not excluded
from the optimisation, since good solutions are likely to be found as result of trans-
formations performed on invalid configurations. However, a violation penalty is
applied in such cases, as explained next. The scaled schedule is evaluated in terms
of deadline violations and energy dissipation including DVS reductions. Based on
this evaluation, the fitness FS of each schedule candidate is calculated using the
following equation:

FS =


(∑

τ∈T
P (τ) · texe(τ)

)
︸ ︷︷ ︸

task energy

+

∑
γ∈C

P (γ) · texe(γ)


︸ ︷︷ ︸

comm. energy

 ·

1 +

∑
τ∈Td

DV 2
τ

T 2
HP


︸ ︷︷ ︸

Time Penalty

,

(9)
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DVτ = max
(
0, (tS(τ) + texe(τ))− td(τ)

)
where P and texe denote power dissipation and execution time of task τ or com-
munication activity γ, summed to calculate the total dynamic energy dissipation
which needs to be minimised. Note that the power dissipations and the execution
times of the tasks depend on the found scaling voltages Vdd. In order to assign
a deadline violation penalty, the energy value is multiplied with a penalty factor
based on the sum of the squared deadline violations. THP is the hyper task graph
period (least common multiplier of all task graph periods) used to normalise the
deadline violation. Squaring has been applied in order to apply a higher penalty
to larger violations of imposed deadlines. By guiding the optimisation with this
fitness function, the search for schedules is pushed into regions where low energy
and feasible schedules are likely to be found. The algorithm then checks the halting
criterion as mentioned above. If the end of the optimisation has not been reached
the algorithm continues, and the new priority candidates are ranked and inserted
into the solution pool based on their fitness values. Low ranked individuals of
the pool are replaced by new ones, which are generated through genetic crossover
and mutation. We use a steady state GA, due to its performance advantage com-
pared to generational GAs as indicated in [Rogers and Prügel-Bennett 1999], with
a generation gap of 50%, i.e., half of the individuals in the solution pool survive
unchanged in each generation. The crossover is carried out by means of a random
two point crossover. To avoid a premature convergence towards suboptimal sched-
ules we leverage the idea of a dynamic mutation probability [Fogarty 1989]. This
approach gives the algorithm the additional capability to easily escape local min-
ima in the beginning of the optimisation run. The mutation probability follows the
equation 1/ exp(NS ·0.05) and is never allowed to drop below 15%. NS denotes the
current generation during the schedule optimisation. At this point, the next itera-
tion is invoked and so different schedules are tried out. The experimental results,
given later in Section 4.2, indicate the advantages of our approach in optimising
the schedule towards DVS usability when compared to conventional constructive
list scheduling approaches.

4. SYNTHESIS EXPERIMENTS

To demonstrate the efficiency and the applicability of the proposed generalised
DVS synthesis technique in reducing the energy dissipation of heterogeneous dis-
tributed systems containing power managed PEs, we have carried out numerous
experiments and comparisons with power neglecting approaches. The PV-DVS and
scheduling algorithm as outlined in the previous section have been implemented on
a Pentium-III/750MHz Linux PC with 128MB RAM. We have used 68 experimental
benchmark examples, partially taken from previously published literature [Gruian
2000; Bambha et al. 2001; Hou and Wolf 1996] and generated using TGFF [Dick
et al. 1998], to cover a wide spectrum of application diversity. To demonstrate the
real-world applicability of the presented work, we carried out an additional set of
experiments on an optical flow detection real-life example. The complexity of the
used task graph examples varies between 8 to 100 tasks and 7 to 151 edges. The
amount of PEs and CLs in the component libraries varies between 4 and 16. These
benchmarks are grouped into five major sets:
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(1) Our TGFF generated task graphs (tgff1-tgff25) consists of 8 to 100 tasks
and are mapped to heterogeneous architectures containing power managed DVS
PEs and non-DVS enabled PEs. Therefore, these examples show various power
characteristics and component properties. The variations in power are up to 2.6
times on the same PEs. The examples tgff4 t and tgff4 fixed are identical
to tgff4 with slight modifications; tgff4 t denotes a task graph alternative
with a critical tight deadline, while tgff4 fixed uses only DVS-PEs with a
fixed power dissipation.

(2) The examples of Hou et al. [Hou and Wolf 1996] are hypothetical task graphs.
Hou clustered represents the same functionality as Hou, but the task graph
is collapsed from 20 to 8 tasks. Since the initial technology library does not
contain any DVS-enabled PEs, we extended the given PEs to DVS-PEs with
Vt = 0.8V and Vmax = 3.3V . These examples also show different power dissi-
pations (power variations) among the tasks.

(3) Gruian’s and Kuchcinski’s graphs [Gruian and Kuchcinski 2001], used in our
experiments, represent two sets (TG1 and TG2) of 30 randomly generated com-
municating tasks with tight deadlines (determined by a critical path scheduling
algorithm). These graphs show a high degree of parallelism and are mapped
to architectures built of 3 or 10 identical DVS-PEs, assuming constant power
consumption. These PEs are multi-voltage processor able to run at 3.3V , 2.5,
1.7V , and 0.9V , while the threshold voltage Vt is 0.4V .

(4) The applications used by Bambha et al. [Bambha et al. 2001] consist of two
differently implemented Fast Fourier Transforms (fft1 and fft3), a Karplus-
Strong music synthesis algorithm (Karp10), a quadrature mirror filter bank
(qmf4), and a measurement application (meas). These benchmarks are small
real-life examples and use architectures composed of 2 to 6 identical DVS-PEs,
assuming constant power consumption. Supply voltages are between 0.8 and 7
volts. The throughput constraints and initial average power consumptions are
calculated at a reference voltage of 5 volts.

(5) The final benchmarks represents a real-life example, consisting of 32 tasks. It is
a traffic monitoring system based on an optical flow detection (OFD) algorithm.
This application is a sub-system of an autonomous model helicopter [WITAS ;
Gruian and Kuchcinski 2001].

In our experiments, we assume that computation and voltage scaling can be carried
out concurrently, as is the case of the processor introduced in [Burd 2001]. Further,
we neglected the time overhead needed by the processor to switch between two
supply voltages (for real-life DVS processors this is in the range of 10–70µs for a
full transition from the highest to the lowest supply voltage and vice versa [Burd
2001]), since the used tasks are considered to be of coarse granularity (in the range
of 1–100ms). Therefore, the switching overhead can be considered to be only a small
fraction of the total task execution time. However, in the case of fine grained tasks
this overhead might influence the voltage selection and should then be considered.
All results presented here, except the deterministic ones given in Section 4.1, were
obtained by running the optimisation process ten times and averaging the outcomes.
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Table IV. Comparison of the presented PV-DVS optimisation with the EVEN-DVS approach

(scheduling and mapping are fixed)

No. of NO-DVS EVEN-DVS Presented Approach
Example tasks / Energy Energy Reduc. Energy Reduc.

edges Dissip. Dissip. (%) Dissip. (%)

tgff1∗ 8 / 9 355 193.49 45.50 112.87 68.21
tgff2 26 / 43 743224 722412.15 2.80 683954.54 7.97
tgff3 40 / 77 554779 410653.67 25.98 267651.03 51.76
tgff4 20 / 33 431631 402904.08 6.66 375914.03 12.91

tgff4 t 20 / 33 431631 412854.36 4.35 397201.93 7.98
tgff4 fixed 20 / 33 176723 142986.91 19.09 124905.61 29.32

tgff5 40 / 77 4187382 3963647.60 5.34 3767450.25 10.03
tgff6 20 / 26 1419124 1401605.68 1.23 1396445.06 1.60
tgff7 20 / 27 2548751 2289878.34 10.16 1951579.52 23.43
tgff8 18 / 26 1913519 1774151.42 7.28 1668485.33 12.81
tgff9∗ 16 / 15 996590 974159.01 2.25 918048.34 7.88
tgff10 16 / 21 69352 51263.60 26.08 46483.97 32.97
tgff11 30 / 29 4349627 4293736.56 1.28 4263279.98 1.99
tgff12 36 / 50 2316431 2243710.55 3.14 2212111.25 4.50
tgff13 37 / 36 2912660 2425431.77 16.73 2333338.86 19.89
tgff14 24 / 33 15532 13546.62 12.78 12479.41 19.65
tgff15 40 / 63 62607 62078.93 0.84 60334.62 3.63
tgff16 31 / 56 3494478 2913341.14 16.63 2518711.99 27.92
tgff17 29 / 56 23459 20396.41 13.06 18334.01 21.85
tgff18 12 / 15 1851688 1851687.99 0.00 1526059.97 17.59
tgff19 14 / 19 5939 4713.59 20.63 4395.37 25.99
tgff20∗ 19 / 25 77673 48334.30 37.77 40280.98 48.14
tgff21 70 / 99 3177705 3175497.22 0.07 2658534.22 16.34
tgff22 100 / 135 5821498 5036657.40 13.48 4445545.63 23.64
tgff23∗ 84 / 151 11567283 10791880.89 6.70 10133912.03 12.39
tgff24 80 / 112 5352217 5349024.86 0.06 5238478.58 2.13
tgff25 49 / 92 5735038 5648816.00 1.50 5502681.64 4.05
Hou∗ 20 / 29 13712 10337.05 24.61 7474.55 45.49

Hou clust.∗ 8 / 7 14546 11543.35 20.64 10270.32 29.39
∗Components used for these examples consists of DVS-PEs only

4.1 Performance of the Generalised DVS Algorithm

To demonstrate the influence of power variations on the efficiency of DVS, we
compare our approach, which takes the power profile into account, with a power
neglecting approach. This power neglecting approach (in the following referred to
as EVEN-DVS) is based on the idea to distribute available slack time evenly among
the processing elements, somewhat similar to the voltage scaling idea used in [Luo
and Jha 2000]. However, since the mapping and scheduling approach proposed in
[Luo and Jha 2000] targets also additional different objectives, a direct comparison
is not valid.

Table IV shows a comparison between the EVEN-DVS and the proposed DVS
approach. In order to judge the complexity of the individual benchmark examples,
the table gives the number of nodes and edges in the task graphs. The compar-
ison between the two DVS approaches is carried out with respect to the energy
dissipation when no DVS is employed (see Column NO-DVS). Consider for exam-
ple benchmark tgff17, which consist of 29 tasks and 56 communications between
tasks. The unscaled execution (NO-DVS) of the application dissipates an energy of
23459. Using an even distribution of slack time (EVEN-DVS) this power consump-
tion can be reduced to 20396, a reduction of 13.1%. However, using the proposed
generalised DVS algorithm the dissipated energy is further reduced to 18334, when
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Table V. PV-DVS results using the benchmark set of Bambha et al.

No. of NO-DVS Proposed Approach
Example Nodes/ Energy Energy CPU Reduction

Edges Dissip. Dissip. time (s) (%)

fft1 28/32 29600 18172 0.21 38.61
fft3 28/32 48000 36890 0.14 23.15

karp10 21/20 59400 44038 0.12 25.86
meas 12/12 28300 25973 0.11 8.22
qmf4 14/21 16000 12762 0.11 20.24

compared to NO-DVS a reduction of 21.8%.
For all examples shown in Table IV it is assumed that the mapping and schedul-

ing have been pre-determined, using a fixed mapping and a schedule generated by
a mobility based list scheduling. Thus, the energy reductions are solely achieved
through voltage scaling. As expected, both the EVEN-DVS and the presented scal-
ing technique reduced the energy dissipation of the systems in all cases (Column
6 and 9), except for tgff18 where the even distribution of slack could not achieve
any improvement. It can be observed that the proposed DVS heuristic was able to
further improve the energy dissipation of all examples, when compared to EVEN-
DVS. Even in the case of tgff18 a reduction of 17.8% could be achieved. Due to
our particular implementation of the DVS algorithm which distributes slack evenly
among the PEs (EVEN-DVS), also slack is allocated on non-DVS-PEs. Therefore,
the higher energy reduction of the proposed DVS algorithm are due to two facts.
Firstly, EVEN-DVS allocates slack time on non-DVS-PEs. These times, of course,
cannot be exploited to lower the power consumption. Secondly, the proposed DVS
technique considers the power profile information during the voltage scaling. This
leads to better energy reductions (see Motivational Example 1). To distinguish be-
tween both effects, we have indicated in Table IV the architectures which consists of
DVS-PEs only. In these examples, the higher energy reduction in solely achieved by
taken the power profile into account. The remaining examples achieve the increased
energy efficiency due to both effects. We have further conducted experiments with
the benchmark set used by Bambha et al. [Bambha et al. 2001]. Since they use a
different communication model (contention, requests for the bus, etc.), we had to
re-calculate the throughput constraints. Therefore, a direct comparison between
the results reported in [Bambha et al. 2001] and the results presented here is not
possible. Nevertheless, the re-calculation of the throughput was carried out for the
same task mapping and execution order as in [Bambha et al. 2001], which is based
on a dynamic level scheduling approach [Sih and Lee 1993]. The results of these
five examples, scaled by our PV-DVS method, are given in Table V. It can be
observed that in all cases the energy was reduced by 8.22 to 38.61%. Further, the
highly serialised structure of meas allowed us to calculate the theoretically optimal
voltage schedule for this example. Using this optimal supply voltages results in
13% energy saving. Our PV-DVS algorithm achieved for this example a reduction
of 8.22%, which is only 4.78% higher than the theoretically optimal solution.

To give insight into the dependencies between the computational efforts, solution
quality, and the minimum extension time ∆tmin (see also the complexity analysis
in Section 3.1.2), we have conducted two experiments. In order to achieve accurate
results, especially for the time measurement, the experiments are carried out using
ACM Journal Name, Vol. V, No. N, May 2003.
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two large task graphs with 80 (tgff23) and 400 (large1) tasks. Figure 11(a) illus-
trates the dependency between the minimum extension time ∆tmin and the solution
quality (given as reduced energy E over nominal energy E0). It can be observed
that no energy reduction can be achieved until the ∆tmin is smaller than the largest
slack available in the task schedule (2364 for tgff23 and 29581 for large1, see Fig-
ure 11(a)). Certainly, if the algorithm must distribute time quanta bigger than any
slack, it cannot perform any voltage reduction, and therefore E/E0 = 1. At the
same time, it is not desirable to decrease the minimum extension time too much
since the additional reductions become insignificant (the curves level out) and will
only increase the computational time of the optimisation. Figure 11(b), which gives
the dependency between minimum extension time ∆tmin and execution time of the
DVS algorithm. It is therefore important to find a good value for ∆tmin, which
trades-off between solution quality and optimisation time. In our experiments we
use the following heuristic approach to find an appropriate ∆tmin setting for each
solution candidate. It is based on the observation that for all used benchmarks the
characteristics shown in Figure 11(a) and Figure 11(b) hold.

With reference to Figure 11(a), we interpolate the nearly linear (in a semi-
logarithmic scale) energy drop, after decreasing ∆tmin below the highest DVS slack,
using the logarithmic function,

y = α · log x + β (10)

where the constants α and β are calculated using two initial points in the quasi
linear part of the graph. The first point corresponds to the highest available slack
sh on any of the DVS-PEs, hence, it matches the nominal energy dissipation. This
point can be found in linear time. To establish the second point, needed for the
interpolation, the DVS algorithm is run with an ∆t∗min three times smaller than
the highest DVS slack to find its corresponding reduced energy dissipation E∗. For
all used examples this was still in the steeply dropping part of the graph. Using
these points, the constants α and β are given by

α =
1− E∗

log(sh)− log(∆t∗min)
β = E∗ − α · log(∆t∗min)
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Such a linear interpolation is shown in Figure 11(a) for the large1 example. Of
course, finding the second point has a computational overhead, however, as it can
be seen from Figure 11(a) and Fig 11(b), this ”investment” pays off when compared
to a wrong choice of ∆tmin, which could results in a much higher computational
time or a much higher energy consumption. The next step towards a good value for
∆tmin is it to find a ”rough” estimation for the achievable energy reduction. We
calculate the estimation for the scaled energy consumption based on the average
power dissipation on each DVS-PE and the sum of the maximal available slack on
these PEs. An estimated energy dissipation for large1 is indicated in Figure 11(a).
The minimum extension time ∆tmin could be set to the intersection of the energy
estimation and the interpolated energy drop (as show in Figure 11(a)). However,
we set it one order of magnitude lower, as indicated by an arrow in the figure.
This is done to account for the fact that in the case of an energy estimation close
to the real achievable energy reduction, the intersection would be approximately
one order of magnitude to high. In the case that the energy estimation would
be far below the real achievable energy reduction, the calculated ∆tmin would
become unnecessary small. Therefore, we allow no ∆tmin smaller than 2.5 orders of
magnitude compared to the maximal DVS slack. This is based on the observation
that all used benchmarks show a similar characteristic, and ideal ∆tmin can be
found at maximal 2.5 orders of magnitude from the maximal DVS slack.

4.2 Schedule optimisation using the Generalised DVS Approach

To assess the capability of the proposed DVS optimised genetic list scheduler (pre-
sented in Section 3.2) to reduced the power consumption as well as finding feasible
schedules, we have conducted several experiments. Table VI shows, for the same
benchmarks as in the previous section, the achieved energy reductions and computa-
tional overheads, after including the EVEN-DVS and our PV-DVS algorithm inside
the schedule optimisation loop. Comparing the achieved reductions (Table IV) with
the results obtained by a mobility based scheduling (Table VI) reveals that for most
examples the energy consumption was reduced, i.e., the schedule optimisation was
able to find execution orders which allow a more effective exploitation of DVS. For
instance, consider benchmark tgff23. We can observe that the energy reduction
was increase from 6.7% to 15.05% when using EVEN-DVS and from 12.39% to
23.44% when utilising PV-DVS. Certainly, the GA based schedule optimisation in-
troduces a computational overhead which results in a necessary trade-off between
energy reduction and optimisation time. Of course, the linear time complexity of
the EVEN-DVS approaches results in lower optimisation times compared to PV-
DVS which has a polynomial complexity. However, the achieved reductions justify
this overhead, which is in the worst case 21.2s compared to 0.59s for a task graph
with 84 nodes (tgff23).

To further confirm the quality of the proposed DVS optimised scheduling tech-
nique, we compare it next with the DVS scheduling approach proposed by Gruian
et al. [Gruian and Kuchcinski 2001], using the benchmark collections TG1 and TG2,
which contain 60 task graph examples. The reported average energy reductions in
[Gruian and Kuchcinski 2001] are 28% and 13% for the tight deadline task graph
collections TG1 and TG2, respectively. Table VII presents the results obtained us-
ing the proposed DVS optimised scheduling technique. The table is divided into
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Table VI. Experimental results obtained using the generalised DVS algorithm integrated into a

genetic list scheduling heuristic

EVEN-DVS + GLSA PV-DVS + GLSA
Example Energy CPU Reduction Energy CPU Reduction

time (s) (%) time (s) (%)

Tgff1 191 0.12 46.27 102 0.14 71.16
Tgff2 572920 0.20 22.91 545451 0.27 26.61
Tgff3 266907 0.33 51.89 170838 3.11 69.21
Tgff4 377445 0.24 12.55 375778 0.97 12.94

Tgff4 t 405473 0.25 6.06 396579 0.62 8.12
Tgff4 fixed 127867 0.26 27.65 124419 1.00 29.60

Tgff5 3721137 0.37 11.13 3450292 2.41 17.60
Tgff6 1399968 0.23 1.35 1396445 0.25 1.60
Tgff7 1925000 0.20 24.47 1797520 0.27 29.47
Tgff8 1722056 0.19 10.01 1648322 0.20 13.86
Tgff9 829608 0.18 16.76 774994 0.26 22.24
Tgff10 45325 0.17 34.65 44529 0.22 35.79
Tgff11 3755206 0.22 13.67 3621740 0.42 16.73
Tgff12 2212405 0.34 4.49 2198978 3.73 5.07
Tgff13 2342892 0.28 19.56 2315766 0.80 20.49
Tgff14 11891 0.21 23.44 11753 0.25 24.33
Tgff15 61271 0.41 2.13 60129 1.07 3.96
Tgff16 2492365 0.26 28.68 2449747 0.55 29.90
Tgff17 18923 0.27 19.34 18249 0.56 22.21
Tgff18 1724421 0.14 6.87 1421224 0.16 23.25
Tgff19 4515 0.17 23.98 4357 0.16 26.63
Tgff20 42704 0.19 45.02 37223 0.60 52.08
Tgff21 2983044 0.56 6.13 2578046 3.92 18.87
Tgff22 4664876 1.19 19.87 4119749 3.44 29.23
Tgff23 9826644 0.64 15.05 8855575 21.25 23.44
Tgff24 5240977 0.59 2.08 4881188 10.48 8.80
Tgff25 4922085 0.39 14.18 4545250 1.91 20.75
Hou 10211 0.21 25.53 7474 0.23 45.49

Hou clustered 11543 0.18 20.64 10270 0.12 23.39

Table VII. Experimental results obtained using our generalised DVS optimised scheduling ap-
proach for benchmark examples TG1 and TG2

Continuous Discrete CPU
Benchmark Reduction Reduction time

(%) (%) (s)

TG1 41.52 37.86 3.96

TG2 18.90 15.93 0.74

the two benchmark collections. Although the examples do not allow our approach
to leverage power variations, since the specified power values are constant, the
achieved energy reduction for TG1 and TG2 are 41.52% and 18.90% (Column 5 and
11), respectively. This is an improvement of 13.52% and 5.90%, which indicates
the effectiveness of the proposed optimisation technique, even when using constant
power benchmark examples. However, since the results in [Gruian and Kuchcin-
ski 2001] are obtained using multi-voltage PEs rather than variable-voltage PEs,
we have conducted an additional set of experiments, using the same multiple volt-
ages as given in [Gruian and Kuchcinski 2001]. Each supply voltage found by
our PV-DVS algorithm is split into its two neighbouring discrete voltages of the
multi-voltage PE, and the corresponding run-times for each voltage are calculated
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Table VIII. Mapping optimisation of the benchmark set TG1 using NO-DVS, EVEN-DVS, and

PV-DVS
NO-DVS EVEN-DVS + MOB PV-DVS + GLSA

Example Energy time Energy time Red. Energy time Red. Red.
Dissip. (s) Dissip. (s) (%) Dissip. (s) (%) Fac.

r000 798700 53.87 unsolved 18.60 n/a 586806 194.86 26.53 n/a
r001 759500 56.16 592674 13.87 21.97 399839 804.73 47.35 2.16
r002 744800 55.64 unsolved 16.51 n/a 551944 189.97 25.89 n/a
r003 994700 27.76 711887 15.98 28.43 554171 769.58 44.29 1.56
r004 886900 54.00 unsolved 19.97 n/a 566263 360.58 36.15 n/a
r005 744800 54.94 465853 16.75 37.45 373677 1596.67 49.83 1.33
r006 901600 36.88 unsolved 17.55 n/a 589469 827.22 34.62 n/a
r007 837900 55.20 unsolved 20.20 n/a 565731 269.07 32.48 n/a
r008 862400 30.63 unsolved 19.25 n/a 635426 207.46 26.32 n/a
r009 681100 53.24 424723 14.99 37.64 311751 1535.28 54.23 1.44

using Equations (7) and (8). The results of the discrete voltage optimisation are
shown in Table VII (see columns with the headings ”Discrete Reduc.”). For the
two benchmark sets the achieved average energy reductions are 37.86% and 15.93%,
respectively, which represent improvements of 9.86% and 2.93%. Note that these
reductions were obtained on benchmarks which do not show any power variations
and so this optimisation feature of the proposed DVS algorithm stays unexploited.
The achieved improvements are due to the fact that our iterative GA-based ap-
proach is able to explore a large space of potentially energy saving schedules, as
opposed to the constructive list scheduling used in [Gruian and Kuchcinski 2001].
Regarding the computational times, Gruian et al. reported average times for the
30-node task graphs of 10s to 120s, while the proposed algorithm executes on aver-
age in 0.74s to 3.96s, indicating a performance advantage of the presented scaling
technique.

Another feature of the proposed scheduling approach is important to be men-
tioned. The scheduling optimisation (GLSA) does not only reduce significantly the
dissipated energy in the presents of DVS-PEs, but also increases the possibility to
find feasible schedules, when compared to constructive techniques, such as mobility
based scheduling. This is of great importance since high quality solutions could
be found in design space regions where infeasible and feasible solutions are spa-
tially placed closely together. Making a wrong decision might involve a more costly
implementation of the system specification. To clarify this, consider the results
obtained with the benchmark set TG1 from Gruian et al. [Gruian and Kuchcinski
2001], as shown in Table VIII. The results shown in Column 4 are based on EVEN-
DVS and a constructive list scheduling heuristic which uses the mobility of tasks
as priorities. Consider for example benchmark r000. In the case of this benchmark
the scheduling attempt fails and the implementation is infeasible (Column 4, un-
solved), making it necessary to increase the performance of the allocated system
for the given mapping. On the other hand, our iterative GA-based list scheduling
technique (GLSA) is able to improve infeasible schedules by providing feedback to
the optimisation process and therefore feasible schedules might be found, as in the
case of the task graph example r000 (Column 7). This effect is likely to appear in
the presence of tight deadline specifications, as it is the case with the benchmark
set TG1. It can be observed that for 6 out of 10 examples no feasible mapping
could be found when using a mobility based scheduling algorithm. Similarly, for
ACM Journal Name, Vol. V, No. N, May 2003.
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Table IX. Increasing architectural parallelism to allow voltage scaling of the OFD algorithm

Architecture Static Power Dynamic Power Total Power Reduction CPU time
(W) (W) (W) (%) (s)

2 DSPs 0.383 2.137 2.52 – –
3 DVS-DSPs 0.574 1.563 2.137 15.2 0.49
4 DVS-DSPs 0.736 1.053 1.789 29.0 0.69
5 DVS-DSPs 0.898 1.000 1.898 24.7 0.76

the remaining 20 task graphs of the TG1 benchmark set only 8 could be scheduled
using a mobility based scheduling approach. Clearly, the improved schedules are
solely introduced by the GA-based list scheduling and are not dependent on the
different voltage scaling approaches.

In addition to the experiments presented above, we have validated the energy
reduction capability of the proposed scheduling and voltage scaling techniques,
using the real-life example of an optical flow detection (OFD) algorithm. This
application is part of an autonomous helicopter and used for traffic monitoring
purpose. In its current implementation the OFD algorithm runs on two ADSP-
21061L digital signal processors (DSPs), with an average current of 760mA at 3.3V ,
resulting in an average power dissipation of approximately 2.5W . However, due to
the stringent power budget on board of the helicopter, including application critical
sub-systems, it is necessary to keep the overall power dissipation under a certain
limit. With respect to the performance of the two DSPs, this implementation is
able to process 12.5 frames of 78x120 pixels per second. We have conducted two set
of experiments regarding the OFD algorithm. In both we consider an hypothetical
extension of the DSPs towards DVS capability (DVS-DSP) and take into account
that such an extension increases the static power consumption of the processors.
This was estimated to be 10% for the systems presented in [Pering et al. 1998].

In the first experiment the performance constraint is kept fixed, i.e., the flow
detection has to perform 12.5 frames per second. Since the 2 DSP implementation
needs to utilise the processors completely to achieve the 12.5Hz repetitions, we
increase the system performance by allocating additional DSPs. In this way it is
possible to utilise the application parallelism more effectively and hence achieve
a high performance. This over performance can then be exploited by the DVS-
DSPs, in order to lower the dynamic power consumption. Table IX reports on
our findings. From this table it can be observed that with increasing number
of PEs the static power consumption increases as well, while the dynamic power
consumption decreases. Nevertheless, from the battery point of view the total
power dissipation is the limiting factor and it can be seen that the implementation
with 4 DVS-DSPs shows the lowest power consumption. It is important to note
that the implementations shown in Table IX do not necessitate any performance
degradation, though the energy dissipation is reduced by up to 29%. The proposed
scheduling and voltage scaling techniques optimised the execution of the 32 tasks
in less than 0.8s. Of course, the more DVS-DSPs are allocated, the more costly the
implementation becomes.

The last experiment is based on the fact at a 12.5Hz repetition rate is unnec-
essary high. We therefore relax the performance constraints to a repetition rate
of 8.33Hz, which is still high enough to allow a correct flow detection, i.e., a cor-
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Table X. Relaxed performance constraints of the OFD algorithm at 8.33Hz

Architecture Static Power Dynamic Power Total Power Reduction CPU time
(W) (W) (W) (%) (s)

2 DSPs 0.383 2.137 2.52 – –
2 DVS-DSPs 0.413 0.766 1.179 53.2 1.10
3 DVS-DSPs 0.574 0.699 1.273 49.5 1.78
4 DVS-DSPs 0.736 0.497 1.233 51.1 2.27
5 DVS-DSPs 0.898 0.503 1.401 44.4 3.54

rect operation of the OFD algorithm. In this case even the implementation build
out of 2 PEs is not fully utilised and the resulting idle times can be exploited by
DVS to reduced the power consumption. Table X shows the results for different
architectural alternatives, consisting of 2 to 5 DVS-DSPs. Among all alternatives,
the system built out of two DVS-PEs is the clear favourite, since it achieves the
lowest energy consumption at the lowest cost. Clearly, the dynamic power reduc-
tions achieved for the 3–5 DVS-DSP systems do not justify the increased the static
power consumption. The optimisation of schedule and voltage scaling for these
system were carried out in at most 3.54s.

5. CONCLUSIONS

In this work, we have demonstrated that the consideration of power variations is
essential during the energy optimised synthesis of heterogeneous distributed hard-
ware/software systems containing power managed PEs, especially in the presence of
DVS-PEs. This has been mostly neglected in previous work on distributed systems
which include DVS-PEs. We have presented a novel DVS algorithm which identi-
fies supply voltages for the tasks executing on DVS-PEs, under the consideration
of power variation effects in order to minimise the dynamic energy dissipation. The
approach is based on the defined energy difference. This DVS technique was success-
fully integrated into a genetic list scheduling approach as to iteratively optimise a
mapped system specification towards an efficient exploitation of the available DVS-
PEs. The integration was achieved by adapting the employed list scheduler for the
particular problems involved in dynamic voltage scaling. We have further compre-
hensively investigated the effects of scheduling on the achievable energy reductions
when the generalised DVS technique is employed. The extensive experimental re-
sults show the necessity to take the PE power profiles into account when optimising
the scaled supply voltages for energy minimisation. Due to recent developments in
embedded computing systems and the availability of various implementations of
state-of-the-art DVS processors [Intelr XScaleTM 2000; Mobile AMD AthlonTM4
2000; Klaiber 2000] with power management techniques, voltage scaling algorithms
(as the present one) are becoming an important part of the synthesis flow.
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